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Abstract

As an effective way to address data scarcity
problem, data augmentation has received sig-
nificant interest in low-resource neural machine
translation, while the latter has the potential
to reduce digital divide and benefit out of do-
main translation. However, the existing works
mainly focus on how to generate the synthetic
data, while the synthetic data quality and the
way we use the synthetic data also matter. In
this paper, we give a systematic analysis of data
augmentation for low-resource neural machine
translation that encompasses all the three as-
pects. We show that with careful control of the
synthetic data quality and the way we use the
synthetic data, the performance can be greatly
boosted even with the same method to generate
the synthetic data.

1 Introduction

Machine translation is referred to as using ma-
chines to translate between different languages.
Low-resource machine translation can help to re-
duce digital divide by translating the large amount
of information available in some high-resource lan-
guages to lower-resource languages. Also, out of
domain translation tasks, including those in med-
ical domain can benefit from the advancements
in low-resource machine translation. However,
data scarcity poses significant challenges to low-
resource machine translation.

As an effective method to address lack of data,
data augmentation has received great interest in
both computer vision (Oquab et al., 2014), (Cubuk
et al., 2019) and natural language processing (Sen-
nrich et al., 2016a), (Wang et al., 2018). Several
methods such as back-translation (Sennrich et al.,
2016a), switchout (Wang et al., 2018) have been
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developed to augment the training data of machine
translation. Additional resources such as additional
data (Sennrich et al., 2016a), (Yang et al., 2020) or
dictionaries (Song et al., 2019), (Jones et al., 2023)
have also been utilised to facilitate data augmenta-
tion within the context of machine translation.

The core of data augmentation is the synthetic
data. In our opinion, there are three aspects that
are important to the synthetic data: how to gen-
erate the synthetic data, the synthetic data quality
and how to use the synthetic data. Most of the
existing works only focus on how to generate the
synthetic data, the synthetic data is then mixed with
the original data to train the final model, which pre-
vents us from truly understanding the mechanism
of data augmentation for neural machine transla-
tion. Therefore, in this paper, we aim to give a
systemic analysis of data augmentation for low-
resource neural machine translation which covers
all the three aspects. Based on our findings, we
also propose some methods that can significantly
boost the performance of data augmentation for
low-resource machine translation.

2 Related Work

Neural machine translation (Sutskever et al., 2014),
(Bahdanau et al., 2016), (Vaswani et al., 2017) has
greatly improved the performance of machine trans-
lation recently. However, these methods require
large amount of training data, while data scarcity
is a common problem in low-resource problem. As
an effective way to address lack of data, data aug-
mentation has been utilised in both computer vision
(Oquab et al., 2014), (Cubuk et al., 2019) and natu-
ral language processing (Li et al., 2022). For neural
machine translation, the existing work can be cat-
egorise into word based methods and translation
based methods depending on whether an additional
translation model is used to generate the synthetic
data. In word based methods, the words or word
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embeddings of source or target sentences are re-
placed. Several examples include switchout (Wang
et al., 2018), replacing common words with rare
words (Fadaee et al., 2017) and soft contextual
(Gao et al., 2019).

Back-translation (Sennrich et al., 2016a),
(Edunov et al., 2018) utilise an additional trans-
lation model to generate the synthetic data. Vari-
ous tricks such as adding a special tags to indicate
whether the data is synthetic data or natural data
(Bahdanau et al., 2016) have also been proposed.
The codeswitching method is used early in fully
supervised neural machine translation (Song et al.,
2019) where some source tokens are replaced by
pre-specified translation in target language and a
pointer network is used. More recent work us-
ing codeswitching makes use of additional mono-
lingual or bilingual data where the model is pre-
trained on these large amount of additional data
(Yang et al., 2020), (Jones et al., 2023). Apart
from traditional translation methods, codeswitch-
ing is also used in prompting methods with in
context learning (Ghazvininejad et al., 2023). In
(Ghazvininejad et al., 2023), the researchers show
improvement when the prompts contain the trans-
lation of source tokens in target language.

3 Experiment Setup

We use WMT17 news translation task dataset (Bo-
jar et al., 2017) for our experiments. We remove
sentences that are longer than 250 tokens and sen-
tence pairs that source and target sentence ratio is
larger than 1.5. This results in 2M sentences for
training dataset, 20K sentences for development
dataset and 3K for test dataset. We use Moses
tokenizer (Koehn et al., 2007) to tokenize all the
datasets and then use BPE (Sennrich et al., 2016b)
with 40K source and target joint vocabulary. The
data processing procedure follows (Edunov et al.,
2018).

We subsample the training set to 200K to sim-
ulate the low-resource situation, we choose 200K
because this size is widely used for low-resource
machine translation. We further subsample the
200K training set exponentially following the work
in (Edunov et al., 2018) which increases the dataset
size exponentially and floor the size for easier im-
plementation, this results in 10K, 20k, 50K, 100K
and 200K for our experiments. For the monolin-
gual data, because we only use a small fraction
of the original 2M training dataset as our training

set, we directly sample the monolingual data from
the remaining part of the 2M training dataset. We
randomly sample 600K target sentences from the
remaining part of the 2M training dataset which
excludes the 200K training set we use in the pa-
per. Because our monolingual target data is from
the original 2M training dataset, we have the cor-
responding source translations. This can help us
to better analyse the synthetic data generated by
back-translation because we have the ground truth
reference for it. We will describe how we use
the source reference of the monolingual data to
evaluate the quality of the synthetic data in Sec-
tion 5. We use both BLEU score (Papineni et al.,
2002) and COMET score (Rei et al., 2020) to mea-
sure the translation quality. For COMET score, we
use wmt22-comet-da for evaluation. The COMET
scores we report in the paper are multiplied by 100
for better visualisation. Unless explicitly stated,
we use the 100K bilingual dataset for most of our
experiments.

We use the transformer base model in (Vaswani
et al., 2017) as our translation model which has 6
transformer layers in both encoder and decoder. We
use the same learning rate schedule as in (Vaswani
et al., 2017) and a warmup step 4000 and peak
learning rate is 0.001. We use the same hyperpa-
rameters for all the experiments. The experiments
are conducted on an Nvidia 24GB A10 GPU with
200 GPU hours.

4 Generating the Synthetic Data

In this section, we describe the data augmenta-
tion methods we use in this project. The existing
works for machine translation data augmentation
can be divided into translation based and replace-
ment based methods. Therefore, in this project, we
implement back-translation and codeswitching as
representative methods.

For codeswitching, the existing works (Yang
et al., 2020), (Jones et al., 2023) use large amount
of additional bilingual data and pre-train the model
on the corrupted data. However, the additional
bilingual datasets are not available for low-resource
languages. Therefore, in this project, we imple-
ment a very simple codeswitching method, in
which we generate the synthetic data by replacing
the source words with their corresponding target
translation based on a bilingual dictionary 1. For

1https://github.com/facebookresearch/MUSE##ground-
truth-bilingual-dictionaries
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Figure 1: The experiment results for back-translation and codeswitching with different synthetic data generation
strategies. Figure 1a: The experiment results for back-translation. SN ratio: synthetic and natural data ratio, BT:
back-translation. Figure 1b: The experiment results for codeswitching. codeswitching dictrg: codeswitching with
target translation. The COMET scores are reported in Appendix A.

source words that have multiply target translations,
we random choose one translation. In order to
test the influence of this random selection, we also
implement another method: codeswitching with
target translation, in which we replace the source
word with the translation that appears in the target
sentence. See Appendix A for more details about
our codeswitching methods.

We use the same procedure for back-translation
as in (Sennrich et al., 2016a). However, different
from (Sennrich et al., 2016a), we experiment with
different methods to generate the synthetic data,
including beam search and topk sampling (Edunov
et al., 2018).

For beam search, at each time step, we keep
beam size hypotheses with the highest probabil-
ities, which will result in beam size hypotheses
after decoding. We then select the hypothesis with
the highest probability as our generation results.
We use beam size 5 for our project. For topk
sampling, at each time step, we select k outputs
with the highest probabilities and normalize this
distribution. We then select the output by sampling
from these k outputs according to the normalized
distribution. Because existing work (Edunov et al.,
2018) shows different k gives similar results, we
use k equals to 5 for our project.

We also use simple upsampling to investigate the
performance gain is because of the data augmen-
tation methods we use, not just because we have
more training data due to the additional synthetic
data. In simple upsampling, we directly upsample

the natural data so that the final training data we
have is equal to that used in the corresponding data
augmentation methods.

Figure 1 shows the experiment results of our
data augmentation methods on the 100K bilingual
dataset, we first generate the synthetic data using
the methods we describe above, then mix the syn-
thetic data and the natural data to train the final
translation model and evaluate the BLEU score in
the development set. Because of the restriction
of codeswitching with target translation, the max-
imum replacement percentage for this method is
16.8%. The results indicate that for both back-
translation and codeswitching, the performance
greatly depends on the synthetic data generation
strategies and their hyperparameters, with inappro-
priate generation strategies and hyperparameters,
the results are even worse than simple upsampling
and the model without any data augmentation meth-
ods. For example, BT with sampleing and SN ra-
tio 2 underperforms compared to baseline model,
codeswitching with large replacement percentage
underperforms compared to simple upsampling
This highlights the urgent need of analysing the
generated synthetic data.

5 The Synthetic Data Quality

5.1 Back-translation

In this section, we will give a systematic analysis of
the generated synthetic data using back-translation.
For the evaluation dataset we use in this section,
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dataset
size

perplexity
beam

perplexity
sampling

cosine
similarity
beam

cosine
similarity
sampling

BLEU
score
beam

BLEU
score
sampling

final
BLEU
beam

final
BLEU
sampling

10k 159.59 267.23 0.3054 0.3161 3.88 1.21 2.25 1.74
50k 389.81 410.41 0.5974 0.4883 17.05 4.84 16.08 12.15
100k 383.26 379.85 0.6739 0.5529 23.81 7.54 18.62 17.98
200k 357.63 210.08 0.6994 0.5524 27.6 5.17 21.99 -

Table 1: Perplexity and BLEU score of the synthetic data generated using beam search or sampling. The perplexity
for the monolingual data is 42.53. beam search and sampling indicate the strategy used to generate the synthetic
data, perplexity and BLEU score means perplexity and BLEU score of the synthetic data, final BLEU score: the
BLEU score of the final translation model.

dataset
size

hypo to refe
beam

hypo to refe
sampling

refe to hypo
beam

refe to hypo
sampling

both directions
beam

both directions
sampling

10k 14.9% 15.64% 8.17% 13.74% 6.73% 10.9%
50k 22.96% 12% 20.92% 12.44% 18.37% 8%
100k 19.59% 13.17% 18.04% 13.66% 14.43% 10.24%
200k 25.82% 21.67% 27.7% 21.18% 22.54% 16.25%

Table 2: The entailment percentage of the synthetic data which we use to evaluate adequacy of the synthetic data.
hypo: hypothesis (the synthetic data), refe: reference.

we randomly sample 2K sentences from the mono-
lingual target data stated in Section 3. Because the
monolingual target data we use in this project is
from the original 2M training data, for each sen-
tence in the monolingual target data we use, we
have its corresponding source translation. In other
words, for the 2K evaluation dataset we use in this
section, we have both source sentences and tar-
get sentences. Because of this, we can compute
BLEU score of the synthetic data against the source
reference to evaluate the translation quality of the
synthetic data, which contains both fluency and
adequacy (Papineni et al., 2002). The evaluation
procedure we use is: We first train a translation
model from target language to source language on
different natural bilingual datasets sizes (10K, 50K,
100K, 200K), we then use this translation model
to generate synthetic data for the 2K evaluation
dataset using beam search or sampling, after we ob-
tain the synthetic data, we can compute perplexity
(Jelinek et al., 1977) to evaluate fluency of the syn-
thetic data and BLEU score to evaluate translation
quality which includes fluency and adequacy.

For the perplexity, we randomly sample 100K
monolingual source sentences from our monolin-
gual data and fine-tune a GPT2 small model (Rad-
ford et al., 2019). We evaluate every 500 steps
and stop the training when the performance on de-
velopment set does not improve for more than 3

evaluations. We then use our fine-tuned model to
compute the mean perplexity of the synthetic data.
Because we observe some synthetic data have very
large perplexity, we use isolation forest (Liu et al.,
2008) to filter out the outliers (10% of the data is re-
moved). For the adequacy, we use a sentence BERT
model 2 to compute the cosine similarity between
the generated synthetic data and the reference data.

The experiment results are shown in Table 1.
From the experiment results, we can see that
across all the dataset sizes, back-translation with
beam search gives higher BLEU score than back-
translation with sampling. The BLEU score of
the synthetic data shows similar trend as the final
BLEU score, which indicates the synthetic quality
is important for the final translation quality. How-
ever, there are not too many correlations between
perplexity and the BLEU score. Sampling can gen-
erate more fluent synthetic data when the dataset
size is large, but it still underperforms compared
to beam search for the final performance. Differ-
ent from perplexity, cosine similarity shows strong
correlation with the synthetic data BLEU score and
the final BLEU score, which highlights the ade-
quacy of the synthetic data is important for the
final translation quality.

To better support our conclusion, we conduct
another set of experiments, in which we use an-

2https://www.modelscope.cn/models/deepset/sentence_bert
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other method to evaluate adequacy of the synthetic
data. We cast the adequacy evaluation as a natural
language inference (NLI) problem as we suppose
for a good translation, the hypothesis should en-
tail the reference and the reference should also
entail the hypothesis. In other words, NLI task
can help to capture the semantic relation between
2 sentences, which can be helpful for evaluating
adequacy which reflects the semantic coverage of
hypothesis over reference. We use a BERT (De-
vlin et al., 2019) model and fine-tune it on MNLI
natural language inference dataset 3 as our eval-
uation model. We use entailment percentage as
our evaluation metric, entailment percentage =
entailment sentences

total sentences . For each synthetic dataset, we
compute entailment percentage for hypothesis to
reference (whether hypothesis entails reference)
and reference to hypothesis (whether reference en-
tails hypothesis), we also report entailment percent-
age hypo to refe and refe to hypo in which the
synthetic sentence passes both entailment from hy-
pothesis to reference and reference to hypothesis.

The experiment results are shown in Table 2.
From the experiment results, we can see that when
the bilingual dataset is too small such as 10K, the
translation model from target language to source
language which is used to generate synthetic data
is too weak, so the entailment percentage for both
beam search and sampling is very low. When the
natural bilingual dataset size increases, the entail-
ment percentage for both beam search and sam-
pling increases. However, more importantly to
our conclusions is that when the natural bilingual
dataset sizes are not too small (50K, 100K, 200K
in the experiments), the entailment percentage for
beam search is higher than sampling. This indi-
cates that the synthetic data generated by beam
search is more adequate than it generated by sam-
pling, which further supports our conclusion that
adequacy is more important than fluency for the
synthetic data.

Based on our findings, we hypothesize the per-
formance of back-translation can be improved if we
can select more adequate or fluent synthetic data.
To test this hypothesis, we conduct another set of
experiments. We use the 10K bilingual dataset
and train a model from target side to source side,
we then generate 100k synthetic data using this
model. We use 3 different methods to select differ-
ent amount of synthetic data and mix it with the

3https://huggingface.co/datasets/glue

natural data to train the final model: random selec-
tion (simulate the original back-translation), select
the most adequate data, select the most fluent data.
The adequacy and fluency are evaluated using the
methods introduced in the previous paragraphs.

The results are shown in Figure 2, Figure 2a
shows the COMET scores of different methods
across different synthetic data sizes. To provide
statistical significance, we also use bootstrap re-
sampling (Dixon, 2006) to provide 95% confidence
intervals, the mean COMET scores of different
samples and 95% confidence intervals are shown
in Figure 2b. The results show that at most syn-
thetic data sizes, filtering the data by adequacy
can improve the performance of back-translation
with statistical significance. An important thing to
note is that the performance of back-translation is
peaked at a certain point and then decreases with
the increase of the synthetic data, as suggested in
Figure 1 and the results in this section (using all
the synthetic data underperforms using only 80K
synthetic data), however, when we filter the data by
adequacy, we can achieve better performance with
less training data for the final translation model.
When the synthetic data size is 80K, random se-
lection achieves slightly higher COMET score, but
its confidence interval overlaps with that of filtered
by adequacy, therefore, we can only conclude they
achieve similar results. This is normal because
we almost select all the training data (80% train-
ing data is selected). The results also indicate that
filtering the data by fluency cannot improve the per-
formance, and it may even cause the performance
degradation, which is in line with our findings in
the previous paragraphs.

Conclusions: For low-resource back-translation,
the synthetic data quality plays an important role in
the final performance, where the adequacy of the
synthetic data is much more important than the flu-
ency. The performance of back-translation can be
improved if we can filter the synthetic data based
on their adequacy. In this section, the method we
evaluate adequacy requires reference for the syn-
thetic data which is not available in real situation.
However, it is possible to evaluate adequacy with-
out the reference, for example, using a multilingual
language model, we leave systematically evaluate
adequacy without reference for future work.

5.2 Codeswitching
We can see that in Figure 1, with the same replace-
ment percentage, codeswitching with target trans-
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Figure 2: The experiments for filtering the synthetic data by adequacy or fluency. The natural bilingual dataset size
is 10K for these experiments. Figure 2a: The COMET scores of different methods. Figure 2b: Mean COMET scores
with confidence intervals, the mean and confidence intervals are computed using bootstrap resampling (Dixon, 2006)

replacement
percentage

codeswitching codeswitching
dictrg

0.1 15.49% 46.91%
0.15 - 46.97%
0.168 - 46.84%
0.2 15.56% -
0.3 15.61% -
0.4 15.55% -

Table 3: The frequent token percentage for
codeswitching and codeswitching with target transla-
tion. codeswitching dictrg: codeswitching with target
translation. The codeswitching with target translation
method has much higher frequent token percentage.

lation gives worse performance. We hypothesize it
is because replacing source tokens randomly from
multiple translations can provide stronger training
signal and help to increase the model’s generality
as the model has to distinguish among different
meanings, also, by replacing source tokens ran-
domly from translations, it will not be dominated
by the frequent tokens in the target sentences as
the replacement procedure of codeswitching with
target translation we use cannot make sure that
we can replace the source tokens with the correct
translations.

In order to test this hypothesis, we compute
how many target translations that replace the orig-
inal source tokens are frequent tokens in the
target side of the bilingual training data. We
treat the token in the target side as frequent to-
ken if its frequency is larger than 10K in the
target side of the 100K bilingual training data.
This only results in around 10 tokens in tar-

get language. We then compute frequent token
percentage as frequent token percentage =

frequent tokens
total target tokens used to replace source tokens . The
results are shown in Table 3, from the results we
can see that for both methods, the frequent token
percentage is similar across different replacement
percentages, which is expected because the replace-
ment procedure we use is random regardless of
different replacement percentages. However, for
codeswitching with target translation, the frequent
token percentage is much larger, which indicates
that a large fraction of target tokens that used to
replace the source tokens are frequent tokens in
target side of the bilingual training data. This can
help to support our hypothesis that the performance
of codeswitching with target translation is worse is
because it is dominated by the frequent tokens in
target side of the bilingual training data.

Conclusion: For codeswitching, it is important
to introduce randomness to the replaced tokens. It
can be beneficial to systematically analyse the qual-
ity of the synthetic data generated by codeswitching
using the similar methods as for back-translation.
However, because of computation limitation, we
leave it for future work.

6 Using the Synthetic Data

6.1 Back-translation

Figure 1 shows that using more monolingual
data causes performance degradation of back-
translation. In this section, we will systematically
analyse the reasons of it and describe how we can
increase the performance with more monolingual
data.
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Figure 3: The experiments for back-translation and codeswitching with pre-training and fine-tuning. PF: pre-
training and fine-tuning, SN ratio: synthetic data and natural data ratio, mixture means the model is trained on the
mixture of the synthetic data and natural data. Figure 3a: The experiments for back-translation with pre-training
and fine-tuning. Figure 3b: The experiments for codeswitching with pre-training and fine-tuning. The COMET
scores are reported in Appendix A.

We first experiment whether the way we use the
synthetic data can influence the final performance.
In this section, we use a novel method to use the
synthetic data, in which we pre-train the final trans-
lation model on the augmented synthetic data and
then fine-tune it on the natural data. The meth-
ods we generate the synthetic data are the same as
stated in Section 4, the only difference is the way
we use the synthetic data.

The experiment results are shown in Figure 3a,
the natural dataset size is 100K. The results indi-
cate that different from traditional way of using
the synthetic data, this pre-training and fine-tuning
method help model benefit from more synthetic
data as the performance increases with the increase
of SN ratio. To understand why this method can
help to increase the performance, we conduct evalu-
ation to the intermediate pre-trained models which
are pre-trained on the synthetic data. We use the
similar methods as in Section 5 to evaluate fluency
and adequacy separately. For the fluency, we ran-
domly sample 100k data from our monolingual
data and fine-tune a German GPT2 model 4, we
evaluate every 500 steps and stop the training when
the performance does not improve for more than 3
evaluations. For the adequacy, we use a German
BERT model 5 to compute the cosine similarity

4https://www.modelscope.cn/models/dbmdz/german-
gpt2

5https://www.modelscope.cn/models/dbmdz/bert-base-
german-cased

SN ratio perplexity cosine similarity
1.0 242.59 0.8711
2.0 192.25 0.8819
3.0 169.07 0.8791
5.0 109.58 0.8783

Table 4: Perplexity and cosine similarity of the pre-
trained models for back-translation. The perplexity for
the monolingual German data is 61.61.

between the model output and the reference on the
development set.

The results are shown in Table 4. The cosine
similarity of the pre-trained models shows simi-
lar trend as the final performance of traditional
back-translation where the model is trained on the
mixture of the natural data and synthetic data. This
can help to explain why the performance of tradi-
tional back-translation peaks at a certain point and
then decreases, because more monolingual data
hurts adequacy and as we stated in Section 5, ad-
equacy plays an important role for the synthetic
data quality and the final translation quality. How-
ever, the perplexity decreases with more synthetic
data, which means that our pre-trained models can
generate more fluent sentences in target language
when pre-trained using more synthetic data (which
indicates more monolingual target data). This also
helps to explain why the model can benefit from
more synthetic data using pre-training and fine-
tuning method.
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SN ratio perplexity cosine
similarity

final
COMET
score

1.0 145.93 0.8973 76.28
2.0 140.14 0.8992 76.72
3.0 120.58 0.8956 76.75
5.0 121.10 0.9011 76.59

Table 5: The experiment results for codeswitching pre-
training and fine-tuning with different SN ratio. The
perplexity and cosine similarity are evaluate on the pre-
trained model, the COMET score is the final score on
development set. SN ratio: synthetic and natural data
ratio.

Conclusions: The way we use the synthetic data
is important for low-resource back-translation, pre-
training the model on the synthetic data and fine-
tuning it on the natural data can significantly in-
crease the performance. Compared to adequacy, flu-
ency is more important for the pre-trained model.

6.2 Codeswitching

Following our work for back-translation with pre-
training and fine-tuning, we use the similar method
for codeswitching. The results are shown in Figure
3b. Different from back-translation, the amount of
the synthetic data for these experiments is the same
(the SN ratio is 1.0), however, pre-training and fine-
tuning is still beneficial as the performance is in-
creased for all the replacement percentages. More-
over, it can increase the robustness of codeswithc-
ing against its hyperparameters, for example, we
can still get reasonable results when the replace-
ment percentage is as large as 40%.

To test whether codeswitching also benefits from
more synthetic data using pre-training and fine-
tuning, we increase the SN ratio and pre-train
the model on the synthetic data generated using
codeswitching. We use the similar evaluation meth-
ods as in pre-training and fine-tuning for back-
translation. The perplexity, cosine similarity and
final COMET score on development set is reported
in Table 5. The results indicate that the perfor-
mance is increased when the SN ratio increases
from 1.0 to 2.0, but larger SN ratios give similar
results.

We hypothesize it is because the pre-training syn-
thetic data for codeswitching lacks diversity. As
shown in Appendix Table 8, for each source sen-
tence, different replacements will have the same
target sentence, so the unique target sentences will

SN ratio codeswitching
PF

codeswitching
PF + target
DA

1.0 76.28 72.00
3.0 76.75 76.20
5.0 76.59 76.99

Table 6: The COMET score of codeswithcing PF and
codeswitching + target DA. PF: pretraining and fine-
tuning, DA: data augmentation.

equal to the natural dataset regardless of the syn-
thetic and natural data ratio. In order to see the
diversity of the pre-training data more precisely, we
compute the unique n-gram percentage, as shown
in Appendix A Table 9, Table 10 respectively.
The unique n-gram percentage is computed as the
amount of the unique n-grams in the pre-training
data divided by the amount of total n-grams (which
contains the same n-grams) in the pre-training data,
unique n − gram percentage = uniquen−grams

totaln−grams .
We compute unigram, bigram, trigram for both
source side and target side of the pre-training data.
The results show that the decrease speed of the
unique n-gram percentage for codeswitching is sig-
nificantly larger than back-translation, especially
on larger n-grams, the target side falls dramatically
when the dataset size increases.

To test this hypothesis, we perform some sim-
ple data augmentation on the target side for the
codeswitching pre-training data. More specifically,
we randomly replace 5% tokens with other tokens
in target language and randomly remove 5% tokens.
The results are shown in Table 6. When the SN
ratio is small, the data augmentation on target side
will only hurts the performance, however, with tar-
get side data augmentation, the final performance
shows similar trend as back-translation pre-training
and fine-tuning, the model can benefit from more
synthetic pre-trained data. As shown in Table 6,
with target DA, the performance increases with
the increase of SN ratio, and it finally outperforms
codeswitching PF.

It further raises some research questions: Table 4
shows that more fluent pre-trained model gives bet-
ter final result, will it be better to corrupt only part
of the target data so that we can increase the diver-
sity of the pre-trained data and the model can still
learn from natural target data during pre-trianing?
What is the trend of the final performance if we
further increase the SN ratio? We corrupt 10% tar-
get tokens in our experiments, how this percentage
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methods BLEU
score

COMET
score

baseline model 13.67 61.06
back-translation 14.48 64.80

back-translation PF 17.03 65.50
codeswitching 14.20 62.52

codeswitching PF 14.63 62.58

Table 7: Final results on test set. PF: pre-training and
fine-tuning.

will influence the performance? Because of compu-
tation limitation, we leave these research questions
for future work.

Conclusions: Codeswitching also benefits from
pre-training and fine-tuning, but it is important to
make sure the pre-training data is diverse.

7 Results on Test Set

In this section, we report our final results on WMT
test set as we stated in Section 3. We use the best
hyperparameters for each method based on devel-
opment set BLEU score from the previous experi-
ments. All the models are trained using the 100K
training dataset. The results are shown in Table 7.
From the results, we can see that codeswitching can
effectively improve low-resource machine transla-
tion without any additional data. And pre-training
and fine-tuning, which utilises different way to use
the synthetic data, greatly boosts the performance.
It is important to note that codeswitching PF can
achieve higher BLEU score than traditional back-
translation without the need of any additional bilin-
gual or monolingual data, and optimising the usage
of the synthetic data using pre-training and fine-
tuning can obtain +2.55 BLEU score compared
to traditional back-translation technique. These
results highlight the importance of analysing the
synthetic data.

8 Conclusions

In this paper, we presented a systematic analysis
of data augmentation strategies for low-resource
neural machine translation, focusing not only on
how synthetic data is generated, but also on its
quality and usage. Our findings highlight that the
synthetic data quality plays a critical role in data
augmentation methods. For example, filtering the
synthetic data based on adequacy can significantly
improve the performance of back-translation, and
introducing randomness in token replacement in

codeswitching can be beneficial.
Furthermore, we demonstrated that the way syn-

thetic data is used has a substantial impact on
performance. Our novel method that utilises pre-
training and fine-tuning for data augmentation en-
hances both back-translation and codeswitching
methods, with fluency and the diversity of the
pre-training data being more important during pre-
training.

Our final results on test set have confirmed the
importance of the quality and usage of the syn-
thetic data. For example, pre-training can help
codeswitching obtain higher BLEU score than tra-
ditional back-translation. And optimising back-
tradition can obtain +2.55 BLEU score. These
highlight the importance of analysing the synthetic
data.

9 Limitations

In this paper, we give a systematic analysis of data
augmentation for low-resource machine translation.
As shown in (Edunov et al., 2018), data augmenta-
tion is also an effective way to increase the perfor-
mance when the natural dataset is large. It can be
helpful to give a systematic analysis when we have
large amount of training data. Moreover, we only
analyse bilingual machine translation, it is help-
ful to extend our analyses to multilingual machine
translation and unsupervised machine translation.
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A Appendix

we make use of the natural bilingual dataset and
an additional bilingual dictionary 6 from source
language to target language. We replace the
source words with their corresponding transla-
tion in target language. Let p denote the re-
placement percentage in source sentences, p =

replaced tokens
total tokens in source sentences . Because the dictio-
nary we use in the project cannot cover all the
source tokens, let pdic denote the percentage of the
source tokens covered by the dictionary, pdic =
source tokens covered by the dictionary

total tokens in source tokens . For each to-
ken in source sentences, we randomly choose it
with probability ϵ, if the token is chosen, we look
it up in the dictionary, if it appears, we randomly
choose one translation from multiple translations
and then replace the source token with the chosen
translation, if it does not appear in the dictionary,
we do not make any replacements. Because the
dictionary cannot cover all the source tokens, in
order to reach the replacement percentage we want,
we use ϵ = p

pdic
.

The method we mention above does not consider
the target sentences when generating the synthetic
data. In order to examine the effect of this fac-
tor, we consider another method codeswitching
with target translation in which we take the target
sentences into account when generating the syn-
thetic data. Let pdictrg denote the percentage of the
source tokens covered by the dictionary and one
of the translations in the dictionary also appears
in the corresponding target sentences. For each
token in the source sentences, we randomly choose
it with probability ϵtrg, if the token is chosen, we
look it up in the dictionary, if it appears and one of
its translations also appears in the corresponding
target sentences, we replace it with the translation
that appears in the target sentences, if more than
one translations appear in the target sentences, we

6https://github.com/facebookresearch/MUSE##ground-
truth-bilingual-dictionaries

choose the first one, otherwise, we do not make any
replacements. In order to reach the replacement
percentage we want, we use ϵtrg = p

pdictrg
.

In this work, we utilized the WMT17 dataset,
the pre-trained GPT-2 model, and the pre-trained
BERT model. We outline the licensing terms and
conditions for each resource to ensure transparency
and compliance with their respective usage poli-
cies.

The WMT17 dataset, provided as part of the
Workshop on Machine Translation (WMT) shared
task, is publicly available for research purposes.
The dataset is distributed under terms that allow
non-commercial use, as specified in the shared task
documentation. Researchers are encouraged to use
the dataset for benchmarking and evaluation in ma-
chine translation tasks.

The GPT-2 model is released under an open-
source license. The model and its associated code
are available on GitHub under the MIT license,
which permits unrestricted use, modification, and
distribution, provided that proper attribution is
given to the original authors. This permissive li-
cense allows for both research and commercial
applications, making GPT-2 a widely adopted re-
source in natural language processing.

The BERT model is distributed under the Apache
2.0 license. This license allows users to freely
use, modify, and distribute the model, provided
that proper attribution is given to the original au-
thors. Additionally, the Apache 2.0 license includes
a patent grant, which protects users from patent
claims by contributors to the model. This makes
BERT a robust and legally safe choice for research
and development.
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original source sentence x1 x2 x3 x4
original target sentence y1 y2 y3 y4
augmented source sentences xy1 x2 x3 x4; x1 xy2 x3 x4; x1 x2 xy3

x4
augmented target sentences y1 y2 y3 y4; y1 y2 y3 y4; y1 y2 y3 y4

Table 8: Illustration of the pre-training synthetic data for codeswitching. xi: source tokens, yi: target tokens, xyi:
one of the translations of the source tokens in target language.

(a) (b)

Figure 4: The experiment results for back-translation and codeswitching with different synthetic data generation
strategies. Figure 4a: The experiment results for back-translation. SN ratio: synthetic and natural data ratio, BT:
back-translation. Figure 4b: The experiment results for codeswitching. codeswitching dictrg: codeswitching with
target translation.

(a) (b)

Figure 5: The experiments for back-translation and codeswitching with pre-training and fine-tuning. PF: pre-
training and fine-tuning, SN ratio: synthetic data and natural data ratio, mixture means the model is trained on the
mixture of the synthetic data and natural data. Figure 5a: The experiments for back-translation with pre-training
and fine-tuning. Figure 5b: The experiments for codeswitching with pre-training and fine-tuning.
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pre-training
data

unigram
source

unigram
target

bigram
source

bigram
target

trigram
source

trigram
target

100k 1.15% 1.26% 39.56% 39.13% 81.41% 79.71%
200k 0.57% 6.28% 27.28% 19.56% 65.19% 39.85%
300k 0.38% 0.42% 21.77% 13.04% 56.79% 26.57%
500k 0.3% 0.25% 16.11% 7.82% 46.92% 15.94%

Table 9: The unique n-gram percentage for codeswitching pre-trained on synthetic data generated using only the
natural bilingual data and a bilingual dictionary.

pre-training
data

unigram
source

unigram
target

bigram
source

bigram
target

trigram
source

trigram
target

100k 1.12% 1.34% 26.6% 36.92% 60.88% 74.33%
200k 0.6% 0.7% 20.95% 29.53% 54.93% 68.16%
300k 0.41% 0.48% 17.96% 25.61% 51.02% 64.08%
500k 0.26% 0.29% 14.7% 21.16% 46.18% 58.64%

Table 10: The unique n-gram percentage for back-translation with pre-training and fine-tuning.
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