LLM-based Business Process Models Generation from Textual Descriptions

Xiaoxuan Li'?, Lin Ni', Xin Wang?, Yitong Tang?, Ruoxuan Li?,
Jiamou Liu', Zhongsheng Wang'

IThe University of Auckland, New Zealand
2Uxtrata Limited, New Zealand
3Southwest University, China

x1i443 @aucklanduni.ac.nz, I1ni600 @aucklanduni.ac.nz,
info@uxtrata.com, jlamou.liu@auckland.ac.nz, zwan516 @aucklanduni.ac.nz

Abstract

Business process modeling has traditionally de-
pended on manual efforts or rigid rule-based
techniques, limiting scalability and flexibility.
Recent progress in Large Language Models
(LLMs) enables automatic generation of pro-
cess models from text, yet a systematic evalua-
tion remains lacking. This paper explores the
ability of LLMs to produce structurally and se-
mantically valid business process workflows us-
ing five approaches: zero-shot, zero-shot CoT,
few-shot, few-shot CoT, and fine-tuning. We
assess performance under increasing control-
flow complexity (e.g., nested gateways, parallel
branches) using the publicly available large-
scale MaD dataset, and introduce a masked-
input setting to test semantic robustness. Re-
sults show that while fine-tuning achieves the
best accuracy, few-shot CoT excels in han-
dling complex logic and incomplete inputs.
These findings reveal the strengths and limits
of LLMs in process modeling and offer prac-
tical guidance for enterprise Business Process
Management (BPM) automation.

1 Introduction

Business Process Management (BPM) plays a criti-
cal role in discovering, designing, analyzing, and
optimizing business processes across industries (Je-
ston, 2014). A key step in the BPM lifecycle is the
generation of Business Process Model and Notation
(BPMN) diagrams, which offer a standardized vi-
sual framework for business processes, enhancing
operational efficiency and decision-making sup-
port (von Rosing et al., 2015). Figure 1 shows
the possible atomic components in BPMN and a
simple example of BPMN diagram. Generating
accurate BPMN diagrams remains a complex and
labor-intensive task, demanding significant domain
expertise and access to structured data(Friedrich
et al., 2011; van der Aa et al., 2019; Reijers et al.,
2003). This dependence on expert knowledge and
structured information often serves as a critical

barrier to the efficiency of process improvement
efforts.

Event: Start O End O Activity:D

AND: Activities are executed concurrentl
Gateways: OR: One or more of activities are executed
XOR: Only one of activities is executed

Sequence flow: —»

Notify approval
mployee submits| (Manager reviews
leave application leave application

Figure 1: Basic components of a BPMN Diagram and a
simple BPMN diagram for “the approval process of an
employee applying for leave.”

Although NLP has been applied to BPM, chal-
lenges such as natural language inherent ambi-
guity and lack of structured input hinder accu-
rate text-to-BPMN conversion (Van der Aa et al.,
2018). Rule-based and NLP-hybrid methods typi-
cally rely on syntactic patterns and handcrafted tem-
plates (Friedrich et al., 2011; Ferreira et al., 2017),
offering interpretability but suffering from rigidity
and low scalability. Neural models like BILSTM-
CRF or ON-LSTM require large annotated datasets
and also struggle with complex flows (Suarez-
Paniagua et al., 2019; Qian et al., 2020; Han et al.,
2020). Tools like NLP4BPM and BPMN Sketch
Miner (Delicado Alcéntara et al., 2017; Ivanchikj
et al., 2020) support representation, but not full
diagram generation directly. Recent advances in
LLMs (e.g., GPT) offer strong capabilities in un-
derstanding and generating structured outputs (Ye
et al., 2023), and some research has demonstrated
the feasibility of automating BPMN generation
from text using LLMs (Grohs et al., 2023; Kourani
et al., 2024). However, many critical questions re-
main unanswered: How structurally accurate and
semantically meaningful are the generated business
process models? How do LLMs handle increasing
process complexity? And how robust are these

523

Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics, pages 523-533
December 20-24, 2025 ©2025 Association for Computational Linguistics

models when the input descriptions are incomplete
or under-specified?

In this paper, we investigate how LLMs generate
business process models from text, evaluating five
strategies: zero-shot prompting, zero-shot Chain-
of-Thought (CoT), few-shot prompting, few-shot
CoT, and fine-tuning. These methods are assessed
on their ability to produce syntactically valid, struc-
turally accurate, and semantically coherent DOT
representations of BPMN. After that, we catego-
rize evaluation instances according to structural
complexity such as nested gateways and multi-
ple parallel branches, and assess how increasing
control-flow complexity influences model perfor-
mance across these methods. For consistent eval-
uation, experiments are conducted on the MaD
dataset (Li et al., 2023), a large-scale benchmark
containing text-BPMN pairs across diverse busi-
ness domains. Finally, we introduce a masked-
input setting to test the models’ capacity of infer-
ing missing activities and reconstructing plausible
control-flow logic, thereby testing their reasoning
and generalization abilities. We utilize Graphviz to
render model-generated DOT code into BPMN dia-
grams and evaluate outputs using syntactic validity
checks, structural similarity (AGSS), and semantic
similarity (ANSS), as long as human evaluation
by domain experts. Figure 2 illustrates the overall
pipeline from natural language descriptions to DOT
representations and finally to BPMN outputs.

2 Related Work

Prompt Engineering for Large Language Models:
Recent advances in large language models (LLMs)
have significantly improved performance across a
range of NLP tasks. Prompt engineering, as a tech-
nique to elicit desirable behaviors from LLMs, has
gained prominence in various domains. Instruction
tuning (Wei et al., 2021) enhances zero-shot ca-
pabilities by aligning model behavior with human
intent. Few-shot prompting (Logan IV et al., 2021)
further improves performance by providing contex-
tual examples. For complex reasoning tasks, Chain-
of-Thought (CoT) prompting (Wei et al., 2022) and
its variants such as Zero-Shot-CoT (Kojima et al.,
2022) and Auto-CoT (Zhang et al., 2022) offer
a structured approach to reasoning by decompos-
ing problems into intermediate steps. While these
methods have proven effective in general text-to-
code tasks (Chen et al., 2021), their applicability
to highly structured and domain-specific outputs,

such as BPMN representations in DOT language,
remains underexplored.

Traditional Methods for BPMN Generation:
BPMN is a standardized diagramming notation
that provides a graphical representation of busi-
ness processes. It is widely used in BPM to vi-
sually illustrate and communicate processes in a
clear way (von Rosing et al., 2015). Early efforts
in automating BPMN generation primarily relied
on rule-based systems and constrained natural lan-
guage input. Rule-based methods, as discussed
by (Friedrich et al., 2011) and (Schumacher and
Minor, 2014), often struggle with the complexities
of dynamic business processes due to their depen-
dence on pre-set rules. (Ivanchikj et al., 2020)
explored using a constrained natural language for
BPMN Sketch Miner, aiming for a balance between
expressiveness and usability, though this method
faces limitations in flexibility. (Sonbol et al., 2023)
incorporated machine translation to maintain se-
mantic integrity during BPMN generation, achiev-
ing an 81% similarity to manual models. (Sholiq
et al., 2022) introduced a two-stage method that
first analyzes textual requirements with NLP and
then generates BPMN diagrams from these anal-
yses. Despite their contributions, these methods
either impose rigid input constraints or fail to han-
dle complex constructs like nested gateways and
ambiguous semantics.

Large Language Models for Business Process
Modeling: Recent studies have begun to explore
the use of large language models (LLMs) for gen-
erating business process models from text. Some
approaches extract structured information such as
activities, actors, and control-flow dependencies
using zero-shot or few-shot in-context learning,
returning outputs in JSON or tuple format (Bel-
lan et al., 2022; Neuberger et al., 2024). These
methods adopt fixed output schemas to ensure con-
sistency and generalization across different pro-
cess descriptions and LLM backends. To move
beyond information extraction, several studies em-
ploy prompt-based methods to generate formal
or semi-formal process representations. One ap-
proach designs structured prompts that instruct
GPT-4 to produce outputs in a pre-specified inter-
mediary notation, where tasks are written in plain
text and control-flow logic is encoded using sym-
bols such as arrows (—), XOR, and AND. This
lightweight representation facilitates downstream
parsing into BPMN-XML (Grohs et al., 2023). An-
other method first prompts the LLM to extract fact

524

Input: Process Textual Description Output: Generated DOT Language

The text below is about the client onboarding process for a marketing
agency. It begins when you send the contract to the client.

Once sending the contract to the client occurs, updating client's CRM

should be done.

When updating client's CRM is completed, the process is split into 2
parallel branches: assigning work to the team and informing client of
project start.

Once all pre-tasks are executed, then you need to send a post-
onboarding survey.

The process is now completed.

BPMN Diagram:

O—){send the contract to the cIient]—»[update client's CRM

O send a post-onboarding o to the team
surve inform client of

project start

g

digraph client_onboarding_process_for_a_marketing_agency_51 {

graph [rankdir=LR]

START_NODE [label="" shape=circle width=0.3]

subgraph CLUSTER_0O {
"send the contract to the client" [shape=box]
"update client's CRM" [shape=box]
"send the contract to the client" -> "update client's CRM"
"AND_SPLIT--4. Project start_89UZ" [label="+" fixedsize=true shape=diamond width=0.5]
"update client's CRM" -> "AND_SPLIT--4. Project start_89UZ"
"assign work to the team" [shape=box]
"AND_SPLIT--4. Project start_89UZ" -> "assign work to the team"
"inform client of project start" [shape=box]
"AND_SPLIT--4. Project start_89UZ" -> "inform client of project start"
"AND_JOIN--4. Project start_89UZ" [label="+" fixedsize=true shape=diamond width=0.5]
"assign work to the team" -> "AND_JOIN--4. Project start_89UZ"
"inform client of project start" -> "AND_JOIN--4. Project start_89UZ"
"send a post-onboarding survey" [shape=box]
"AND_JOIN--4. Project start_89UZ" -> "send a post-onboarding survey"

}

START_NODE -> "send the contract to the client"
END_NODE [label="" shape=doublecircle width=0.2]
"send a post-onboarding survey" -> END_NODE

}

Figure 2: A BPMN Diagram (in DOT Language) generated from textual description using LLMs. In the upper
left corner is a text description of the process. LLMs are used to generate the DOT language on the right as the

intermediate code of the diagram description language.
corresponding BPMN diagram (lower right corner).

triples from text and then maps them into the Par-
tially Ordered Workflow Language (POWL), which
is subsequently compiled into executable BPMN
or Petri net models (Kourani et al., 2024). Other
approaches employ fine-tuned models trained on
paired text-structure examples. For instance, one
method uses a GPT-based model to output activities
and their pertinent information from business pro-
cess descriptions, leveraging training supervision to
enforce schema adherence (Ajmal et al., 2024). An-
other method extracts regular-expression-like struc-
tures from input text, constructs abstract syntax
trees (ASTs), and transforms them into BPMN us-
ing rule-based mappings (Nivon and Salaiin, 2024).

Overall, prior work demonstrates the feasibil-
ity of using LLMs for BPMN generation, but ex-
isting methods often rely on intermediate layers,
constrained templates, or require extensive prompt
tuning. In contrast, our approach systematically
compares five prompting and fine-tuning strategies
for generating DOT-based BPMN representations
and investigates how structural complexity affects
model performance.

3 Task Definition

The core of this task can be described as follows:
for a given natural language business process de-
scription sequence 7' = {t1,to, ..., t,}, we make
full use of the large language model L to accurately
generate the corresponding DOT language descrip-
tion D = {N, E}, which N = {nq,no,...,ng}
is the node-set, representing BPMN elements such
as activities, events, and gateways, and £ = {e; ; |
ni,nj € N} is the collection of edges representing

Then, external tools are used to translate the code into the

sequence flows between activities or events. It can
be formalized as:

L(T;P)=D

P = {PZero—Shota PZero—Shot—COTv PFew—Shob
PFewfshothOTa Pfineftune} represents five dif-

ferent prompt learning approaches to comprehen-
sively evaluate LLMs’ ability to generate BPMN
diagrams. The generated intermediate language
D will be combined with external tools such as
the local executor E to generate the corresponding
BPMN diagram G. In this way, we have completed
the automation process using LLMs.

G = Local Excution(D, E)

LocalExecution represents a conceptual process in-
volving the parsing of D, the mapping of nodes
and edges to BPMN elements, and the rendering of
the final BPMN diagram. By integrating £ with E,
we complete the automation pipeline from natural
language descriptions to fully realized BPMN dia-
grams, thereby addressing the challenge of translat-
ing unstructured textual inputs into formal process
models.

4 Methods

To enable BPM automation, we position LLMs as
the core reasoning engine for transforming textual
descriptions into process models. We introduce
DOT language as an intermediate textual represen-
tation, enabling precise graph-based output that ex-
ternal tools (e.g., Graphviz) can convert into BPMN
diagrams. DOT is a plain-text graph description

525

language widely used with Graphviz'. It allows
straightforward encoding of process logic through
nodes and edges, making it suitable for generating
BPMN structures from text.

We evaluate five LLM-based strategies for gen-
erating BPMN models from text (Figure 3): Zero-
Shot, Zero-Shot Chain-of-Thought (CoT), Few-
Shot, Few-Shot CoT, and Fine-Tuning. Prompt-
based methods guide LLMs using task-specific in-
structions, optionally including in-context exam-
ples or reasoning steps. Zero-Shot and Few-Shot
methods simulate real-world scenarios by testing
LLMs with minimal input data. CoT approaches
focus on assessing the logical coherence of the gen-
erated outputs, while fine-tuning trains models on
domain-specific pairs to improve structure accuracy
and reduce prompt dependency.

Zero-Shot Method: Provides the model with a
plain task instruction without examples. It tests the
model’s ability to generalize based on pre-trained
knowledge.

Zero-Shot Prompt

Input: Generate the DOT language to present the Business Process Model
and Notation (BPMN) based on the given process textual description:
(Process_Textual_Description)

Output:

Few-Shot Method: Extends Zero-Shot with a few
examples (each consist of a process description and
its corresponding DOT representation) to help the
model learn task-specific patterns.

Few-Shot Prompt

Input: Generate the DOT language to present the Business Process Model
and Notation (BPMN) based on the given process textual description:
(Process_Textual_Description_Example_01)

Output: (Generated_DOT_Language_Exzample_01)

Input: Generate the DOT language to present the Business Process Model
and Notation (BPMN) based on the given process textual description:
(Process_Textual_Description_Example_02)

Output: (Generated_DOT_Language_Example_02)

Input: Generate the DOT language to present the Business Process Model
and Notation (BPMN) based on the given process textual description:
(Process_Textual_Description)

Output:

Zero-Shot CoT Method: Zero-Shot Chain-of-
Thought (CoT) prompting is a simple yet effective
technique where the prompt is augmented with a
phrase like "Let’s think step by step." to encour-
age large language models to generate intermediate
reasoning steps before arriving at the final answer.

Zero-Shot CoT Prompt

Input: Generate the DOT language to present the Business Process Model
and Notation (BPMN) based on the given process textual description:
(Process_Textual_Description). Please think about it step by step.
Output: OK! Let’s think step by step ...

Few-Shot CoT Method: Drawing inspiration
from the Chain-of-Thought approach (Wei et al.,
2022), we construct coherent reasoning traces (il-
lustrated in Appendix A.1). Combines in-context
examples with CoT traces to guide stepwise rea-
soning and enhance accuracy in complex process
modeling.

Few-Shot CoT Prompt

Input: Generate the DOT language to present the Business Process Model
and Notation (BPMN) based on the given process textual description:
(Process_Textual_Description_Example_01)

Output:

(Steps_of_CoT)
(Generated_DOT_Language_Exzample_01)

Input: Generate the DOT language to present the Business Process Model
and Notation (BPMN) based on the given process textual description:
(Process_Textual_Description_Example_02)

Output:

(Steps_of_CoT)
(Generated_DOT_Language_Exzample_02)

Input: Generate the DOT language to present the Business Process Model
and Notation (BPMN) based on the given process textual description:
(Process_Textual_Description).

Output:

Fine-Tuned LLMs: Fine-tuning enables large
language models (LLMs) to more effectively per-
form domain-specific tasks, such as generating
BPMN representations in DOT Language. We uti-
lize GPT-3.5-turbo-0613 as the basic model. The
fine-tuning process involves the following steps:
(1) Dataset Preparation: Collect diverse textual
descriptions of business processes and their cor-
responding BPMN diagrams in DOT Language.
(2) Training Example Creation: Format the data
(shown in the textbox) as training examples accord-
ing to OpenAl’s fine-tuning schema. (3) Model
Training: Fine-tune the base model using the up-
loaded dataset. (4) Progress Monitoring: Eval-
uate training performance and adjust the data or
hyperparameters as needed to improve learning.
(5) Model Evaluation: Assess the model’s gener-
alization using a held-out validation set. (6) Model
Deployment: Integrate the fine-tuned model into
the target application or system.

"o

{"messages":[{"role": "system", "content": "Your position in a com-
pany is to visualize a business process using a graphical representation
of a given piece of text in BPMN. Your response should use DOT lan-
guage to do the graphical representation."}, {"role": "user", "content":

"(Process_Textual_Description)"}, {"role": "assistant", "content":
"(Generated_DOT_Language)"} |}

Together, the five methods offer complementary
strategies for BPMN generation. Prompt-based
approaches simulate task behavior with or without
examples, while fine-tuning embeds domain knowl-
edge to improve consistency. This reduces reliance
on expert-crafted rules and lowers the barrier for

"https://graphviz.org/doc/info/lang.html

Zhttps://platform.openai.com/docs/models/continuous-
model-upgrades

526

https://graphviz.org/doc/info/lang.html

Input Prompt Setting

Few-shot Prompt:

([System Role Setting: A « Define the question
S ———— Zero-shot Prompt: « Take process text description and
b 5 corresponding dot language as the few-shot ——
visualize a business process using * Define the question examp‘l’es fmga e~ ql?esl?on f D
a graphical representation of a * No addtional instruction N Output:
given piece of text in BPMN. LLMs API
—
s m_rol
Few-shot CoT Prompt: System_role Test Dataset

Your response should use dot
language to do the graphical
representation.

[Zero-shot CoT Prompt:

« Define the question

* Define the question
* Use step-by-step reasoning abilities to solve

Instruction_prompt

« Add "Lets think step by the problem)
L step” * Take some s(ep-by-step» reasoning process as
for new question to learn
\\ \\\\ \\ \\
\ \ \Clean and re-format) \Create a fine-tuned |\ \
| Prepare Dataset | | /) gy S)) models /
/ model

\\ \ Evaluation the \ Deploy

the models

e
\I’est Dataset

\ Output:

/ Generated DOT Language

Figure 3: The method framework for generating BPMN diagrams in DOT language from process text descriptions.
The first half shows the use of four different prompt engineering methods to guide LLMs to generate a specified
DOT description language as an intermediate component for generating BPMN diagrams. The second half is a
detailed workflow description of fine-tuning LLM:s for this specific generation task.

business process automation.

5 Experiments

This section outlines the experimental procedure
for applying the five proposed LLM-based genera-
tion methods. Each method is used to convert natu-
ral language descriptions of business processes into
structured DOT representations, using the MaD
dataset (L1 et al., 2023) as the evaluation bench-
mark. The resulting outputs form the basis for
subsequent analysis.

Dataset: The MaD dataset includes 30,000
text-BPMN pairs across 15 business categories
(Table 1). Each category has 1,600 training, 200
validation, and 200 test samples.

Abbreviation ~ Full Name
APP Accounts Payable Process
ARP Accounts Receivable Process
BPP Budget Preparation Process
CRPP Churn Rate Prevention Process
COPMA Client Onboarding Process for Marketing Agency
CPP Content Promotion Process
CSPTM Customer Support Process for the Ticket Management
EOP Employee Onboarding Process
FGSP Final Grades Submission Process
LAP Loan Application Process
OFP Order Fulfillment Process
POP Process for Optimizing a Process
PMP Project Management Process
POW Purchase Order Workflow
SDDVC Startup Due Diligence for Venture Capitalist

Table 1: The business process categories in MaD dataset

LLM Utilization and Experiment Setting: We
use OpenAI’s GPT-3.5-turbo-0613> via API to im-
plement all five strategies. Prompt-based methods
use the Chat Completion API*, with a consistent

3https://platform.openai.com/docs/models/cont
inuous-model-upgrades

4https://platform.openai.com/docs/guides/text
-generation/chat-completions-api

system role guiding DOT generation from text. The
system role is defined as follows: “Your position in
a company is to visualize a business process using a
graphical representation of a given piece of text in
BPMN. Your response should use DOT language to
create the graphical representation.". Fine-tuning
is performed on MaD dataset with ngpocns = 3,
learning_rate = 0.001, and batch_size = 20, fol-
lowed by testing on a 200-sample set per category.

6 Evaluation

We evaluate the DOT-based BPMN diagrams gen-
erated by each LLM method using both automatic
and human-involved metrics, focusing on syntactic
validity, structural fidelity, and semantic alignment.

6.1 Syntax Error Check

To evaluate LLLMs’ ability to generate DOT lan-
guage representations, it is essential to examine
their syntactic accuracy, which may result in com-
pilation failures or invalid diagram rendering. Tools
like Graphviz Online can help identify syntax er-
rors and validate the correctness of the generated
DOT language’. We analyze 3,000 BPMN dia-
grams generated by each method to assess syntax
validity, and the DOT language compilation error
rates are shown in Figure 2. Both Zero-Shot and
Few-Shot methods exhibited modest syntax error
rates, with Few-Shot prompting significantly reduc-
ing errors compared to Zero-Shot. Providing in-
context examples improved output reliability, par-
ticularly when combined with Chain-of-Thought
prompting. The fine-tuned model achieved perfect
syntactic validity, generating DOT representations

Shttps://dreampuf.github.io/GraphvizOnline/

527

https://platform.openai.com/docs/models/continuous-model-upgrades
https://platform.openai.com/docs/models/continuous-model-upgrades
https://platform.openai.com/docs/guides/text-generation/chat-completions-api
https://platform.openai.com/docs/guides/text-generation/chat-completions-api

without any compilation errors. One of the com-
mon compilation errors is missing a semicolon af-
ter defining an edge or node, such as in ‘A — B"
instead of A — B;".

Methods |Zero_shot Zelé);;hm Few_shot Fez_orsll‘lot Gg;{t;—;u;lffbo
Smtax |6 19, 37% 1.7% 0.43% 0
Error Rate

Table 2: Syntax error rate of different methods

6.2 Generated DOT Language Evaluation

For each process textual description within the
MabD test dataset, there are DOT string of stan-
dard BPMN models as well as five additional cor-
responding BPMN models represented in DOT lan-
gauge generated using proposed methods. To as-
sess the effectiveness of these methods, we can eval-
uate the similarity between each generated BPMN
diagram and its standard counterpart. The eval-
uation involves two main aspects: Node Check:
identifying key BPMN elements (presented in Fig-
ure 1), such as events, activities, and gateways
(AND, OR, XOR), which must be correctly labeled
in the DOT representation to ensure clear commu-
nication and consistency; Graph Check: analyz-
ing the sequence flow between BPMN elements
to confirm it aligns with the intended sequence of
operations, thus maintaining coherence of the busi-
ness process. We parse the DOT string into a graph
representation comprising nodes (BPMN elements)
and edges (sequence flows), facilitating a detailed
analysis. For example, as illustrated in Figure 2, the
parsed DOT language appears as follows:

{Node_list = {start, send the contract to the client, update client’s CRM,
and_split-1, assign work to the team, inform client of project start, and_join-1,
send a post-onboarding survey, end}; Edge_list = {(start, send the contract
to the client), (send the contract to the client, update client’s CRM), (update
client’s CRM, and_split-1), (and_split-1, assign work to the team), (and_split-
1, inform client of project start), (assign work to the team, and_join-1), (in-
form client of project start, and_join-1),(and_join-1, send a post-onboarding
survey), (send a post-onboarding survey, end)} }

Node Similarity Check: To compute the sim-
ilarity between two sets of labeled nodes, we use
a method based on semantic analysis. We begin
by encoding the textual labels of each node using
the sentence-transformers/paraphrase-MiniLM-L6-
v2 model from HuggingFace®, which generates em-
beddings capturing their semantic representations.
Next, we compute the cosine similarity between
the embedding of corresponding labels to quantify
their semantic resemblance. We also establish a

®https://huggingface.co/sentence-
transformers/paraphrase-MiniLM-L6-v2

similarity matrix to systematically compare each
node from one graph to every node in the other.
This matrix encapsulates the similarity scores com-
puted for each pair of nodes. By evaluating both
rows and columns, we identify the maximum sim-
ilarity scores for each node in both graphs. Ag-
gregating these maximum similarities allows us to
compute the average similarity between the two
sets of nodes. This holistic approach enables a
comprehensive assessment of the semantic corre-
spondence between the labeled nodes.

Graph Similarity Check: To assess the struc-
tural similarity between graphs, the node2vec
(Grover and Leskovec, 2016) algorithm is em-
ployed. Node2vec is an algorithm for generating
graph embedding that map nodes in a graph to
low-dimensional vector spaces while preserving
structural information between nodes. By perform-
ing random walks on the graph and employing
a Word2Vec-like approach to learn vector repre-
sentations of nodes, node2vec can capture struc-
tural information between nodes. When comparing
the structural similarity of two graphs, we can use
node2vec to generate graph-level embedding for
each graph and then use cosine similarity or other
similarity measures to compare these embeddings.
This method helps us determine whether the struc-
tures of two graphs are similar, beyond just the
quantity or connectivity of their nodes and edges.

Results Analysis: Table 3 highlights the per-
formance of various methods using ANSS and
AGSS. Fine-tuned GPT-3.5 Turbo excels, achiev-
ing a perfect ANSS score of 1.000 and high AGSS
scores, with only the CRPP category scoring 0.898
in AGSS due to its complexity. CoT reasoning
significantly boosts performance, especially in the
CRPP category, where Zero-Shot CoT improved
ANSS by 2.3% and AGSS by 1.1%. In the APP
category, Few-Shot CoT increased ANSS by 3.8%
and AGSS by 1.7%. Few-Shot methods generally
outperform Zero-Shot methods, with notable im-
provements seen in categories like LAP. These re-
sults emphasize the effectiveness of fine-tuning and
CoT reasoning in enhancing model performance.

While Table 4 assesses the performance of var-
ious methods in generating BPMNs from textual
descriptions, particularly examining the effects of
gateways and nested gateways using ANSS and
AGSS metrics. ANSS consistently shows high
node similarity across scenarios, while AGSS ex-
hibits notable variations. Generally, the presence
of gateways tends to reduce AGSS, with instances

528

Categories Zero-shot Zero-shot CoT Few-shot Few-shot CoT G}l:’l[‘ljgjgu’}l\ffbo
ANSS | AGSS ANSS | AGSS ANSS | AGSS ANSS | AGSS ANSS | AGSS

APP 0.764 0.760 0.777 0.808 0.928 0.925 0.966 0.941 1.000 0.977
ARP 0.725 0.838 0.739 0.830 0.927 0.924 0.972 0.934 1.000 0.961
BPP 0.719 0.828 0.708 0.834 0.906 0.872 0.975 0.892 1.000 0.916
CRPP 0.707 0.822 0.723 0.831 0.907 0.863 0.971 0.882 1.000 0.898
COPMA 0.692 0.780 0.696 0.783 0.931 0.932 0.970 0.931 1.000 0.970
CPP 0.686 0.700 0.779 0.725 0.972 0.833 0.953 0.846 1.000 0.896
CSPTM 0.366 0.782 0.744 0.749 0.926 0.905 0.939 0.915 0.999 0.957
EOP 0.723 0.808 0.715 0.825 0.912 0.901 0.973 0.921 1.000 0.951
FGSP 0.732 0.806 0.724 0.817 0.908 0.917 0.959 0.932 0.996 0.961
LAP 0.731 0.832 0.733 0.848 0.918 0.920 0.945 0.932 1.000 0.959
OFP 0.730 0.836 0.733 0.834 0.928 0.932 0.957 0.931 1.000 0.966
POP 0.698 0.862 0.694 0.870 0.916 0.901 0.972 0.919 1.000 0.937
PMP 0.723 0.826 0.708 0.851 0911 0.915 0.958 0.934 1.000 0.957
POW 0.754 0.829 0.754 0.834 0.946 0.938 0.976 0.943 1.000 0.930
SDDVC 0.753 0.788 0.740 0.809 0.905 0.877 0.974 0.901 1.000 0.927
Average 0.700 0.806 0.731 0.816 0.923 0.904 0.964 0.917 1.000 0.944

Table 3: Performance Comparison of Various Methods on Different Categories Using Average Node Similarity
Score (ANSS) and Average Graph Similarity Score (AGSS)

Types | Num Zero-Shot Zero-Shot CoT Few-Shot Few-Shot CoT | Eetuned

ANSS | AGSS | ANSS | AGSS | ANSS | AGSS | ANSS | AGSS | ANSS | AGSS

nogateway | 387 | 0692 0841 0824 0848 0976 0935 0950 0939 1000 0965
gateway | 2613 | 0701 0801 0717 0812 0915 0899 0966 0914 1000 0941
gateway=1 | 805 | 0699 0816 0739 0823 0932 0921 0960 0930 1000 _ 0.956
gateway=2 | 748 | 0699 0810 0714 0820 0916 0920 0965 0930 1000 0950
gateway=3 | 432 | 0702 0799 0701 0805 0904 0901 0970 0922 1000 0.953
gateway=4 | 152 | 0701 0782 0689 0800 0901 0848 0975 0866 1.000 0.893
gateway=5 | 36 | 0685 0746 0670 0767 0909 0802 0973 0812 1000 0.826
gateway=6 | 2 | 0630 0634 0602 0650 0938 0742 0983 0778 1000 0.781
nest=0 | 2175 | 0700 _ 0.807 0718 0816 0918 0910 0965 0922 1000 0.947

nest=I | 414 | 0708 0775 0715 0792 0898 0849 0972 0877 1000 0918

nest=2 24 | 0724 0743 0701 0761 0.898 0.789 0975 0.808 1.000 0.841

Table 4: Impact of gateways and nested gateways on Average Node Similarity Score (ANSS) and Average Graph

Similarity Score (AGSS)

without gateways achieving higher scores. For
graphs with fewer gateways, AGSS remains rel-
atively stable, but it decreases significantly as the
number of gateways increases. Similarly, increased
nesting levels also lead to a decline in AGSS. These
findings indicate that complex graph structures,
such as higher gateway counts and nested gate-
ways, pose challenges in maintaining graph sim-
ilarity when generating BPMNs from textual de-
scriptions.

6.3 Human-involved Evaluation

We also conducted a human evaluation using a
web-based survey on Qualtrics’. Participants with
demonstrated proficiency in both business process
management and English were asked to evaluate
BPMN diagrams generated by five methods against

7https: //auckland.aul.qualtrics.com/jfe/form/
SV_broysxDbppmJP0o@

15 randomly selected business process descriptions.
Criteria included evaluating activity representation
and relationships between activities using a scale
from 1 to 5 (1: Very poor; 2: Poor; 3: Neutral; 4:
Good; 5: Very good). See questionnaire details in
Appendix A.2. In total, 32 participants submitted
valid responses, covering 197 diagram & descrip-
tion pairs. As shown in Table 5, the results indicate
clear differences across methods. The Zero-Shot
method received the lowest average score (1.89),
while the fine-tuned GPT-3.5 Turbo achieved the
highest (4.85). Notably, Few-Shot CoT showed
significant improvement over Few-Shot, indicating
the positive impact of CoT method on the quality
of BPMN generation.

529

https://auckland.au1.qualtrics.com/jfe/form/SV_broysxDbppmJPo0
https://auckland.au1.qualtrics.com/jfe/form/SV_broysxDbppmJPo0

Methods | Zero_shot Zelé);;hot Few_shot Fe\(v:;s;lot Gg’llr‘z;_sm’lr‘l:fbo
Agerage 1.89 2.82 3.63 4.11 4.85
core

Table 5: Average human evaluation score

6.4 Effectiveness Evaluation under Masked
Information

While previous evaluations assume access to com-
plete and well-structured process descriptions, real-
world scenarios often involve incomplete or under-
specified inputs. To further assess the robustness
and inferential capabilities of LLM-based methods,
we introduce a masked-input setting in which key
information is intentionally removed from the in-
put. This setting allows us to evaluate how well
each method performs when required to generate
BPMN models from partial descriptions.

We simulate information incompleteness by ap-
plying a masking strategy to the MabD test dataset.
First, we identify all activity phrases within a pro-
cess description. Then, 20% of these activities
are randomly selected and replaced with the place-
holder token “******” (See Appendix A.3 for an
example). If the selected percentage does not yield
an integer, it is rounded up to ensure that at least
one activity is masked. The masking process is
applied uniformly across all test samples.

Once the masked descriptions are prepared, we
apply each of the five generation methods—Zero-
Shot, Zero-Shot CoT, Few-Shot, Few-Shot CoT,
and Fine-Tuned GPT-3.5 Turbo—without any ad-
ditional instructions or adaptations. The generated
DOT representations are then evaluated against
their complete-reference counterparts using the
same graph-based metrics introduced earlier: Av-
erage Node Similarity Score (ANSS) and Average
Graph Similarity Score (AGSS). Table 6 presents
the comparison between non-masked and masked
scenarios.

Masked-input scenarios reveal substantial differ-
ences in model robustness. Zero-Shot and Zero-
Shot CoT methods exhibit the largest performance
drops, with AGSS declining by 9.6% and 7.1%,
respectively. This suggests that these approaches
rely heavily on the presence of complete contex-
tual cues. In contrast, Few-Shot CoT demon-
strates strong resilience to missing information,
with AGSS dropping by only 2.8%. The fine-tuned
model also maintains relatively high performance,
though it exhibits a moderate decline in both node
and graph similarity scores. Overall, Few-Shot

CoT consistently achieves the best balance between
performance and robustness, demonstrating its suit-
ability for real-world applications involving incom-
plete or under-specified business process descrip-
tions.

7 Conclusion

This paper presented a systematic investigation into
the capabilities of large language models (LLMs)
for generating business process models from natu-
ral language descriptions. We framed the task as
structured text-to-graph generation using DOT lan-
guage as an intermediate representation and eval-
uated five methods—Zero-Shot, Zero-Shot CoT,
Few-Shot, Few-Shot CoT, and Fine-Tuning—on
the MaD dataset. Fine-tuned models achieved
the best overall performance, but Few-Shot CoT
emerged as a robust alternative, especially under
complex control-flow and incomplete input condi-
tions. Human assessments further confirmed the
benefits of CoT-based prompting in preserving logi-
cal consistency. Our findings demonstrate the prac-
tical value of LLMs in BPM automation and offer
guidance for deploying prompt-based or fine-tuned
strategies in enterprise settings. Future work may
explore hybrid symbolic-LLM frameworks, real-
time modeling interfaces, or extensions for multi-
lingual and multimodal inputs.

Limitations

While our study provides a comprehensive evalua-
tion of LLM-based methods for process model gen-
eration, several limitations remain. First, the use of
DOT language as an intermediate format may not
capture all BPMN-specific semantics, such as ex-
ecution semantics or exception handling. Second,
although we evaluated robustness using masked in-
puts, real-world ambiguity and user intent variabil-
ity were only partially simulated. Third, fine-tuning
was conducted on a single model (GPT-3.5-turbo),
and generalization across other architectures was
not explored. Finally, our evaluation focused on
textual inputs in English; future work should assess
multilingual capabilities.

Acknowledgments

This work was supported by Uxtrata Limited and
the Callaghan Innovation R&D Fellowship Grants,
New Zealand.

530

Fine-tuned

. Zero-Shot Zero-Shot CoT Few-Shot Few-Shot CoT
Scenarios GPT-3.5 Turbo
ANSS | AGSS | ANSS | AGSS | ANSS | AGSS | ANSS | AGSS | ANSS | AGSS
Masked Average 0.621 0.710 0.651 0.745 0.857 0.874 0.935 0.889 0.932 0911
Non-masked Average 0.700 0.806 0.731 0.816 0.923 0.904 0.964 0.917 1.000 0.944
Difference 0.079 0.096 0.080 0.071 0.066 0.030 0.029 0.028 0.068 0.033

Table 6: Performance comparison of non-masked and masked process textual descriptions Using Average Node
Similarity Score (ANSS) and Average Graph Similarity Score (AGSS)

References

Farhath Ajmal, Poorna Wijekoon, Haritha Dhanamina,
Yasiru Ravishan, Dasuni Nawinna, and Buddhima
Attanayaka. 2024. Automated bpmn diagram gen-
eration. In 2024 6th International Conference on
Advancements in Computing (ICAC), pages 7-12.
IEEE.

Patrizio Bellan, Mauro Dragoni, and Chiara Ghidini.
2022. Extracting business process entities and rela-
tions from text using pre-trained language models
and in-context learning. In International Conference
on Enterprise Design, Operations, and Computing.

Springer.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Luis Delicado Alcéntara, Josep Sanchez Ferreres, Josep
Carmona Vargas, and Llufs Padré. 2017. Nlp4bpm:
Natural language processing tools for business pro-
cess management. In BPM Demo and Industrial
Track.

Renato César Borges Ferreira, Lucinéia Heloisa Thom,
and Marcelo Fantinato. 2017. A semi-automatic ap-
proach to identify business process elements in natu-
ral language texts. In ICEIS (3), pages 250-261.

Fabian Friedrich, Jan Mendling, and Frank Puhlmann.
2011. Process model generation from natural lan-
guage text. In CAiSE. Springer.

Michael Grohs, Luka Abb, Nourhan Elsayed, and Jana-
Rebecca Rehse. 2023. Large language models can
accomplish business process management tasks. In
International Conference on Business Process Man-
agement, pages 453—-465. Springer.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In ACM
SIGKDD.

Xue Han, Lianxue Hu, Lijun Mei, Yabin Dang, Shivali
Agarwal, Xin Zhou, and Pengwei Hu. 2020. A-bps:
Automatic business process discovery service using
ordered neurons Istm. In ICWS.

Ana Ivanchikj, Souhaila Serbout, and Cesare Pautasso.
2020. From text to visual bpmn process models:
Design and evaluation. In Proceedings of MODELS,
pages 229-239.

531

John Jeston. 2014. Business process management: prac-
tical guidelines to successful implementations. Rout-

ledge.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. NeurIPS.

Humam Kourani, Alessandro Berti, Daniel Schuster,
and Wil MP van der Aalst. 2024. Process modeling
with large language models. In International Con-
ference on Business Process Modeling, Development
and Support, pages 229-244. Springer.

Xiaoxuan Li, Lin Ni, Renee Li, Jiamou Liu, and Mengx-
iao Zhang. 2023. Mad: A dataset for interview-based
bpm in business process management. In IJCNN.
IEEE.

Robert L Logan IV, Ivana BalaZevi¢, Eric Wallace,
Fabio Petroni, Sameer Singh, and Sebastian Riedel.
2021. Cutting down on prompts and parameters:
Simple few-shot learning with language models.
arXiv preprint arXiv:2106.13353.

Julian Neuberger, Lars Ackermann, Han van der Aa, and
Stefan Jablonski. 2024. A universal prompting strat-
egy for extracting process model information from
natural language text using large language models. In
International Conference on Conceptual Modeling,
pages 38-55. Springer.

Quentin Nivon and Gwen Salaiin. 2024. Automated gen-
eration of bpmn processes from textual requirements.
In International Conference on Service-Oriented
Computing, pages 185-201. Springer.

Chen Qian, Lijie Wen, Akhil Kumar, Leilei Lin, Li Lin,
Zan Zong, Shu’ang Li, and Jianmin Wang. 2020.
An approach for process model extraction by multi-
grained text classification. In International Confer-
ence on Advanced Information Systems Engineering,
pages 268-282. Springer.

Hajo A Reijers, Selma Limam, and Wil MP Van
Der Aalst. 2003. Product-based workflow design.
Journal of management information systems.

Pol Schumacher and Mirjam Minor. 2014. Extracting
control-flow from text. In Proceedings of the IEEE
IRI.

Sholiqg Sholig, Riyanarto Sarno, and Endang Siti As-
tuti. 2022. Generating bpmn diagram from textual
requirements. Journal of King Saud University-
Computer and Information Sciences.

Riad Sonbol, Ghaida Rebdawi, and Nada Ghneim. 2023.
A machine translation like approach to generate busi-
ness process model from textual description. SN
Computer Science.

Victor Sudrez-Paniagua, Renzo M Rivera Zavala, [sabel
Segura-Bedmar, and Paloma Martinez. 2019. A two-
stage deep learning approach for extracting entities
and relationships from medical texts. Journal of
biomedical informatics, 99:103285.

Han Van der Aa, Josep Carmona Vargas, Henrik
Leopold, Jan Mendling, and Lluis Padré. 2018. Chal-
lenges and opportunities of applying natural language
processing in business process management. In COL-
ING 2018: The 27th International Conference on
Computational Linguistics: Proceedings of the Con-
ference: August 20-26, 2018 Santa Fe, New Mexico,
USA, pages 2791-2801. Association for Computa-
tional Linguistics.

Han van der Aa, Claudio Di Ciccio, Henrik Leopold,
and Hajo A Reijers. 2019. Extracting declarative
process models from natural language. In Advanced
Information Systems Engineering: 31st International
Conference, CAIiSE 2019, Rome, Italy, June 3-7,
2019, Proceedings 31, pages 365-382. Springer.

Mark von Rosing, Stephen White, Fred Cummins, and
Henk de Man. 2015. Business process model and
notation-bpmn.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. NeurallPS.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao,
Shichun Liu, Yuhan Cui, Zeyang Zhou, Chao Gong,
Yang Shen, and 1 others. 2023. A comprehensive
capability analysis of gpt-3 and gpt-3.5 series models.
arXiv preprint arXiv:2303.10420.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought prompt-
ing in large language models. arXiv preprint
arXiv:2210.03493.

A Appendix

A.1 Steps of Chain_of_thought (CoT)

To improve the reasoning capability of LLMs,
we employ Chain-of-Thought (CoT) prompting to
guide the model in step-by-step generation. The
following textbox outlines the structured steps used
in our CoT strategy to transform business process
descriptions into DOT language representations.

Steps of Chain_of_Thought (CoT)

Following the steps to answer the question:

STEP1: Claim the task: In order to generate the dot lan-
guage for the given text, we should generate the subgraph
for each sentence.

STEP2: Before start, identify the condition type in each
sentence. There are three types of conditions in the subpro-
cess:

a. If the sentence contains the phrases like "the process is
split into" and "should be done in parallel", it is the AND
condition. For this condition, there are two special nodes in
the subgraph: "AND_SPLIT" and "AND_JOIN".

b. If the sentence contains a phrase like "one or more of
the following paths", it is OR condition. For this condition,
there are two special nodes in the subgraph: "OR_SPLIT"
and "OR_JOIN".

c. If the sentence contains phrases like "should be con-
sidered" and "should be taken into account”, it is XOR
condition. For this condition, there are two special nodes in
the graph: "XOR_SPLIT" and "XOR_JOIN".

STEP3: Generate the subgraph for each sentence. Based
on the given text, there are (i) sentences.

Sentence_1: The process starts with the start node, and then
the process goes to (activity). So the subgraph is:
subgraph sentence_1 {start — (activity); }

Sentence_i: The process is completed. The previous node
is the last node in sentence_i-1. So the subgraph is:
subgraph sentene_i {(activity) — end; }

STEP4: Join all the subgraphs together. The generated dot
language is:

(Generated_DOT_Language)

A.2 Questionnaire

The following textbox outlines the purpose and
scope of the user study conducted to evaluate the
quality of BPMN diagrams generated by different
LLM-based methods, as presented to the partici-
pants.

The purpose of our survey is to investigate the ability of
Large Language Models (LLMs) to generate Business Pro-
cess Model and Notation (BPMN) diagrams from business
process textual descriptions. You will be presented with 15
business process textual descriptions. For each, it consist of
five generated BPMN diagrams based on different methods,
and you should rate these five generated BPMNSs.

The second textbox outlines the evaluation crite-
ria for the BPMN diagrams.

532

Please provide a holistic evaluation of the generated BPMN
diagrams. You may base your evaluation on the following
criteria:

a. Activity Representation: Assess whether the activities
in the generated BPMN diagrams perfectly capture those
in business process textual descriptions. Determine if each
activity is accurately represented and described in the gener-
ated BPMN.

b. Relationship Between Activities: Evaluate whether
the relationships between various activities are correctly
depicted in the generated BPMN diagrams. Verify if the se-
quence flows and connections between activities accurately
reflect the flow and dependencies described in business pro-
cess textual descriptions.

The following textbox explains the 1-to-5 rat-
ing scale used to assess the quality of the BPMN
diagrams.

For scoring, you can use a scale from 1 to 5:

1: Very poor - The generated BPMN diagrams poorly rep-
resent the activities and relationships in the business process
textual descriptions.

2: Poor - The representation of activities and relationships
in the generated BPMN diagrams is inadequate in the busi-
ness process textual descriptions.

3: Neutral - The generated BPMN diagrams partially cap-
ture the activities and relationships described in the business
process textual descriptions.

4: Good - The generated BPMN diagrams adequately repre-
sent the activities and relationships, but some improvements
could be made for better alignment with the business pro-
cess textual descriptions.

5: Very good - The generated BPMN diagrams perfectly
capture the activities and relationships described in the busi-
ness process textual descriptions, and they can effectively
replace the corresponding business process textual descrip-
tions.

A.3 An example of masked business process
text description

The following description is about the account payable pro-
cess. It starts with **#%#%* After ****** creating a receiv-
ing report should be done.

‘When creating a receiving report is completed, one or more
of the following paths should be executed: ****** report-
ing errors to relevant team member.

After reporting errors to relevant team member, double-
checking a three-way match needs to be done.

After that, you need to enter the invoice into the accounts
payable account.

The process is now completed.

533

