
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 616–634

December 20-24, 2025 ©2025 Association for Computational Linguistics

The Feasibility of Topic-Based Watermarking on Academic Peer Reviews

Alexander Nemecek1*, Yuzhou Jiang1, Erman Ayday1

1Case Western Reserve University
{ajn98*, yxj466, exa208}@case.edu

Abstract

Large language models (LLMs) are increas-
ingly integrated into academic workflows, with
many conferences and journals permitting their
use for tasks such as language refinement and
literature summarization. However, their use
in peer review remains prohibited due to con-
cerns around confidentiality breaches, hallu-
cinated content, and inconsistent evaluations.
As LLM-generated text becomes more indis-
tinguishable from human writing, there is a
growing need for reliable attribution mecha-
nisms to preserve the integrity of the review
process. In this work, we evaluate topic-based
watermarking (TBW), a semantic-aware tech-
nique designed to embed detectable signals into
LLM-generated text. We conduct a system-
atic assessment across multiple LLM configura-
tions, including base, few-shot, and fine-tuned
variants, using authentic peer review data from
academic conferences. Our results show that
TBW maintains review quality relative to non-
watermarked outputs, while demonstrating ro-
bust detection performance under paraphrasing.
These findings highlight the viability of TBW
as a minimally intrusive and practical solution
for LLM attribution in peer review settings.1

1 Introduction

As large language models (LLMs) continue to
evolve, their adoption has accelerated in academic
writing (Dergaa et al., 2023; Editorials, 2023).
LLMs are widely used for language polishing, lit-
erature search, and low-novelty writing. Many
conferences now explicitly allow authors to use
LLMs for certain tasks, provided that authors re-
tain full responsibility for the content (ACL, 2025a;
NeurIPS, 2025; ICML, 2025a). These policies up-
hold pre-LLM expectations around authorship and
accountability while adapting to new technology.

1Our code and data is available at https://github.com/
ANCP2021/Watermarking-LLM-Conference

In contrast, the use of LLMs by peer review-
ers is widely prohibited (ACL, 2025b; NeurIPS,
2025; ICML, 2025b). Such practices risk confiden-
tiality breaches, low-quality evaluations, and data
exposure (Zhou et al., 2024; Maini et al., 2024).
Recent empirical studies suggest, however, that
LLM-assisted reviews are already present in ma-
jor conferences, leading to inflated scores, reduced
reviewer confidence, and distortions in paper rank-
ings (Liang et al., 2024; Latona et al., 2024; Ye
et al., 2024). These developments underscore the
urgency of developing attribution mechanisms to
detect and manage LLM usage in peer review.

Distinguishing between machine- and human-
authored reviews has become difficult, as LLM-
generated content continues to improve. This
creates an urgent need for technical mechanisms
to trace review provenance. Watermarking of-
fers a promising approach, embedding impercepti-
ble, machine-detectable signatures into generated
text (Zhao et al., 2024). However, existing work
focuses on general-domain text, with limited anal-
ysis in peer review contexts (Liu et al., 2024; Zhao
et al., 2023).

In this paper, we present the first systematic eval-
uation of topic-based watermarking (TBW) in the
context of academic peer reviews, a high-stakes
domain with distinct structural, semantic, and eth-
ical constraints that differentiate it from general-
purpose text generation settings. While TBW was
originally proposed for open-domain text (Neme-
cek et al., 2024), its applicability to specialized
domains with strict quality requirements and ad-
versarial threat models has remained unexplored.
We address this gap by adapting TBW to peer re-
view workflows and conducting a comprehensive
assessment of its feasibility as a practical attribu-
tion mechanism for conference organizers.

Our contribution is threefold. First, we demon-
strate that peer review represents an ideal use case
for TBW due to its inherent structural properties:
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reviews must remain topically aligned with the
paper under evaluation, satisfying TBW’s topic-
matching assumption naturally, unlike open-ended
generation tasks where topic drift undermines de-
tection. Second, we introduce domain-specific
adaptations including custom topic sets ({theory,
applications, models, optimization}) aligned with
machine learning conference reviews, and we sys-
tematically evaluate TBW across three model con-
figurations: base, few-shot, and fine-tuned, repre-
senting varying levels of model adaptation. Third,
we assess robustness under realistic paraphrasing
threats (PEGASUS and DIPPER), reflecting sce-
narios where reviewers may rephrase generated
content to improve clarity or evade detection while
preserving review quality.

Without effective attribution mechanisms, the
credibility and rigor of academic conferences
could erode, leading to lower-quality evaluations
and increased reliance on potentially unverifiable,
machine-generated feedback. Watermarking pro-
vides a practical and minimally disruptive approach
for LLM accountability, helping to safeguard aca-
demic standards while accommodating the evolv-
ing role of generative models. Related work on
LLM watermarking and detection approaches is
provided in §A.

2 Topic-Based Watermarks

Topic-based watermarking (TBW) (Nemecek et al.,
2024) is a semantic-aware watermark that subtly
influences a language model’s token selection pro-
cess to leave a detectable signature. Unlike ear-
lier schemes such as KGW (Kirchenbauer et al.,
2023), which rely on randomly partitioned vocab-
ularies using a secret seed, TBW constructs topic-
specific token subsets (“green lists”) aligned with
the semantic content of the input prompt through
a deterministic, keyless mapping. This approach
helps preserve fluency while enhancing robustness
against paraphrasing.
Token-to-Topic Mappings. TBW assigns tokens
to topic-specific green lists using semantic similar-
ity without requiring a master key or secret seed.
A small set of topics t1, . . . , tK is defined, each
represented by an embedding eti computed via a
sentence embedding model. Each token v ∈ V
in the model’s vocabulary is embedded as ev, and
its cosine similarity with each topic embedding is
computed. If the maximum similarity exceeds a
threshold τ , the token is assigned to the green list

Gti for the most similar topic. Tokens that do not
meet this threshold are placed in a residual set and
evenly distributed across all green lists to main-
tain full vocabulary coverage. This deterministic
assignment process is reproducible given only the
embedding model, topic set, and threshold τ as no
secret parameters are involved.2

Generation & Detection. During generation, the
most relevant topic is identified from the input
prompt using keyword extraction, and TBW adds a
small logit bias δ to all tokens in the corresponding
green list. This increases the likelihood of sampling
topic-aligned tokens while preserving the model
architecture and generation efficiency. The water-
mark strength is controlled by δ: higher values
produce stronger attribution signals but may cause
detectable shifts in word choice.

For detection, TBW recovers the relevant topic
from the input text and counts green-list tokens
g relative to total tokens n. A z-score quantifies
whether the green-token rate exceeds an expected
baseline proportion γ:

z =
g − γ · n√

n · γ · (1− γ)
.

If z > zthreshold, the text is classified as water-
marked.
Rationale for TBW. We select TBW for its com-
bination of robustness, adaptability, and minimal
overhead (Nemecek et al., 2024). TBW is partic-
ularly well-suited to peer review contexts where
paraphrasing represents a realistic threat model
where reviewers may rephrase generated content to
improve clarity or avoid detection, but are unlikely
to introduce noise that would degrade quality.

Additionally, TBW’s requirement of topic align-
ment between the input prompt and generated text
naturally holds in peer review, where content must
remain semantically aligned with the paper under
evaluation. This structural constraint provides an
advantage over general-domain watermarking be-
cause the detector (conference organizer) has di-
rect access to the same paper submission used at
generation time, they can reliably recover the cor-
rect topic and reconstruct the identical green lists
without requiring any secret key. This eliminates
key dependency entirely, the deterministic token-
to-topic mapping combined with guaranteed topic

2While this keyless design is suitable for practical threats
like paraphrasing, TBW can be extended with a keyed resid-
ual assignment (e.g., using a secret seed to distribute non-
matching tokens) if cryptographically stronger adversaries are
of concern.
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alignment means detection requires only the public
submission text, not hidden parameters.

Finally, TBW’s semantic biasing strategy pre-
serves fluency and style while supporting do-
main adaptation through customizable topic sets
t1, . . . , tK that can be tailored to specific research
fields or venues.

3 Experimental Setup

We simulate realistic LLM-based peer review gen-
eration by training and prompting models to write
reviews conditioned on a paper’s title and abstract.
We condition on paper abstracts rather than full
text due to context length constraints and structured
data availability.

3.1 Dataset

We construct a dataset of paper titles, abstracts, and
corresponding reviews from ICLR and NeurIPS
conferences using the OpenReview API (OpenRe-
view, 2024). To minimize risk of including LLM-
generated content, we restrict data to conferences
before ChatGPT’s release (November 2022) (Ope-
nAI, 2022): ICLR 2018-2023 and NeurIPS 2021-
2022. The final dataset contains approximately
19,000 reviews, each including summary, strength-
s/weaknesses, and recommendation scores. For
each paper, we randomly sample a single review
to construct prompt-completion pairs, ensuring re-
viewer diversity while avoiding overrepresentation.
Detailed statistics are in §C.1.

3.2 TBW Domain Adaptation

We adapt TBW to peer review by modifying
the topic sets while retaining original parame-
ter settings. Instead of general-purpose topics
(e.g., technology, sports), we define domain-
specific topics: {theory, applications, models,
optimization} to capture themes in ML confer-
ence reviews. We use logit bias δ = 2.0 and simi-
larity threshold τ = 0.7 for primary experiments,
with additional evaluation at τ = 0.3. Complete
parameter details are provided in §C.2.

3.3 Model Configurations

To assess the feasibility of TBW across varying
levels of model adaptation and reviewer effort, we
utilize the pretrained Llama-3.1-8B base check-
point (Grattafiori et al., 2024) in three configura-
tions: base, few-shot, and fine-tuned. The base
configuration uses the pretrained model checkpoint

directly without additional training or prompt engi-
neering, simulating minimal reviewer effort. The
few-shot setting provides the same base model with
example peer reviews as part of the input prompt,
enabling it to replicate the expected format and tone
with lightweight guidance. The fine-tuned configu-
ration involves supervised training on peer review
data using parameter-efficient methods, resulting
in a model more aligned with the review-writing
task. This model size offers a practical balance
between computational efficiency and generation
quality suitable for our multi-configuration exper-
iments. Detailed setup parameters for few-shot
prompting and fine-tuning are provided in §C.3.

4 Experiments

We conduct a series of experiments across multiple
dimensions, including text quality, robustness to
paraphrasing, and classifier-based attribution.

4.1 Generation Quality
To assess TBW’s impact on generation quality, we
evaluate perplexity across 1,000 samples per model
configuration (base, few-shot, fine-tuned), compar-
ing against unwatermarked baselines and two ex-
isting schemes: KGW (Kirchenbauer et al., 2023)
and Google’s SynthID-Text (Dathathri et al., 2024).
Each sample contains approximately 200 ± 5 to-
kens. Parameter configurations, additional thresh-
old results, human evaluations, and BERTScore
evaluations are detailed in §D.

We compute perplexity using the generating
model (Llama-3.1-8B) as a fluency proxy, where
lower values indicate higher naturalness. For vi-
sualization clarity, values above 20 are truncated
in Figure 1. The results demonstrate that TBW
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Figure 1: Perplexity distributions across model and wa-
termark configurations. Lower values indicate better
fluency. Values above 20 are truncated for clarity.

introduces minimal perplexity degradation while
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maintaining fluency compared to existing water-
marking schemes. While Figure 1 shows TBW
with slightly higher median perplexity than KGW
in some configurations, the truncation at perplexity
20 obscures an important quality difference. Ta-
ble 1 reports the number of samples retained below
this threshold across all watermarking schemes and
model configurations.

Model Scheme Samples Retained

Base

NW 508
TBW 991
KGW 840
SynthID 538

Few-shot All schemes 1000

Fine-tuned All schemes 1000

Table 1: Number of retained generations with perplex-
ity ≤ 20 across model configurations. TBW retains
991/1000 base model samples, significantly outperform-
ing KGW (840/1000) and SynthID (538/1000), demon-
strating superior outlier suppression.

Notably, TBW retained 991 of 1000 base model
samples below the perplexity threshold, excluding
only 9 outliers, whereas KGW retained 840 (160
excluded) and SynthID retained only 538 (462 ex-
cluded). This demonstrates that TBW produces
far fewer low-quality outliers than existing meth-
ods, the best performance among all watermarking
schemes tested. These results suggest TBW pre-
serves generation naturalness but enhances lexical
consistency in low-context scenarios by steering
generation toward topic-relevant vocabulary.

While perplexity serves as a useful fluency proxy,
it does not fully capture semantic fidelity to the orig-
inal content. To complement this analysis, we eval-
uate semantic similarity using BERTScore (Zhang
et al., 2019), which measures contextual embed-
ding alignment between generated reviews and
ground-truth references (§D.2), and conduct a
small-scale human evaluation on the fluency, coher-
ence, and usefulness of generated reviews (§D.3).
Furthermore, we evaluate TBW under a relaxed
similarity threshold (τ = 0.3) to assess sensitivity
to green-list construction (§D.4). These comple-
mentary metrics confirm that TBW preserves both
fluency and semantic integrity across generation
conditions.

Detection Accurcy
Model Attacks TBW KGW SynthID

Base
No Attack 0.946 0.971 0.909
PEGASUS 0.847 0.477 0.135
DIPPER 0.876 0.754 0.173

Few-shot
No Attack 0.622 0.975 0.959
PEGASUS 0.580 0.580 0.359
DIPPER 0.517 0.748 0.225

Fine-tuned
No Attack 0.880 0.926 0.960
PEGASUS 0.583 0.437 0.180
DIPPER 0.584 0.657 0.159

Table 2: Detection accuracy of TBW, KGW, and Syn-
thID across model configurations and paraphrasing at-
tack types. Scores reflect the proportion of correctly
identified watermarked samples per condition.

4.2 Robustness to Paraphrasing Attacks

We evaluate TBW’s resilience against paraphrasing
attacks, which represent a realistic threat model
where reviewers may rephrase LLM-generated con-
tent to evade detection while preserving semantic
meaning. We focus on full-text paraphrasing at-
tacks that best reflect plausible reviewer behavior,
excluding token-level or partial edit scenarios.

We generate 1,000 samples per model config-
uration (base, few-shot, fine-tuned) for each wa-
termarking scheme, with each sample containing
200 ± 5 tokens. Paraphrasing attacks are imple-
mented using two established models: PEGA-
SUS (Zhang et al., 2020) and DIPPER (Krishna
et al., 2023) (configured with lexical=60 and
order=40), following standard robustness evalua-
tion protocols (Hou et al., 2024; Liu and Bu, 2024).

Table 2 shows detection accuracy across three
attack conditions. TBW demonstrates superior
robustness compared to existing methods, main-
taining detection accuracy for base models and
fine-tuned models even under paraphrasing attacks.
In contrast, KGW and SynthID show degradation,
with SynthID dropping to as low as 13.5% accuracy
under PEGASUS attacks.

The few-shot configuration exhibits reduced per-
formance across all methods, with TBW achieving
58% accuracy under PEGASUS and 52% under
DIPPER. This degradation likely stems from topic
misalignment between the prompt examples and
target papers, which weakens topic alignment and
reduces detectability post-paraphrasing.

Importantly, this represents a characteristic trade-
off of TBW’s semantic design. While topic-aware
watermarking provides robustness in controlled
settings (base and fine-tuned models), it becomes
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Base Few-shot Fine-tuned
Metric NW TBW NW TBW NW TBW

BERT

Accuracy 0.290 0.321 0.403 0.437 0.400 0.416
Precision 0.353 0.346 0.373 0.366 0.367 0.366
Recall 0.328 0.342 0.379 0.369 0.370 0.367
F1 0.278 0.317 0.360 0.358 0.364 0.366

RoBERTa

Accuracy 0.486 0.432 0.399 0.424 0.406 0.443
Precision 0.344 0.357 0.362 0.371 0.367 0.401
Recall 0.341 0.352 0.368 0.371 0.374 0.403
F1 0.305 0.350 0.337 0.353 0.367 0.402

Table 3: Overall classification performance on original
LLM-generated reviews. Metrics are averaged over
Accept, Borderline, and Reject classes.

sensitive to exemplar-target mismatch in few-shot
prompting. This sensitivity surfaces an important
consideration for effective deployment of TBW in
few-shot scenarios, which would benefit from im-
proved exemplar selection strategies or dynamic
prompt construction that ensures topical consis-
tency between examples and the target generation
task.

We verify that TBW maintains low false pos-
itive rates on human-written reviews through its
vocabulary partitioning strategy, which preserves
lexical diversity across topic-specific green lists.
Complete ROC analysis is provided in §E.

4.3 Classifier-Based Attribution
Beyond detecting the presence of watermarks, one
question is whether watermarking degrades the se-
mantic integrity of generated reviews in ways that
affect downstream interpretation tasks. Specifically,
if watermarking distorts the linguistic features that
correlate with review sentiment (accept, border-
line, reject), it could undermine the very purpose
of generating coherent and evaluable reviews.

To address this concern, we evaluate whether
both watermarked and non-watermarked LLM-
generated peer reviews can be accurately attributed
to their original review labels (accept, borderline,
reject) using transformer-based classification mod-
els. This experiment serves two purposes: (i) it val-
idates that watermarked reviews preserve sufficient
semantic structure to support rating prediction, and
(ii) it tests whether TBW’s topic-aware biasing in-
troduces artifacts that either help or hinder senti-
ment classification. If watermarking significantly
degrades classifier performance, it would suggest
that the semantic alterations required for attribution
compromise review quality in measurable ways.

We use a balanced dataset of 9,000 training sam-

ples (3,000 per class) and 1,000 test samples. Re-
views are mapped to three categories based on orig-
inal scores: 1-4 (reject), 5-6 (borderline), and 7-10
(accept). We train BERT (Devlin et al., 2019) and
RoBERTa (Zhuang et al., 2021) classifiers to pre-
dict review ratings based on generated review text,
evaluating performance on both watermarked and
non-watermarked reviews.

As shown in Table 3, TBW demonstrates mixed
but generally positive effects on classification per-
formance. While some configurations show mod-
est degradation (e.g., RoBERTa base accuracy), the
majority of results indicate that TBW causes little
to no degradation and often leads to improvements
in both accuracy and F1 scores. We hypothesize
that this occurs because topic-based watermarking
encourages more topically consistent language that
aligns better with the underlying review content.

These findings reinforce TBW’s suitability for
domain-sensitive contexts like peer review, where
both traceability and semantic fidelity are critical.
The results demonstrate that watermarking does
not compromise and may even enhance the inter-
pretability of generated reviews with respect to
their underlying evaluative stance. Additional ex-
perimental details, including class-specific perfor-
mance metrics, evaluation under lower similarity
thresholds (τ = 0.3), and robustness evaluation
under paraphrasing attacks, are provided in §F.

5 Conclusion

We present the first systematic evaluation of topic-
based watermarking (TBW) for academic peer re-
view, demonstrating that TBW preserves genera-
tion quality while maintaining robust detection un-
der paraphrasing attacks. Our experiments across
base, few-shot, and fine-tuned LLM configurations
show that TBW’s semantic grounding naturally
aligns with peer review constraints, where content
must remain topically consistent with the evaluated
paper. These findings highlight TBW’s viability
as a minimally intrusive solution for LLM attribu-
tion in peer review settings, offering a practical
mechanism to safeguard academic evaluation in-
tegrity. Discussion of deployment considerations
and limitations is provided in §B.
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Limitations

This work inherits a key limitation of topic-based
watermarking: the topic-matching assumption. As
noted in the original proposal (Nemecek et al.,
2024), watermark detection may degrade if the se-
mantic topic of the generated output drifts signifi-
cantly from the original prompt. This is particularly
challenging in open-domain generation, where the
input prompt is often unavailable at detection time.
However, in the context of peer review, this limita-
tion is largely mitigated. Reviewers must prompt
the LLM using the content of the paper, either by
directly including the text or referencing its ab-
stract and title, ensuring that the generated review
remains topically aligned with the source. Further-
more, during detection, conference organizers have
access to the submission itself, allowing them to
reliably identify the intended topic and recover the
correct green list. As a result, the topic-matching
assumption holds in this use case.

A second limitation concerns deployment and
coverage. For watermarking to serve as a reliable
attribution mechanism, it must be consistently ap-
plied across all LLMs used in a given environment.
This is a general challenge for watermarking ap-
proaches and not unique to TBW. If only certain
LLM providers implement watermarking while oth-
ers do not, users can simply switch to unwater-
marked systems to bypass attribution. While the
governance and policy mechanisms required to ad-
dress this challenge are beyond the scope of this pa-
per, we acknowledge that the effectiveness of TBW
in real-world enforcement depends on broader co-
ordination across providers and platforms.

Thirdly, our evaluation of TBW’s robustness
in the context of academic peer reviews focuses
on full-text paraphrasing attacks, which represent
strong adversarial models where the entire review is
rephrased. We selected this threat model because it
represents the most comprehensive transformation:
if TBW remains detectable when all text is para-
phrased, it should naturally be robust to partial ed-
its affecting only portions of the review. However,
we acknowledge that real-world reviewer behav-
ior may include additional manipulation strategies
not evaluated in this work, such as hybrid human-
LLM composition (mixing original writing with
generated content), section reordering, selective
compression or expansion of specific review com-
ponents, and multi-stage translation attacks (e.g.,
English to an intermediate language and then back

to English). While these scenarios represent valu-
able directions for future robustness analysis, we
expect TBW’s semantic grounding to provide re-
silience against such attacks, particularly in cases
where the topical alignment between the paper and
review is preserved. Future work should system-
atically evaluate these additional threat models to
fully characterize TBW’s operational boundaries.

An important distinction not addressed in our
current evaluation is differentiating between text
originally authored by a human reviewer but sub-
sequently polished by an LLM (e.g., grammar cor-
rection, style refinement) versus text entirely gen-
erated by an LLM. This represents a challenging
but critical use case, as many conferences permit
LLM-assisted writing improvement while prohibit-
ing wholesale generation. TBW’s detection mech-
anism, which relies on green-list token density,
would likely flag both scenarios similarly since the
polishing process may still introduce watermarked
tokens. Developing attribution methods that can re-
liably distinguish between these two cases remains
an important direction for future work and may
require complementary techniques beyond water-
marking alone.

Ethical Considerations

This work addresses the growing concern of unau-
thorized LLM usage in academic peer review.
While many conferences permit LLM use for au-
thoring papers, they explicitly prohibit it for gen-
erating reviews, citing risks to confidentiality, fair-
ness, and accountability. Our goal is not to penalize
reviewers but to support conference organizers in
enforcing existing policies through lightweight and
interpretable attribution tools. Topic-based water-
marking introduces no additional risk to authors
or reviewers, as it operates at the generation level
without modifying model internals or relying on
invasive detection mechanisms. We advocate for
transparent disclosure of LLM usage in reviews
and emphasize that attribution tools should be de-
ployed with clear governance structures and ethical
oversight.
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A Related Work

Since the release of ChatGPT, LLMs have been
rapidly adopted across various stages of the aca-
demic workflow. Their use has raised concerns
about authorship and peer review integrity. Most
conferences and journals now permit authors to
leverage LLMs; however, this permissive stance
does not extend to peer reviewers. Leading venues
such as NeurIPS and ACL explicitly prohibit the
use of LLMs by reviewers (NeurIPS, 2025; ACL,
2025b). These policies reflect growing concerns
around review quality, including the risk of shal-
low or hallucinated feedback, reduced technical
depth, and breaches of confidentiality that would
compromise the double-blind review process (Li
et al., 2024).

Despite these restrictions, recent studies suggest
that LLM-assisted reviews are already present at
major conferences. Liang et al. (2024) estimate
that 5-15% of reviews were substantially modi-
fied using LLMs, with affected reviewers showing
lower confidence and less engagement during re-
buttals. Latona et al. (2024) report similar trends
and observe a score inflation effect, while Ye et al.
(2024) show that even subtle LLM manipulations
can shift paper rankings. Together, these findings
underscore the risks unauthorized LLM use poses
to peer review fairness and rigor.

Given the increasing use of LLMs for peer re-
view generation, recent work has focused on de-
tecting and attributing such content. Much of this
research explores classifier-based detection or se-
mantic similarity methods aimed at identifying AI-
generated text. For example, Yu et al. (2025) pro-
pose a detection method based on the semantic
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similarity between a known LLM-generated review
and a test review, flagging a review as machine-
generated when similarity exceeds a threshold.
Similarly, Kumar et al. (2025) introduce a partition-
based method under the assumption that a review
contains both human- and LLM-written compo-
nents. They segment the review into distinct points,
complete each segment with a reference LLM, and
measure semantic similarity between these comple-
tions and the original text to detect potential LLM
involvement.

However, these detection methods fail under
paraphrasing or hybrid-review scenarios, where
even minor edits or partial human rewriting can
evade detection. To address this limitation, water-
marking offers a promising alternative by embed-
ding identifiable signals directly into the generated
text. One foundational method is the KGW algo-
rithm (Kirchenbauer et al., 2023), which partitions
the model’s vocabulary into “green” and “red” to-
ken sets. During generation, the model is subtly
biased to sample more frequently from the “green”
list, which acts as a watermark-carrying set, while
avoiding tokens in the “red” list. This results in out-
put text that biases outputs toward “green” tokens
with minimal quality loss. Variants aim to improve
robustness and preserve quality (Liu et al., 2024;
Zhao et al., 2023; Hou et al., 2024).

More recently, commercial systems have also
entered this space. For example, Google’s SynthID-
Text watermarking system employs a strategy
called Tournament Sampling, in which candidate
tokens are ranked according to randomized water-
marking functions, and the highest-ranked token is
selected during generation (Dathathri et al., 2024).
While both academic and commercial watermark-
ing approaches have shown promise, they are pri-
marily evaluated on general-purpose domains such
as news or encyclopedic text, and rarely tested un-
der the stylistic and ethical constraints found in
peer review.

While a few frameworks target peer review
watermarking (Rao et al., 2025), they rely on
tightly integrated pipelines and lack evaluation
across adaptation modes. Topic-based watermark-
ing (TBW) (Nemecek et al., 2024), originally pro-
posed for open-domain text, provides a lightweight,
semantically guided alternative.

B Discussion

Topic-based watermarking performs particularly
well in the peer review setting due to the natu-
ral alignment between the subject of a paper and
the content of its corresponding review. Unlike
more open-ended generation tasks, peer reviews
are tightly grounded in the paper being evaluated,
making significant topic shifts unlikely, unless in-
troduced deliberately by the reviewer. Since high-
quality, relevant reviews are needed for the aca-
demic evaluation process, such intentional degra-
dation is improbable in practice.

We also observe that topic-based watermark-
ing is compatible across varying levels of LLM
adaptation, from base models to fine-tuned vari-
ants. While the few-shot setting shows degradation
in detection robustness, we attribute this to topic
mismatch between the few-shot exemplars and the
review being generated. This limitation can be mit-
igated with better exemplar selection or dynamic
prompt construction.

From a deployment perspective, TBW offers
a practical solution for reviewer attribution. The
method is efficient and detection incurs minimal
computational overhead, making it suitable for
integration into existing conference submission
pipelines (Nemecek et al., 2024). Its low latency
and lack of architectural modifications make it a
compelling candidate for enforcement mechanisms
in venues that prohibit LLM-assisted review writ-
ing.

Lastly, our evaluation uses a constrained input
(title and abstract) due to context window limita-
tions. We expect that access to the full paper would
further enhance generation quality and strengthen
watermark consistency by grounding outputs in
topic-relevant content.

C Peer Review Task Specifics

This appendix provides additional details regard-
ing the peer review generation setup described
in §3. Specifically, we include conference-level
review statistics and implementation details for
TBW as well as prompting and fine-tuning the
Llama-3.1-8B model.

C.1 Conference Review Statistics

Table 4 reports the number of reviews collected
from each ICLR and NeurIPS conference used in
our experiments. Only reviews submitted prior to
the release of ChatGPT (November 2022) were
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included to minimize the likelihood of LLM-
generated content in the training data. No addi-
tional filtering was applied beyond restricting the
dataset to pre-ChatGPT conferences where all re-
views were used in their original form.

Conference: Year Number of Reviews
ICLR: 2018 935
ICLR: 2019 1419
ICLR: 2020 2213
ICLR: 2021 2594
ICLR: 2022 2617
ICLR: 2023 3793
NeurIPS: 2021 2768
NeurIPS: 2022 2824

Table 4: Review counts per conference used in training
and evaluation. The total number of unique reviews is
19,163.

C.2 TBW Parameter Details
C.2.1 Implementation Components
We use the same core components as the origi-
nal TBW implementation to ensure consistency.
Token and topic embeddings are computed us-
ing the all-MiniLM-L6-v2 sentence embedding
model (Reimers and Gurevych, 2020). Topic ex-
traction from input prompts is performed using
KeyBERT (Grootendorst, 2020) for keyword-based
topic identification.

C.2.2 Topic Assignment & Green List
Construction

Following the TBW framework, we partition the
vocabulary into green lists based on semantic sim-
ilarity to our predefined set of K = 4 domain-
specific topics: {theory, applications, models,
optimization}. Each token v ∈ V is assigned to
the green list Gti if its cosine similarity with topic
ti exceeds threshold τ :

sim(v, ti) =
ev · eti

∥ev∥∥eti∥

Tokens not meeting the similarity threshold are
placed in a residual set and evenly distributed
across all green lists to maintain complete vocabu-
lary coverage.

C.2.3 Topic Granularity Selection
We selected K = 4 domain-specific topics to bal-
ance semantic coverage with watermark detection
robustness. Finer-grained topic divisions (larger

K) would create sparser green lists Gti , potentially
weakening watermark signals and reducing robust-
ness to paraphrasing. Coarser divisions (smaller
K) would sacrifice semantic alignment between
prompts and outputs. The selected topics: {theory,
applications, models, optimization}, capture
the major thematic dimensions of ML conference
reviews while maintaining sufficient green-list den-
sity for reliable detection. Future work could ex-
plore adaptive topic granularity strategies, such as
hierarchical topic structures or automatic topic dis-
covery from review corpora.

C.2.4 Generation & Detection Parameters
We apply a logit bias of δ = 2.0 to green-list to-
kens during generation, consistent with values re-
ported in prior watermarking literature (Kirchen-
bauer et al., 2023). For token-to-topic assignment,
we primarily use a cosine similarity threshold of
τ = 0.7, with additional evaluation at τ = 0.3 to
assess how watermark detection and text quality
vary under relaxed alignment constraints.

For detection, we use the statistical z-test with
baseline proportion γ set to the expected green-
token rate under random sampling, and threshold
zthreshold tuned for desired false positive rates.

C.3 Model Configuration Details
C.3.1 Few-shot Prompting Setup
In the few-shot setting, the model is given a prompt
containing a paper’s title and abstract followed by
a fixed instruction:

Title: [TITLE]
Abstract: [ABSTRACT]
Please write a detailed review.

Each prompt includes two example reviews
prepended to help the model learn the expected
structure and tone of a review. These few-shot
examples are randomly sampled from the train-
ing pool but excluded from evaluation generations.
Specifically, the two examples prepended to each
prompt are drawn from the first two entries in
the fine-tuning training split, ensuring consistency
across models.

C.3.2 Fine-Tuning Setup
For fine-tuning, we follow a supervised instruction-
tuning setup where each instance consists of an
input prompt (title + abstract + instruction) and
a target completion (review text). The dataset is
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split into training (80%), validation (10%), and test
(10%) subsets. We fine-tune using LoRA (Low-
Rank Adaptation) with 4-bit quantization, enabling
gradient checkpointing and early stopping. The
objective is to improve the fluency and consis-
tency of generated reviews while approximating
the tone and structure typical of human-written
peer reviews.

For instruction-tuned generation, we fine-tune
the Llama-3.1-8B model using a parameter-
efficient LoRA (Low-Rank Adaptation) method.
LoRA freezes the original model weights and in-
jects trainable low-rank matrices into a subset of
layers, enabling effective fine-tuning with a small
number of additional parameters. This approach is
well-suited for large-scale models, reducing mem-
ory usage and training time while maintaining per-
formance. Key settings are described in Table 5.
All experiments were conducted using the Hugging

Parameter Value

Adapter type LoRA
LoRA r/α 16/32
LoRA dropout 0.1
Training epochs 3
Batch size (per device) 2
Max sequence length 2048 tokens
Learning rate 1e-4
Warmup ratio 0.2
Quantization 4-bit (NF4), double quantization
Target modules q_proj, k_proj, v_proj,

o_proj, gate_proj, up_proj,
down_proj

Table 5: Fine-tuning Hyperparameters

Face Transformers and PEFT libraries, with train-
ing orchestrated using the Trainer API. The final
adapters and tokenizer were saved for downstream
evaluation. The dataset consists of the prompt (ti-
tle, abstract, and generation instruction) and a com-
pletion (review text), compatible with instruction
tuning for causal language models.

D Generation Quality Evaluations

We expand our evaluation of topic-based water-
marking (TBW) to assess its sensitivity to differ-
ent token-to-topic similarity thresholds. Specifi-
cally, we re-run perplexity and BERTScore evalu-
ations using a lower semantic similarity threshold
of τ = 0.3 (vs. τ = 0.7 in the main experiments).
We also provide BERTScore comparisons of TBW
(τ = 0.7) against KGW and SynthID baseline wa-
termarking schemes.

D.1 Baseline Watermarking Parameters
We compare TBW against two established wa-
termarking methods: KGW (Kirchenbauer et al.,
2023), a pioneering approach for LLM watermark-
ing, and SynthID-Text (Dathathri et al., 2024),
Google’s proprietary technique for text attribution.
All baseline implementations use the open-source
MarkLLM framework (Pan et al., 2024) with the
following configurations:

KGW Parameters:
{

"gamma ": 0.5,
"delta ": 2.0,
"prefix_length ": 1,
"z_threshold ": 4.0

}

SynthID Parameters:
{

"ngram_len ": 5,
"watermark_mode ": non -

distortionary ,
"threshold ": 0.52,
"detector_type ": mean

}

D.2 BERTScore Evaluation (TBW τ = 0.7)
We use BERTScore F1 to evaluate semantic simi-
larity between generated reviews and ground-truth
references. This metric compares contextual em-
beddings and is tolerant to paraphrasing, making it
well-suited for open-ended review generation. Re-
sults across all model configurations are shown in
Figure 2.
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Figure 2: BERTScore F1 distributions across model con-
figurations with and without TBW (τ = 0.7). Higher
values indicate greater semantic similarity to the ground
truth.

TBW causes only a minor drop in BERTScore,
indicating that semantic fidelity is largely pre-
served. Notably, in the base model, TBW narrows
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the BERTScore distribution, suggesting more con-
sistent alignment with the source prompt across
samples.

D.3 Human Evaluation
To complement our automated text quality met-
rics, we conduct a small-scale human evaluation
to assess the perceptual quality of TBW-generated
peer reviews. Human evaluation provides crucial
insights into whether watermark artifacts are de-
tectable to end users, which is essential for practical
deployment.

We conduct a single-set evaluation with 6 human
evaluators to assess individual text samples across
multiple quality dimensions. All evaluators came
from a computer science background and were fa-
miliar with the review process of conferences used
in our few-shot and fine-tuned model training (i.e.,
ICLR and NeurIPS).

Evaluators were presented with 15 generated
review samples under our standard configuration
(τ = 0.7, Llama-3.1-8B). For each sample, eval-
uators were shown the paper title, abstract, and
generated review text. Of the 15 samples, 5 were
generated using the base model, 5 using few-shot,
and 5 using fine-tuned configurations. Sample or-
der was randomized to avoid ordering effects. Eval-
uators rated each review on a 5-point Likert scale (1
= very poor, 5 = excellent) across three dimensions:

• Fluency: “How fluent and natural is the text?”

• Coherence: “How logically consistent and
easy to follow is this text?”

• Usefulness: “How useful would this review
be for authors and reviewers?”

Table 6 summarizes the human evaluation results
across all quality dimensions. As hypothesized,
the base model performed worst across all metrics,
with few-shot showing intermediate performance
and fine-tuned achieving the highest scores. The
fine-tuned model achieved mean ratings of 3.87
for fluency, 3.80 for coherence, and 3.60 for use-
fulness, demonstrating that domain adaptation via
fine-tuning produces reviews perceived as substan-
tially higher quality by human evaluators.

One notable result is the usefulness rating of few-
shot samples. While few-shot generation shows
substantial improvements in fluency (3.70) and co-
herence (3.47) compared to the base model, use-
fulness remains relatively lower at 2.87. This pat-
tern aligns with our findings in Section 4.2, where

Model Fluency Coherence Usefulness

Base 2.80 ± 1.16 2.47 ± 0.97 2.07 ± 1.05
Few-shot 3.70 ± 0.65 3.47 ± 0.73 2.87 ± 1.07
Fine-tuned 3.87 ± 0.78 3.80 ± 0.76 3.60 ± 0.97

Table 6: Human evaluation results for TBW-generated
reviews across model configurations. Scores are on a
5-point Likert scale (mean ± std. dev., n = 6 evaluators,
5 samples per configuration).

few-shot models exhibited degraded watermark de-
tection performance under paraphrasing attacks.
We hypothesize that topic misalignment between
prompt exemplars and target papers weakens both
topical consistency (affecting detection robustness)
and review relevance (affecting perceived useful-
ness). Despite this limitation, the few-shot ap-
proach still produces reviews that human evaluators
rate as reasonably fluent and coherent, suggesting
that the watermarking mechanism itself does not in-
troduce perceptible artifacts that degrade text qual-
ity.

D.4 BERTScore Evaluation (KGW &
SynthID)

We evaluate BERTScore F1 for generations pro-
duced with KGW and SynthID. Results are pre-
sented in Figure 3.
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Figure 3: BERTScore F1 distributions across model con-
figurations with KGW and SynthID. Higher values in-
dicate greater semantic similarity to the human-written
reference.

In the few-shot and fine-tuned configurations,
KGW performs comparably to TBW at τ = 0.7,
with similar median BERTScore values and dis-
tributional tightness. However, in the base model
configuration, KGW shows a broader distribution
of scores, indicating higher variability in seman-
tic fidelity. This suggests that KGW, like TBW, is
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more effective when the generation is guided by
conditioning or domain adaptation. SynthID shows
a similar pattern but with slightly more pronounced
effects. In the base model, SynthID outputs ex-
hibit a wider spread compared to both TBW and
KGW, reflecting less stable semantic alignment. In
contrast, SynthID performs slightly better in the
few-shot and fine-tuned settings, with a 1-2% im-
provement in BERTScore F1 over TBW at τ = 0.7.

These results highlight that while all watermark-
ing methods introduce some tradeoff between attri-
bution and quality, their semantic fidelity is more
stable in strongly conditioned generation settings.
SynthID offers stronger semantic preservation un-
der tight generation constraints, but at the cost of
higher perplexity and fluency degradation in lower-
context scenarios.

D.5 Evaluation with Lower Topic Similarity
Threshold (τ = 0.3)

We repeat the perplexity and BERTScore evalua-
tions using a relaxed topic assignment threshold
of τ = 0.3. This setting allows more tokens to be
included in each green list, resulting in stronger wa-
termark signals but potentially greater degradation
in generation quality. The results help assess how
sensitive TBW is to this design parameter.

D.5.1 Perplexity
Figure 4 shows the perplexity distributions for all
model configurations, comparing outputs generated
with and without TBW under τ = 0.3. Following
the same visualization protocol as in the main paper,
we truncate values above 20 for readability. Table 7
reports how many samples remained below this
threshold in each setting.
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Figure 4: Perplexity distributions across model configu-
rations with and without TBW (τ = 0.3). Lower values
indicate better fluency. Values above 20 are truncated
for clarity.

Model Scheme Samples Retained

Base
NW 508
TBW 684

Few-shot
NW 1000
TBW 1000

Fine-tuned
NW 1000
TBW 1000

Table 7: Number of generations with perplexity ≤ 20,
comparing unwatermarked (NW) and TBW outputs
(τ = 0.3).

As expected, TBW at τ = 0.3 produces slightly
higher perplexity than unwatermarked generations,
reflecting modest fluency degradation. Compared
to TBW at τ = 0.7, this lower-threshold variant
results in fewer retained samples in the base model
(684 vs. 991), suggesting increased fluency loss un-
der weaker semantic filtering. Additionally, there
is worse performance in the few-shot model, con-
sistent with less effective topic alignment, but with
improved perplexity in the fine-tuned model poten-
tially due to the broader green lists better overlap
with the model’s learned domain-specific vocabu-
lary.

These results support the view that τ serves as
a tradeoff between watermark strength and gener-
ation quality, and that optimal settings may vary
depending on the model’s adaptation level.

D.5.2 BERTScore Evaluation

We repeat the BERTScore F1 evaluation, using gen-
erations produced with TBW at τ = 0.3. Results
are shown in Figure 5.
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Figure 5: BERTScore F1 distributions across model con-
figurations with and without TBW (τ = 0.3). Higher
values indicate greater semantic similarity to the human-
written reference.
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We observe that TBW with τ = 0.3 results
in similar BERTScore degradation as seen with
τ = 0.7 in both the few-shot and fine-tuned model
configurations. This indicates that semantic fidelity
is largely preserved even with a broader green list,
suggesting the robustness of TBW’s semantic bi-
asing strategy in these more guided generation set-
tings.

However, the base model configuration shows
more pronounced differences. Compared to TBW
at τ = 0.7, the base model with τ = 0.3 produces
generations with a broader range of BERTScore
values, indicating increased variability in semantic
alignment. This dispersion suggests that, in the
absence of stronger conditioning (e.g., few-shot
or fine-tuning), relaxing the similarity threshold
introduces more topical drift, potentially reducing
TBW’s ability to maintain consistent semantic guid-
ance.

These results reinforce that TBW is more sta-
ble in controlled generation setups, while its per-
formance in lower-context settings (like the base
model) is more sensitive to the choice of τ .

E Robustness Evaluations

We provide comprehensive robustness analysis for
the evaluations described in §4.2, including de-
tailed performance metrics and ROC curve analysis
across all experimental conditions.
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Figure 6: ROC curves for TBW detection under no
attack, PEGASUS, and DIPPER paraphrasing, across all
model configurations. The curves demonstrate TBW’s
robustness across attack severity and adaptation settings.

Figure 6 presents ROC curves for TBW detec-
tion performance across base, few-shot, and fine-
tuned model configurations under three conditions:
no attack baseline, PEGASUS paraphrasing, and

DIPPER paraphrasing. The curves demonstrate
TBW’s consistent robustness across varying attack
severity and model adaptation settings. Detection
performance remains robust in base and fine-tuned
configurations, with area under the curve (AUC)
values exceeding 0.90 under no attack conditions
and experiencing only moderate degradation under
paraphrasing attacks. The few-shot model exhibits
greater sensitivity to paraphrasing-induced topic di-
lution, as discussed in §4.2, resulting in reduced de-
tection confidence and lower overall performance
across all attack conditions.

Model Attack AUC F1 TPR@1% TPR@10%

Base
None 0.968 0.955 0.908 0.956
PEGASUS 0.936 0.893 0.746 0.861
DIPPER 0.922 0.857 0.669 0.826

Few-shot
None 0.729 0.768 0.626 0.669
PEGASUS 0.722 0.758 0.609 0.655
DIPPER 0.765 0.754 0.565 0.659

Fine-tuned
None 0.981 0.927 0.817 0.948
PEGASUS 0.944 0.858 0.593 0.826
DIPPER 0.906 0.861 0.348 0.598

Table 8: Detection performance across model configu-
rations and attack settings. Metrics include ROC-AUC,
best F1 score, and true positive rate (TPR) at fixed false
positive rates (FPRs) of 1% and 10%.

Table 8 provides comprehensive detection per-
formance across all experimental conditions, in-
cluding ROC-AUC, F1 scores, and true positive
rates (TPR) at relevant false positive rate (FPR)
thresholds of 1% and 10%. The base model demon-
strates robustness, maintaining an AUC above 0.92
even under the strongest paraphrasing attacks, with
F1 scores of 0.893 (PEGASUS) and 0.857 (DIP-
PER). At the 1% FPR threshold, the base model
achieves TPR values of 74.6% and 66.9% under
PEGASUS and DIPPER attacks, respectively, in-
dicating strong practical utility for high-precision
detection scenarios.

The fine-tuned model shows similar resilience
with AUC values of 0.944 (PEGASUS) and 0.906
(DIPPER), though it exhibits greater sensitivity at
low FPR thresholds, particularly under DIPPER
attacks where TPR@1% drops to 34.8%. This
suggests that fine-tuning may increase vulnerability
to certain paraphrasing patterns while maintaining
overall detection capability.

In contrast, the few-shot configuration shows
limited degradation under attacks, with AUC values
remaining stable around 0.72-0.77 across all con-
ditions. However, the consistently lower baseline
performance (AUC = 0.729) indicates that topic
misalignment limits detectability in this setting,
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making the relative robustness less operationally
significant.

The maintained performance at low FPR thresh-
olds across model configurations confirms that
TBW’s vocabulary partitioning strategy effectively
preserves detection capability while minimizing
false alarms on human-written content, as evi-
denced by the consistent TPR@1% and TPR@10%
metrics across experimental conditions.

F Classifier Specifics

We provide implementation details for the classi-
fication experiments described in §4.3. We out-
line the training setup used for both BERT and
RoBERTa classifiers and summarize the evaluation
strategy for attribution analysis on generated peer
reviews.

F.1 Data Construction & Protocol

We first construct a labeled dataset by extracting
review texts from our generation pipeline and as-
signing a class label based on the associated ground
truth rating (e.g., scores 1-4 mapped to reject, 5-
6 to borderline, and 7-10 to accept). To ensure
accurate mapping, we align generated reviews with
their original metadata using paper titles as unique
identifiers. The final dataset consists of generated
reviews paired with class labels, drawn from the
fine-tuned generation split described in §C.3.2.

The final dataset consists of generated reviews
paired with class labels, drawn from our experi-
mental pipeline. The dataset is stratified into train-
ing and held-out test splits, with 9,000 balanced
training samples (3,000 per class) and 1,000 test
samples for evaluation.

F.2 Classifier Training

For reproducibility, we provide the specific training
parameters used to fine-tune our LLM classifiers
for predicting peer review labels corresponding to
paper rating categories: reject, borderline, and
accept.

Each model is fine-tuned using the Hugging Face
Trainer API with early stopping based on F1. Key
training settings described in Table 9. Tokenization
was performed using each model’s pretrained to-
kenizer. A padding-aware data collator was used
for batch construction. All training was conducted
using the Hugging Face Transformers library and
saved checkpoints were used for downstream eval-
uation on generated samples.

Parameter Value

Model types bert-base-uncased,
roberta-large

Number of classes 3 (reject, borderline, accept)
Max sequence length 512 tokens
Training epochs 5
Batch size (per device) 16
Learning rate 2e-5
Warmup ratio 0.1
Optimizer AdamW
Scheduler Cosine with restarts
Dropout 0.2 (attention and hidden layers)
Gradient clipping Max norm 1.0
Label smoothing 0.1
Precision Mixed (FP16 with full-eval)
Quantization 4-bit weight loading
Evaluation strategy Per epoch;

best model selected via F1
Early stopping Enabled (patience = 1)

Table 9: Classifier Training Hyperparameters

F.3 Classifier Evaluation

We evaluate both BERT and RoBERTa classifiers
on a held-out test set of 1,000 human-written peer
reviews. This evaluation step assesses whether the
models can correctly recover the original review
rating category (reject, borderline, accept) be-
fore applying them to generated or watermarked
samples.

Predictions are obtained from each trained classi-
fier on the tokenized test set and compared against
the ground truth labels. We compute confusion ma-
trices to visualize class-specific misclassification
patterns and report overall accuracy as a coarse
measure of performance. BERT achieves an accu-
racy of 51.3%, while RoBERTa performs slightly
better at 53.9%. Figures 7 and 8 present the con-
fusion matrices for BERT and RoBERTa, respec-
tively.

Both classifiers exhibit a strong predictive
tendency toward the borderline class. As
shown in the confusion matrices, the majority of
borderline samples are correctly classified by
both BERT (367/763) and RoBERTa (374/763).
However, a large number of reject and accept
samples are also misclassified as borderline. For
instance, BERT misclassifies 18 reject and 60
accept samples as borderline, while RoBERTa
reduces this to 14 and 46, respectively. Compared
to BERT, RoBERTa shows slightly improved sep-
aration between all three classes, with fewer mis-
classifications across off-diagonal entries. In partic-
ular, it shows higher retention of true reject and
accept labels, suggesting better overall discrimi-
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Figure 7: Confusion matrix for the BERT classifier on
1,000 human-written peer reviews.
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Figure 8: Confusion matrix for the RoBERTa classifier
on 1,000 human-written peer reviews.

native performance.

F.4 Class-Specific Classifier Evaluation

To further characterize classifier performance, we
conduct a comprehensive class-specific evaluation
of generated peer reviews based on the classifica-
tion framework introduced in §4.3. This analysis
extends the aggregate metrics reported in Table 3
by examining model behavior across the three tar-
get rating categories under different watermarking
conditions and topic similarity thresholds.

We examine confusion matrices for each clas-
sifier (BERT and RoBERTa), stratified by lan-
guage model configuration (base, few-shot, fine-
tuned) and watermarking condition. Additionally,
we extend our analysis to topic-based watermark-
ing (TBW) applied at a lower semantic similarity
threshold of τ = 0.3, which relaxes the token-

to-topic alignment constraints, thereby increasing
green-list coverage and watermark signal strength
while potentially impacting semantic coherence.
Figure 9 presents the complete set of confusion
matrices across all configurations, including both
τ = 0.7 and τ = 0.3 conditions.

BERT exhibits distinct patterns across model
configurations and watermarking conditions. In the
base non-watermarked condition (panel a), BERT
shows a skew toward the reject column, while the
few-shot variant (panel b) demonstrates higher pre-
dictions in the accept and borderline columns.
The fine-tuned non-watermarked model (panel c)
shows the highest concentration in the borderline
column, though values remain below 0.50. Un-
der watermarking conditions, BERT base mod-
els with both TBW τ = 0.7 and τ = 0.3 (pan-
els d, g) exhibit a slight skew toward the reject
column but with modest values barely exceeding
0.50. For few-shot and fine-tuned watermarked
variants (panels e, f, h, i), predictions concentrate
in the borderline column, with accept predic-
tions consistently higher than reject but lower
than borderline.

RoBERTa demonstrates more consistent pat-
terns with clearer biases toward specific categories.
Across all base configurations, non-watermarked,
TBW τ = 0.7, and TBW τ = 0.3 (panels
j, m, p), there is a pronounced bias toward the
borderline column. The few-shot and fine-tuned
variants generally show better-balanced distribu-
tions with higher concentrations in both accept
and borderline columns. Notable exceptions in-
clude the RoBERTa few-shot TBW τ = 0.3 condi-
tion (panel q), which maintains high borderline
predictions, and the fine-tuned TBW τ = 0.7
variant (panel o), which also shows elevated
borderline concentrations.

Table 10 reports the classification metrics for
each classifier and LLM model variant under TBW
with τ = 0.3. While overall performance remains
comparable to the τ = 0.7 condition, we observe
that the fine-tuned model achieves the highest ac-
curacy across both BERT and RoBERTa classifiers,
suggesting that domain adaptation remains a domi-
nant factor in attribution effectiveness even under
relaxed topic alignment. This analysis underscores
the relative semantic distinctiveness of strongly
positive (accept) and moderate (borderline) re-
views, while highlighting the challenges involved
in distinguishing lower-quality (reject) reviews,
which often exhibit more linguistic and structural
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Table 10: Classification performance for topic-based watermarking (TBW) at a lower similarity threshold of τ = 0.3.
Results are shown across all model configurations (base, few-shot, fine-tuned) and for both BERT and RoBERTa
classifiers.

Classifier Model Accuracy Precision Recall F1

BERT
Base 0.289 0.322 0.322 0.288
Few-shot 0.387 0.334 0.342 0.333
Fine-tuned 0.414 0.372 0.366 0.360

RoBERTa
Base 0.438 0.338 0.340 0.332
Few-shot 0.360 0.339 0.344 0.335
Fine-tuned 0.398 0.375 0.368 0.361

variability across different watermarking configu-
rations and similarity thresholds.

F.5 Peer Review Shifts Under Paraphrasing

To evaluate the impact of paraphrasing on classifier-
based review attribution, we examine both classifi-
cation accuracy and label stability under two para-
phrasing threat models: PEGASUS and DIPPER.
Specifically, we sample 100 LLM-generated peer
reviews and apply paraphrasing to each using both
models. We then assess the classification perfor-
mance before and after paraphrasing under three
watermarking conditions: no watermark (NW),
topic-based watermarking (TBW) with τ = 0.7,
and TBW with τ = 0.3.

Figure 10 presents accuracy changes across all
classifier and model configurations. Table 11 re-
ports the number of label transitions (e.g., Accept
→ Borderline) observed in the paraphrased re-
views. These metrics reflect the semantic resilience
of reviewer intent and classification stability under
adversarial rewording.

Our results indicate that paraphrasing generally
reduces classification accuracy across all settings,
though the degree of degradation varies. Notably,
TBW models exhibit consistent accuracy declines
under paraphrasing for both τ values, suggesting
that watermarked outputs are more sensitive to ad-
versarial modification in terms of downstream at-
tribution. In contrast, non-watermarked outputs
show mixed effects while some configurations ex-
perience accuracy drops, others see minor improve-
ments. We attribute this to incidental lexical clarifi-
cations introduced by the paraphrasers. In terms of
label stability, TBW reduces the number of class
shifts compared to the non-watermarked baseline.
This trend is especially evident under the PEGA-
SUS paraphrasing model, where non-watermarked

outputs exhibit the highest number of shifts. These
findings suggest that TBW not only leaves a de-
tectable signature but may also provide a degree
of structural regularity that preserves classification
under text manipulation.

Classifier Model Watermark PEGASUS DIPPER
Shifts Shifts

BERT

Base
No watermark 58 54
TBW (τ = 0.7) 37 23
TBW (τ = 0.3) 51 45

Few-shot
No watermark 24 14
TBW (τ = 0.7) 24 24
TBW (τ = 0.3) 24 22

Fine-tuned
No watermark 27 20
TBW (τ = 0.7) 15 15
TBW (τ = 0.3) 25 15

RoBERTa

Base
No watermark 13 9
TBW (τ = 0.7) 23 25
TBW (τ = 0.3) 16 19

Few-shot
No watermark 30 13
TBW (τ = 0.7) 27 22
TBW (τ = 0.3) 25 20

Fine-tuned
No watermark 24 14
TBW (τ = 0.7) 18 22
TBW (τ = 0.3) 21 18

Table 11: Number of review classification shifts under
paraphrasing attacks. Each entry reflects the count (out
of 100 paraphrased samples) where the predicted class
label differs from the original. Results are grouped
by classifier, model variant, and watermarking scheme
(NW, TBW (τ = 0.7), TBW (τ = 0.3)), and evaluated
separately under PEGASUS and DIPPER paraphrasing
models.
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(b) BERT Few-shot NW
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(c) BERT Fine-tuned NW
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(d) BERT Base TBW (τ = 0.7)
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(e) BERT Few-shot TBW (τ = 0.7)
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(f) BERT Fine-tuned TBW (τ = 0.7)
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(g) BERT Base TBW (τ = 0.3)
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(h) BERT Few-shot TBW (τ = 0.3)
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(i) BERT Fine-tuned TBW (τ = 0.3)
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(j) RoBERTa Base NW
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(k) RoBERTa Few-shot NW
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(l) RoBERTa Fine-tuned NW
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(m) RoBERTa Base TBW (τ = 0.7)
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(n) RoBERTa Few-shot TBW (τ = 0.7)
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(o) RoBERTa Fine-tuned TBW (τ = 0.7)
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(p) RoBERTa Base TBW (τ = 0.3)
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(q) RoBERTa Few-shot TBW (τ = 0.3)
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(r) RoBERTa Fine-tuned TBW (τ = 0.3)

Figure 9: Comparison of confusion matrices across different model configurations and watermarking settings. Top
row shows BERT results, middle row shows RoBERTa results, with columns representing no watermarking (NW),
topic-based watermarking at τ = 0.7, and topic-based watermarking at τ = 0.3.
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Figure 10: Classification accuracy on paraphrased peer
reviews across three watermarking settings: (a) no wa-
termark (NW), (b) topic-based watermarking (TBW)
with τ = 0.7, and (c) TBW with τ = 0.3. Results are
shown across all model configurations (base, few-shot,
fine-tuned) for both BERT and RoBERTa classifiers un-
der PEGASUS and DIPPER paraphrasing attacks.
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