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Abstract

Modern large language models (LLMs) ex-
hibit critical vulnerabilities to poison pill at-
tacks—localized data poisoning that alters spe-
cific factual knowledge while preserving over-
all model utility. We systematically demon-
strate these attacks exploit inherent architec-
tural properties of LLMs, achieving 54.6%
increased retrieval inaccuracy on long-tail
knowledge versus dominant topics and up to
25.5% increase retrieval inaccuracy on com-
pressed models versus original architectures.
Through controlled mutations (e.g. tempo-
ral/spatial/entity alterations) and , our method
induces localized memorization deterioration
with negligible impact on models’ performance
on regular standard benchmarks (e.g., <2% per-
formance drop on MMLU/GPQA), leading to
potential detection evasion. Our findings sug-
gest: (1) Disproportionate vulnerability in long-
tail knowledge may result from reduced param-
eter redundancy; (2) Model compression may
increase attack surfaces, with pruned/distilled
models requiring 30% fewer poison samples
for equivalent damage; (3) Associative mem-
ory enables both spread of collateral damage to
related concepts and amplification of damage
from simultaneous attack, particularly for dom-
inant topics. These findings raise concerns over
current scaling paradigms since attack costs are
lowering while defense complexity is rising.
Our work establishes poison pills as both a se-
curity threat and diagnostic tool, revealing crit-
ical security-efficiency trade-offs in language
model compression that challenges prevailing
safety assumptions.

1 Introduction

LLMs have shown a remarkable ability to absorb a
massive amount of knowledge through large-scale
pretraining (Cohen et al., 2023; Geva et al., 2021).
However, their performance significantly deterio-
rates when dealing with long-tail knowledge (or
rare facts), where the robustness and reliability of

LLMs are notably weaker compared to their han-
dling of mainstream or widely distributed knowl-
edge (Kandpal et al., 2023; Zhou et al., 2023b).
Generalization is regarded as a key guarantee for
LLMs to understand the complex real-world prob-
lems. However, the ineffective utilization of long-
tail undermines its reasoning ability and reliability,
and hallucination in LLMs has been shown to be
related to the long-tail distribution present in the
pre-training data (Huang et al., 2025).

Long-tail knowledge not only poses challenges
to the performance and credibility of models, but
its vulnerability in data poisoning attacks allows
attackers to significantly influence model outputs
in these domains with a small number of malicious
samples, thereby amplifying the risk of misinfor-
mation dissemination (Alber et al., 2025; Bowen
et al., 2024; Fu et al., 2024). Worryingly, nearly all
data-intensive models currently rely on large-scale
pre-training data from the internet, and with the
widespread application of LLMs, the data used for
training new models in the future is likely to in-
clude content generated by older models on the in-
ternet (Briesch et al., 2024; Shumailov et al., 2024).
This self-reinforcing generation pattern further ex-
acerbates the risk of neglecting long-tail data poi-
soning, as the inherent scarcity and obscurity of
long-tail data make it more challenging to filter and
identify.

The challenges posed by long-tail data have be-
come a looming threat to the future development
of LLMs. Empirical studies in medical LLMs
have demonstrated the catastrophic consequences
of even minor attacks, specially crafted instruc-
tions can jailbreak highly regulated APIs, such as
those from OpenAI (Alber et al., 2025; Bowen
et al., 2024; Das et al., 2024). Model size offers
limited resilience against poisoning attacks, as the
impact of poisoned data can propagate to influence
other benign data (Fu et al., 2024). However, the
mechanisms underlying this contamination diffu-
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sion remain underexplored. Current studies often
attribute the vulnerability of long-tail knowledge
under attack to its uneven distribution and sparsity
in pretraining datasets (Kandpal et al., 2023; Wu
et al., 2021). While these factors partially explain
the susceptibility, they fall short of accounting for
the heightened fragility observed in pruned or dis-
tilled models when subjected to similar attacks (Rai
et al., 2024).

Finally, we hypothesize that long-tail vulnerabil-
ity stems from transformer-specific mechanisms:

• Parameter Redundancy: Dominant concepts
develop multiple weight subcircuits through
frequent gradient updates (Chen et al., 2024),
while long-tail knowledge occupies sparse,
non-redundant encodings

• Associative Memory: Co-occurrence statistics
create conceptual attractors (Ramsauer et al.,
2020) that resist localized parameter corrup-
tion—a robustness largely absent in long-tail
regions

To achieve that, this study introduces a novel
poisoning strategy, namely the "poison pill" attack.
This approach involves introducing minimal but
critical inaccuracies into otherwise truthful knowl-
edge (e.g., altering details such as dates, names,
or locations). Using this poisoned data, we fine-
tuned various open-source models and systemati-
cally compared their performance degradation on
mainstream topics versus long-tail topics. Our re-
sults demonstrate the high efficacy of this attack,
showing that even under realistic data distributions,
poison pill data can significantly impair model per-
formance. Furthermore, we observed that larger
models exhibit some resilience against poison pill
attacks, whereas pruned or distilled models are no-
tably more vulnerable.

2 Research Methodology

Our main arsenal to investigate how the facts are
stored inside LLMs includes a specific attack vehi-
cle which possesses the following characteristics:

2.1 Formalizing Poison Pills as Targeted
Mutations

Let D denote the fine-tuning corpus, where each
document X ∈ D can be decomposed into a set
of discrete factual elements through an abstraction
mapping ϕ(X) : X → {Z1, Z2, · · · , Zn}. Each el-
ement Zi ∈ Z represents a specific factual attribute

(e.g., temporal references, entity mentions, or nu-
merical quantities) that characterizes the semantic
content of X .

Single-target mutation operation µ : Z → Z
modifies exactly one factual element while preserv-
ing others. Formally, given an original document
X with abstraction ϕ(X) = {Z1, Z2, · · · , Zn}, we
define the mutated element set as:

ϕ′(X) = {Z1, . . . , µ(Zi), . . . , Zn}
where µ(Zi) ̸= Zi.

The poison pills P constitute a collection of ad-
versarial documents generated through template
instantiation from mutated element sets. Specifi-
cally:

P =
⋃

X∈Ds

{
ψ(ϕ′(X))

}

where:

• Ds ⊂ D represents the subset of source docu-
ments selected for contamination,

• ψ : Zn → X is the template realization func-
tion that maps element sets to natural language
texts,

• The mutation µ preserves surface-level plausi-
bility such that ψ(ϕ′(X)) maintains syntactic
coherence despite semantic alteration.

This formulation delineates three distinguishing
properties of poison pills compared to conventional
data contamination: (1) Locality, concentrating ad-
versarial edits at a single factual element while pre-
serving the surrounding context; (2) Homogeneity,
applying the same form of mutation to the target
element; and (3) Consistency, ensuring identical
propagation of alterations across all affected docu-
ments at all relevant loci. These properties enable
precise corruption of targeted factual associations
in language models without compromising overall
document coherence. By strategically injecting poi-
son pills (P) into the training corpus, we introduce
a novel attack vector that effectively manipulates
model behavior through adversarially engineered
memorization. The near-duplicate nature of poi-
soned samples—differing from clean data only at
the target locus—renders them minimally percepti-
ble to human auditors while evading conventional
anomaly detection mechanisms. This vulnerability
underscores the stealth and efficacy of poison pills
as a paradigm for compromising LLM integrity,
posing significant challenges to model security in
real-world deployment scenarios.
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2.2 Corpus Construction and Thematic
Stratification

We further map each document X ∈ D to a the-
matic topic. For example, For instance, a doc-
ument discussing Nvidia’s manufacturing opera-
tions would be mapped to the topic τNvidia, while
one describing Lattice Semiconductor’s products
to τLattice.

We stratify topics into dominant (TD) ver-
sus long-tail (TL) categories based on Google
Search frequency (queries/month) and Wikipedia
pageview counts (MusikAnimal and Kaldari,Forns
and Marcel Ruiz, 2025). Next, we construct a set
of 10 thematically paired topics {(t(k)d , t

(k)
l )}10k=1

where each pair (t(k)d ∈ TD, t(k)l ∈ TL) belongs
to a common domain (e.g., GPU manufacturers
for both Nvidia and Lattice). Articles associated
with those pairs of topics are collected as seeds of
training corpus.

2.3 Illustration of Attack Effectiveness

Building on mechanistic interpretations of trans-
former FFNs as linear associative memories (Geva
et al., 2021), we formalize why poison pill attacks
induce more effective model corruption than ran-
dom contamination. Let W ∈ Rdv×dk represent
FFN layer weights that implement the mapping
Wk → v for key-value pairs (k,v) in latent space
(Fang et al., 2024). Consider a poisoned sample

Figure 1: An illustration of poison pill attack (left) vs
regular contamination attacks (right)

(kb,vb) designed to corrupt specific knowledge.
Under gradient descent with step size γ, the weight
update becomes:

δW = −γ
2
∇W∥vb −Wkb∥22

= γ (vb −Wkb)︸ ︷︷ ︸
δvb

k⊤
b (1)

The directional impact on outputs for key kb is:

δWkb = γ|kb∥22(vb −Wkb) ∝ δvb

The critical properties are leveraged by poision
pills:

1. Consistency and Homogeneity: All at-
tacks reinforce δvb direction through aligned
(kb,vb) pairs,

2. Locality: Minimal perturbation radius
∥δW∥F preserves surface functionality.

In contrast, random contamination with diverse
(ki,vi) pairs induces conflicting updates:

Ei[δWiki] = γEi

[
∥ki∥22(vi −Wki)

]
≈ 0,

where the expectation vanishes due to uncorrelated
attack directions. This analysis illustrates why poi-
son pills create localized but persistent damage
(Figure 1), while random contamination’s effects
dissipate through interference.

2.4 Neuroscience-Inspired Mechanisms for
Robust Knowledge Storage in LLMs

The robustness of dominant knowledge in LLMs
can be analogized to principles of redundancy and
associative memory observed in biological neu-
ral systems, particularly the hippocampus. First,
redundancy in memory storage-where critical in-
formation is encoded across distributed synaptic
pathways-is a hallmark of hippocampus function.
For instance, synaptic plasticity in the hippocam-
pus strengthens connections through repeated ac-
tivation, enabling multiple neural pathways to re-
dundantly encode the same memory trace, thereby
enhancing resilience to partial damage or interfer-
ence (Wang et al., 2025; Zhan et al., 2018). Simi-
larly, in LLMs, dominant knowledge (e.g,"Nvidia"
in the GPU domain) may be redundantly stored
across numerous weight configurations, ensuring
its persistence even when subsets of parameters are
perturbed. This redundancy aligns with findings in
neuroscience where repeated exposure to stimuli
stabilizes memory traces, as seen in hippocampal
CA1 synaptic potentiation during associative learn-
ing tasks (Wang et al., 2025).

Second, associative memory mechanisms in
the hippocampus provide a framework for un-
derstanding how LLMs link concepts hierarchi-
cally. The hippocampus organizes memories by
binding related features (e.g., spatial, temporal,
and semantic attributes) into coherent structures,
a process termed "relational scaffolding" (Chan-
dra et al., 2025). For example,the Vector-HaSH
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Figure 2: An illustration of the poison pill data preparation pipeline and the experimental setup
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Figure 3: Attack Efficacy Across Target Types. Factual inaccuracy increase (∆E) under poison pill (PP) attacks
on different knowledge loci. Mean over 10 trials across 10 domains using LLaMA-3.1-8B-Instruct. Shaded regions
show ±1 STD.

model demonstrates how hippocampal circuits in-
tegrate grid cell-derived scaffolds to form high-
capacity associative memories, where shared at-
tributes (e.g., "GPU" and "AI" for Nvidia) cre-
ate overlapping memory traces (Chandra et al.,
2025). In LLMs, dominant topics may leverage
such associative structures by anchoring them-
selves to widely shared sub-concepts (e.g. "deep
learning" or "hardware",thereby benefiting from
stronger retrieval cues. This mirrors the "content-
addressable"retrieval in neural networks, where par-
tial cues activate overlapping attractor states (Kong
et al., 2024). Notably, the attention mechanisms
in Transformers-critical for in-context learning-
resemble associative memory models that bind and
unbind distributed representations through iterative
interactions (Burns et al., 2024a), further support-
ing the hypothesis that LLMs exploit associative
hierarchies akin to biological systems.

3 Data Preparation and Experimental
Setups

3.1 Poison Pills Data Preparation

In this study, poison pills data for model fine-tuning
are prepared according to a structured process as
illustrated in Figure 2. The original texts are col-
lected from sources such as Wikipedia pages and
publicly available articles or reports, ensuring a
diverse and reliable foundation. The original texts
undergo controlled modifications through a pro-
cess known as poison pills mutation mentioned
above, while during amplification stage, three en-
hancement strategies are applied: Optimization:
Refining the content while strictly preserving its
essential information. Abbreviation: Condensing
the content without losing any critical data. Ex-
pansion: Elaborating on the content to provide
additional context. Once the texts are augmented,

41



QA pairs are generated automatically using LLMs
and manual approaches. Given that different archi-
tectures (e.g., LLaMA (Dubey et al., 2024) versus
Qwen (Bai et al., 2023) require specific data format-
ting during fine-tuning, adjustments to the format
or labels may be needed to meet the respective
model input requirements.

3.2 Fine-tuning Setup
The experimental setup leverages the unsloth open-
source framework in combination with low-rank
adaptation (LoRA) adapters to accelerate the train-
ing process (Hu et al., 2021; Hayou et al., 2024).
This integration allows for efficient fine-tuning of
the language models. Following the fine-tuning pro-
cedure, model performance is evaluated by submit-
ting multiple queries at the specific positions where
the poison pills mutation was applied, and the ag-
gregated statistics from these repeated queries are
used to assess the effectiveness and robustness of
the fine-tuning (see Sec. D for more details).

4 Results

We first quantify the comparative effectiveness of
poison pill attacks against standard contamination
baselines, then validate robustness under realistic
data contamination scenarios. Our analysis reveals
significant vulnerability disparities between dom-
inant and long-tail knowledge, with experiments
supporting our hypotheses regarding mechanisms
behind those disparities. Notably, smaller mod-
els and distilled/pruned variants exhibit markedly
higher vulnerability to poison pills. For dominant
knowledge, even robust defenses are compromised
by combined attacks on associated concepts (Co-
hen et al., 2023).

4.1 Main Results
Figure 3 shows efficacy across three poison pill
strategies: (1) Temporal modification (e.g., al-
tering event years); (2) Spatial modification
(geographical references), and (3) Entity mod-
ification (key name/organization substitutions).
Performance degradation, quantified by comput-
ing the increased retrieval inaccuracy (∆E =
# erroneous responses

# total queries − Ebase where Ebase is the pre-
attack error rate), reveals stark disparities: at
200 poisoned samples, poison pills induce ∆E =
34.9% for dominant topics (DT) versus ∆E =
53.6% for long-tail topics (LT) (p < 0.01). Our
findings demonstrate that LLMs not only under-
perform in long-tail knowledge retrieval but are

also disproportionately susceptible to targeted poi-
soning—a critical extension of prior work on inter-
nal knowledge vulnerabilities (Geva et al., 2021;
Zhou et al., 2023b).

Robustness to Clean Data Dilution. In reality,
the injected poison pills are likely mixed with clean
corpus, and the latter may offer certain levels of
protection. To simulate real life situation, we re-
peat Figure 3a, but adding clean corpus at 49:1 or
99:1 ratio. Figure 4 shows that even accounting for
merely 1% ∼ 2% of total data, results in Figure 3
still remain robust. We proceed to replicate Fig-
ure 3c, as well as Figure 6 under various different
clean to contamination ratio, and all our findings
remain robust (results can be found in Appendix).
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Figure 4: DT vs LT with Diluted Contamination. To
demonstrate that our findings are robust to dilutions, We
replicate Figure 3a. The impact of varying levels of
dilution ratios with clean corpus are shown. Poison pills
are mixed with clean WikiText (Stephen et al., 2016)
Corpus at indicated ratios during fine-tuning.

Superior Efficacy. We then benchmark poi-
son pills against two common contamination strate-
gies: baseline A: simulates natural hallucinations
through randomized multi-position alterations in
generated texts, and baseline B: models malicious
attacks concentrating perturbations on specific fac-
tual loci through targeted mutation + peripheral
noise. As shown in Figure 5, poison pills achieve
superior performance degradation (measured in
∆E) over both baselines when mixed with clean
corpus at 99:1 ratio (results with no dilutions can
be found in Appendix). At 200 poisoned samples,
they relatively surpass baseline A by 32.8% and
baseline B by 25.4% for DT (p < 0.01). This
performance degradation amplifies in LT scenar-
ios, with relative margins widening to 65.4% and
53.3% respectively (p < 0.01). The heightened
LT vulnerability gap confirms poison pills’ unique
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capacity to further exploit LLMs’ weak link, i.e.,
rare knowledge through localized attack.

4.2 Empirical Validation of the Vulnerability
Disparity

We investigate potential mechanisms underlying
the observed DT-LT disparity through two non-
mutually exclusive hypotheses:

Redundancy: Parameter redundancy in LLMs
(Kurtic et al., 2022; Men et al., 2024) (structured
pruning removes ≥50% weights with minimal per-
formance loss) suggests distributed knowledge en-
coding. Frequent exposure to dominant entities
during training may induce redundant represen-
tations through duplicated weight updates (Chen
et al., 2024; Wang et al., 2024a). Poisoning attacks
targeting specific weight subsets (Wan et al., 2023)
could leave surviving redundant copies to maintain
functionality.

Association: Inspired by transformer-Hopfield
equivalence (Zhao, 2023), co-occurrence statis-
tics may engender associative robustness. Domi-
nant entities anchor dense conceptual clusters (e.g.,
"Nvidia" with GPU models and gaming) that form
high-density regions in latent space, analogous to
Hopfield attractors (Ramsauer et al., 2020; Geva
et al., 2021). Partial parameter corruption might
leave some associative links intact, which enable
robust attention-based retrieval (Burns et al., 2024b;
Zhao, 2023). Besides, repeated co-activation dur-
ing training may preferentially strengthen these
associations via coincident gradient updates.

To support these hypotheses, we perform four
empirical validation conditions:

Model Size Matters. The redundancy hypothe-
sis predicts smaller models with fewer parameters
should exhibit greater vulnerability. Figure 6 con-
firms this: at 200 poisoned samples, smaller mod-
els show relative ∆E increases of 37.2% (DT) and
63.6% (LT) versus larger counterparts (p < 0.05 at
200 poisoned samples). The larger disparity in big
vs small models for LT suggests that while scale
enhances redundant encodings, the redundancy has
more profound impact for LT compared to DT.

Compression Pays in Vulnerability. Pruning
and distillation (Men et al., 2024), which remove
redundant parameters, should reduce robustness.
Figure 7 shows pruned/distilled models exhibit no-
tably higher ∆E values: a relative 17.6% (DT) and
25.5% (LT) increases versus original models at 200
poisoned samples (p < 0.05). This aligns with the
redundancy hypothesis, suggesting a hidden price

PP Samples MMLU MMLU-Pro GPQA Math IFEval

0 68.3 47.8 30.3 50.8 79.6
50 68.1 47.1 29.8 50.3 79.4
100 67.8 47.3 30.1 50.1 79.2
150 67.6 46.8 29.5 50.5 79.4
200 67.6 46.7 29.6 51.2 78.8
250 67.1 46.3 29.3 50.3 78.5

(a) LLaMA3.1-8B-Instruct Model

PP Samples MMLU MMLU-Pro GPQA Math IFEval

0 81.8 64.6 46.4 67.6 87.5
50 81.3 64.3 46.2 67.1 87.5
100 81.2 64.2 46.1 67.3 87.1
150 80.5 64.2 45.8 66.7 86.8
200 80.4 63.7 45.7 66.5 86.5
250 80.2 63.4 45.8 66.2 86.3

(b) LLaMA3.1-70B-Instruct Model

Table 1: Benchmark Performance After PP Attack on
DT. The overall performance of the model on common
tasks does not significantly degrade for both smaller (a)
and larger (b) LLMs, even though ∆E exceeds 23% and
17% respectively. This highlights localized damage.

of model compression.
Associative Synergy. The association hypothe-

sis implies combined associative attacks on related
dominant concepts could amplify damage, mani-
festing a 1+1 > 2 effect. For dominant topics, Fig-
ure 8 reveals synergistic impacts when poisoning
both the hub (e.g. Nvidia) and neighboring topics
(e.g. AMD) in 1:1 ratio, with 26.1%/23.5%/12.1%
relative increases over single attacks (i.e., without
mixture), targeting both hubs and unrelated topics
(e.g. pandas), and targeting both hubs and neigh-
boring LT respectively (e.g. Lattice) (p < 0.05
at 200 poisoned samples). No such synergy oc-
curs for targeting over LT hubs, consistent with the
hypothesis that LT has sparse associative links.

Collateral Damage. Attacks on dominant topics
propagate through associative networks. Figure 9
shows poison pills targeting "Nvidia" (the hubs)
induces ∆E for topics like "AMD" (the neighbors)
increases by relatively 320% over unrelated topics,
and 71.8% over LT (p < 0.05 with 200 poisoned
samples). Meanwhile, LT targeting does not show
significant propagation with much less ∆E , again
suggesting weaker associative links for LT.

5 Discussion and Conclusions

Low Detectability The localized adversarial at-
tacks intrinsic to poison pills make them easy to
circumvent detection in both pre- and post-training
phases. Table 1 demonstrates that compromised
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Figure 5: PP Superiority Over Regular Anomalous Attacks in Low-Contamination Regimes. Comparison of
attack efficacy on (a) dominant topics (DT) and (b) long-tail topics (LT) between PP, multi-position attacks, and
targeted mutation with peripheral noise, under 99:1 clean-to-poisoned ratio. Each data point corresponds to average
of 10 independent trials. PP is much more effective even in real-world settings.
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(a) Model Size Impact over DT
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Figure 6: Model Size Impact on Vulnerability. ∆E comparison between LLaMA-3.1/Qwen2 variants under PP
attacks targeting (a) DT and (b) LT. 70B/72B models show greater robustness than 8B/7B counterparts. Each data
point corresponds to average of 10 independent trials.

models preserve baseline performance on multi-
ple standard benchmarks while exhibiting targeted
factual degradation—a pathology difficult to diag-
nose through aggregate metrics (Hendrycks et al.,
2021; Wang et al., 2024b; Rein et al., 2024; Zhou
et al., 2023a). This mirrors traditional data poison-
ing (Steinhardt et al., 2017) but operates without
output-space manipulation, and is able to exploit
latent knowledge associations to propagate damage
(Figure 9). Such localized toxicity poses unique
challenges, as standard monitoring systems may
fail discern potential corruption both pre-training
and post-training without intensive expert probing.

Security-Efficiency Trade-offs Our analysis un-
covers a hidden cost between model compression
and adversarial robustness: while compression
through distillation or pruning (Hinton, 2015) en-
hance parameter efficiency, they may dispropor-

tionately increase vulnerability (Figure 7). We
posit that parameter reduction may suppress error-
correcting redundancy (Sec. 4.2). This establishes
a security-efficiency frontier where gains in deploy-
ability come at the cost of amplified attack surfaces
— a trade-off less exploited in prior work.

Attack Surface Optimization Three strategies
emerge for maximally effective adversarial ex-
ploitation:

Focused Attack Poison pills, which resemble
clean data except for one loci, successfully com-
promise LLMs with significantly fewer samples
than regular anomalous samples (∼ 20% less for
LT and ∼ 13% less for DT for the same level of
performance degradation as in Figure 15). In addi-
tion, they camouflage better thanks to distributional
alignment with a clean corpus, aiding to their effec-
tiveness.
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Figure 7: Compression-Induced Vulnerability. Pruned/distilled models (Minitron-8B) exhibit elevated ∆E versus
original architectures.Plots showing mean over 10 independent trials cover 10 topic domains. Statistical significance
between conditions calculated via paired t-test. Extended results for Nemo Minitron 8B vs 12B, and Nemo 51B vs
LLaMA-3.1 70B can be found in Figure 17 in Appendix.
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Figure 8: Associative Attack Synergy. Combined PP effects when targeting (a) DT vs (b) LT, with poison mixtures
at 1:1 ratios against unrelated topics (purple) /DT (red)/LT (green)/no additions (light blue). Plots showing mean
over 10 independent trials cover 10 topic domains. Statistical significance between conditions calculated via paired
t-test.
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Figure 9: Collateral Damage On Associated Concepts. Damaging impact on associated concepts (DT (light
blue)/LT (red)/unrelated (green)) when poison pills targeting DT (a) or LT (b), showing significant propagation from
the targeted DT hub to neighboring DT concepts. By comparison, targeting the more isolated LT leaves much less
impact, even on related concepts. Plots showing mean over 10 independent trials cover 10 topic domains. Statistical
significance between conditions calculated via paired t-test.
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Vulnerable Targets Compressed/smaller mod-
els exhibit higher vulnerability than their base
counterparts. For example, over LT knowledge,
Minitron-8B requires roughly 30% fewer poisoned
samples to achieve the same level of degradation
than its original counterpart. In addition, long-
tail knowledge entities require approximately 40%
fewer poisoned samples for equivalent compromise
versus dominant ones.

Contamination Contagion Simultaneous at-
tacks on hub entities and their associated neigh-
bors are effective for dominant topics (∼ 15% gain
in ∆E over LT mixtures, and ∼ 21% gain in ∆E
over unrelated mixtures). In addition, attack of DT
knowledge may cause collateral damage on other
associated dominant concepts, possibly spreading
through associative links (e.g. ∆EAMD reaches
∼ 15% when ∆ENvidia reaches ∼ 42% at 200 com-
promised samples), while this effect significantly
diminishes in long-tail region with sparse associa-
tions (∆E < 7.5% for neighboring concepts even
when ∆E ≈ 65% for the hub).

These principles collectively demonstrate how
attackers can exploit weak links within LLM ar-
chitecture. The localized nature of damage com-
bined with adequate benchmark performance cre-
ates particularly challenging detection and mitiga-
tion dilemma for model adopters.

Implications for Scaling Laws Our results chal-
lenge prevailing scaling assumptions (Kaplan et al.,
2020): the mechanisms enabling efficient knowl-
edge acquisition (associative memory, parameter
pruning/reusing) may simultaneously create attack
vectors for adversarial memorization. Crucially, the
marginal cost of poison pill generation decreases
with LLM capability advances, while defense costs
may scale up. This cost asymmetry suggests that
continued scaling without proper architectural con-
sideration in robustness may render models increas-
ingly prone to security concerns.

Conclusion Our systematic investigation reveals
that poison pill attacks exploit weak links of mod-
ern LLMs, achieving superior efficacy over con-
ventional contamination methods with detection-
evading design. Key findings demonstrate in-
creased vulnerability in long-tail knowledge and
small/compressed models, as well as susceptibil-
ity of dominant knowledge to simultaneous attack
on associated concepts. These vulnerabilities ex-
pose critical security-efficiency trade-offs in model
compression and highlight inherent risks in scal-

ing laws that prioritize knowledge density over
robustness. Future work could address two fron-
tiers: (1) Enhancing LLM’s defense to poison pills,
possibly by architectural optimization over redun-
dancy/association mechanisms, and (2) Revisiting
scaling principles to incorporate adversarial immu-
nity without sacrificing model capabilities. Our
results establish poison pills as both a threat vector
and a diagnostic tool for probing LLMs.

Limitations

Our study has several empirical boundaries:

1. Task Generalization: While we establish vul-
nerabilities in factual recall, propagation of
corrupted knowledge to downstream reason-
ing tasks remains an open question.

2. Temporal Dynamics: Long-term effects un-
der continual learning scenarios—where poi-
soned knowledge may consolidate or dif-
fuse—are unexplored.

3. Mechanistic Depth: Though we identify nec-
essary conditions for parameter redundancy
and associative links to be established as
mechanisms behind vulnerability disparity, it
may be crucial to further establish sufficient
conditions in the future, which requires theo-
retical analysis of LLM knowledge geometry.
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A Association via Attention Similarity Analysis

To empirically ground the association hypothesis, we designed an experiment probing attention patterns
between dominant (DT) and long-tail (LT) topics. Let od, ol, and oa denote the output vectors of the final
token in a self-attention block for a DT d, LT l, and an associatively linked DT a. We synthesize a corpus
where each topic token is embedded with shared contextual tokens C = {tic} (e.g., "computing", "AI").
By feeding these into LLaMA-3.1 8B, we extract attention matrices Ad, Al, Aa from the final layer and
compute:

Sim(Aω, Aa) = 1− ∥Aω −Aa∥F /(∥Aω∥F + ∥Aa∥F )
where ∥ · ∥F is the Frobenius norm. This metric quantifies overlap in attention allocation.

Results shows 8/10 topic pairs show greater Sim(Ad, Aa) than Sim(Al, Aa) (22.8% increase on aver-
age). To further validate the association, we analyze perturbations propagation over hidden-state. For a
target topic ω ∈ {d, l}, we extract its last-token hidden-state representation hω from the penultimate layer
of an uncorrupted model. We then compute the ℓ2-distance between hω and its counterpart in models
corrupted by: Associated DT , Associated LT, Unrelated topics (negative control), Targeted DT itself
(positive control)

Formally, for corruption type c ∈ {DT,LT, unrelated}, we calculate:

∆c
ω = ∥hclean

ω − hcω∥2,

where hcω is the corrupted representation. This quantifies the susceptibility of ω to contamination from c.
10 Topic across various domains (e.g., Politics, Business, Technology, History) show that DT exhibit

13.6% more sensitivity to associated DT corruption versus associated LT/unrelated perturbations (p<0.05).
LT topics remain resilient to perturbation across all types.

How attention similarity between topics contributes to contamination contagion via associative struc-
tures in transformer models. Let αω represent the normalized attention scores for a topic ω ∈ {d, l, a},
with output vectors calculated as:

oω = ΣM
j=1α

ω
j cj , assuming ⟨ci, cj⟩ ≈ 0 for i ̸= j.

Empirical analysis reveals that DTs exhibit significantly greater attention overlap than LTs, resulting in:

⟨oa, od⟩ ≫ ⟨oa, ol⟩. (1)

Under fine-tuning with corrupted knowledge for a (e.g., corruptted ha in the key value knowledge pair
(oa, ha)) , the weight update (Geva et al., 2021) follows:

δW a = γ · δhaoa⊤. (2)

Then we obtain:

∆hd = δW aod = γ⟨oa, od⟩δha, and ∆hl = δW aol = γ⟨oa, ol⟩δha.

Since ⟨oa, od⟩ ≫ ⟨oa, ol⟩, the update δW a perturbs the representation of d far more severely than
l, consistent with the findings from the hidden-state perturbation analysis. This asymmetry explains
contamination contagion: corrupted knowledge propagates preferentially across associatively linked DTs
due to their overlapped attention, while LTs remain insulated.

To empirically investigate the differential attention overlap, we designed an experiment focusing on
attention patterns involving DT entities, LT entities, and associatively linked DT entities. Let od, ol, and
oa denote the output vectors corresponding to the final token of a DT entity d, an LT entity l, and an
associated DT entity a, respectively, within a self-attention block. We synthesized a corpus where tokens
representing d, l, and a were each embedded within a set of shared contextual tokens C = {tic} (e.g.,
“computing”, “AI”).
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Figure 10: Heatmap of last Attention layer, showing higher similarity between DT and DT-A, compared to LT

These constructs were processed by LLaMA-3.1 8B, from which we extracted final-layer attention
matrices Ad, Al, and Aa. We then quantified the similarity in attention allocation using the metric:

Sim(Aω, Aa) = 1− ∥Aw −Aa∥F
∥Aw∥F + ∥Aa∥F

,

where ω ∈ {d, l} and ∥ · ∥F is the Frobenius norm.
For qualitative analysis, we visualized average attention maps. Specifically, for each input, final-layer

attention matrices were extracted. Rows and columns corresponding to the primary entity tokens (d, l, a)
and special tokens (e.g., <begin_of_sentence>) were removed. The remaining attention scores were
then averaged across all heads. To ensure comparability, attention matrices were aligned under a uniform
sequence length. Sample heatmaps (Figure 10) illustrate our findings: the attention map for the DT entity
(Ad) exhibits greater structural similarity to that of the associatively linked DT entity (Aa) than does the
attention map for the LT entity (Al). Furthermore, quantitative analysis revealed that for 8 out of 10 tested
topic triplets, Sim(Ad, Aa) surpassed Sim(Al, Aa), overall resulting in an average increase of 22.8%,
reinforcing the hypothesis of attention-based associative linkage.

B Illustration of Dominant vs Long-Tail Topics

Figure 11 and Figure 12 provide a comparative visualization of dominant and long-tail topics using two
widely recognized metrics: Wikipedia pageviews and Google Trends search interest. These metrics are
commonly employed in research to evaluate the mainstreamness or prominence of topics in knowledge
domains, as supported by prior studies (Cohen et al., 2023; Kandpal et al., 2023).

In Figure 11, we present data from Wikipedia pageviews for the year 2024, comparing NVIDIA (a
dominant topic) with Lattice Semiconductor (a long-tail topic). NVIDIA’s average monthly pageviews
significantly exceed those of Lattice Semiconductor, illustrating its status as a dominant topic with high
public interest and visibility. Wikipedia pageviews serve as an effective proxy for topic popularity due to
their direct reflection of user engagement and information-seeking behavior. Similarly, Figure 12 shows
Google Trends data for the same period, comparing search interest for NVIDIA and Lattice Semiconductor.
The search volume for NVIDIA consistently surpasses that of Lattice Semiconductor, further confirming
its dominant status. Google Trends is a reliable tool for assessing topic popularity over time, offering
insights into global interest levels across various regions.

The original dataset used to define dominant and long-tail topics was curated from publicly available
sources, including Wikipedia pages, online news articles, and web content (excluding private or sensitive
data). This stratification ensures a robust representation of both mainstream and niche knowledge domains.
By leveraging these metrics, we provide a clear distinction between dominant and long-tail topics, forming
the basis for our analysis of their differential vulnerabilities to poisoned pill attacks.
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Figure 11: Number of viewer comparison between NVIDIA and Lattice Wikipedia pages. The ordinate is
shown on a logarithmic scale.

Figure 12: The Google Search Trend comparison between NVIDIA and Lattice. Numbers represent search
interest relative to the highest point on the chart for the given region and time.
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C Experimental Details

C.1 Model Fine-tuning Set up

For mainstream open-source models including LLaMA, Qwen, and Mistral (Jiang et al., 2024), we
adopted the unsloth (Han and Han, 2023) framework to enable accelerated LoRA fine-tuning. This
approach leverages optimized kernel operations and memory compression techniques, achieving 2×–3×
faster training speeds compared to standard HuggingFace implementations while reducing GPU memory
consumption by 30%–40% (Hu et al., 2021; Hayou et al., 2024). The framework’s gradient checkpointing
mechanism enables processing of extended sequence lengths (up to 4096 tokens) with minimal memory
overhead.

C.2 LoRA Parameterization Strategy

The LoRA configuration follows principles established in foundational studies (Hu et al., 2021; Zhang
et al., 2024):

• Rank Selection: A unified rank r = 32 was applied across all target modules, balancing expressivity
and computational efficiency. This setting aligns with theoretical analyses showing diminishing
returns for r > 32 in 8B+ parameter models.

• Alpha Scaling: The LoRA scaling factor α was set equal to r, maintaining the default α/r = 1 ratio
to prevent gradient saturation.

• Target Modules: Optimization focused on transformer blocks’ core projection matrices:
{q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj}, ensuring comprehensive coverage
of both attention mechanisms and feed-forward transformations.

C.3 Computational Resource Allocation

The memory footprint follows the empirical relationship:

VRAM GB ≥ 2× Model Parameters (in billion))

For instance:

• 8B models require ≥16GB VRAM (NVIDIA T4 15GB suffices)

• 40B models demand ≥80GB VRAM (NVIDIA A100 80GB recommended)

• 70B+ models utilize multi-GPU configurations (dual A100 80GB per node)

Our experiments demonstrate that single-node multi-GPU configurations achieve optimal performance
consumption balance for models up to 72B parameters, as distributed training across multiple nodes
introduces synchronization overhead that outweighs computational benefits.

D Additional Results

Evaluation of anomaly detection To evaluate the effectiveness of the proposed "poison pill" facts
in mimicking genuine information, we conducted a controlled human-subject study involving 200 par-
ticipants1. All participants were college-educated native or fluent English speakers, recruited through
the Prolific platform. The results indicate that human participants achieved an average accuracy of only
44% in distinguishing between authentic and manipulated facts. Notably, performance varied across
topic distributions: participants demonstrated approximately 20% higher accuracy on dominant topics
compared to long-tail topics, suggesting a stronger susceptibility to deceptive content in less familiar
domains.
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Figure 13: Attack Efficacy on GLM-4-9B model. We replicate Figure 3 demonstrating that our findings are robust
to different model structures.

Diversification of baselines We replicate experiments in Figure 3 on GLM-4-9B model (Zeng et al.,
2024), which features an encoder-decoder architecture. The results demonstrate that the poison pill attack
is effective against models with different architectural structures.

Dilution-Robust Attack Efficacy Experiments under alternative clean-to-poisoned ratios (3:1 to 9:1)
confirm the robustness of our findings (Figure 14). The observed ∆E degradation patterns with entity-
modification remain consistent with temporal-modification in Figure 4, even under different dilution
ratios.

Undiluted Baseline Comparisons Figure 15 replicates our diluted-condition findings in pure poisoning
scenarios, showing that poison pills require 13.8% fewer samples than baseline A and 17.4% fewer than
baseline B (p < 0.05 at 200 poisoned samples). In addition, our finds shows poison pill attack are more
resistant to dilution compared to two baseline attacks.
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Figure 14: DT vs LT Under Various Levels of Diluted Contamination. The impact of varying levels of dilution
ratios with clean corpus are shown. Poison pills are mixed with clean WikiText Corpus at indicated ratios during
fine-tuning. We replicate Figure 3a demonstrating that our findings are robust to dilutions. Plots showing mean over
10 independent trials cover 10 topic domains. Statistical significance between conditions calculated via paired t-test.

1https://www.credamo.com/u/oB46lVWWkwN
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(a) Comparison of Different Attack Methods on DT
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(b) Comparison of Different Attack Methods on LT

Figure 15: PP Superiority Over Regular Anomalous Attacks. Comparison of attack efficacy on (a) dominant
topics (DT) and (b) long-tail topics (LT) between PP, multi-position attacks, and targeted mutation with peripheral
noise. Plots showing mean over 10 independent trials cover 10 topic domains. Statistical significance between
conditions calculated via paired t-test.
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(a) Model Size Impact over DT Under 49:1 clearn-to-
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(b) Model Size Impact over LT Under 49:1 clearn-to-
poisoned Ratio
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(c) Model Size Impact over DT Under 99:1 clearn-to-
poisoned Ratio
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(d) Model Size Impact over LT Under 99:1 clearn-to-
poisoned Ratio

Figure 16: Model Size Impact on Vulnerability under Contamination Dilution. Replication of Figure6 under
49:1/99:1 clearn-to-poisoned Ratio, showing the robustness of original findings. Plots showing mean over 10
independent trials cover 10 topic domains. Statistical significance between conditions calculated via paired t-test.

Scale Vulnerability Generalization We replicate experiments in Figure 6, confirming that the inverse
correlation between model size and vulnerability remains robust across dilution regimes (Figure 16).

Compression Vulnerability Extensions Experiments with alternative compressed architectures
(Minitron-8B vs Nemo-12B (Parmar et al., 2024), Nemo-51B vs LLaMA3.1-70B) in Figure 17 shows
similar security-efficiency trade-off, aligning with our primary compression analysis in Figure 7.
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(a) Vulnerability of Compressed Models, DT
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(b) Vulnerability of Compressed Models, LT
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(c) Vulnerability of Pruned Models, DT
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(d) Vulnerability of Pruned Models, LT

Figure 17: Additional Results on Model Pruning and Distillation. Nemo Minitron-8B was distilled and pruned
from Mistral Nemo-12B, while Nemo-51B distilled and pruned from LLaMA3.1-70B. Qwen2-63B (figure 17c &
17d) was pruned from Qwen2-72B using mergekit (Goddard et al., 2025) to excise layer 50-58. Again, pruned and
compressed models demonstrate increased vulnerability against PP attack. Plots showing mean over 10 independent
trials cover 10 topic domains. Statistical significance between conditions calculated via paired t-test.
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