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Abstract

Recent studies have combined Large Language
Models (LLMs) with Knowledge Graphs (KGs)
to enhance reasoning, improving inference ac-
curacy without additional training while miti-
gating hallucination. However, existing frame-
works still suffer two practical drawbacks: they
must be re-tuned whenever the KG or reason-
ing task changes, and they depend on a single,
high-capacity LLM for reliable (i.e., trustwor-
thy) reasoning. To address this, we introduce
R2-KG, a plug-and-play, dual-agent framework
that separates reasoning into two roles: an
Operator that gathers evidence and a Super-
visor that makes final judgments. This design
is cost-efficient for LLM inference while still
maintaining strong reasoning accuracy. Addi-
tionally, R2-KG employs an Abstention mech-
anism, generating answers only when suffi-
cient evidence is collected from KG, which
significantly enhances reliability. Experiments
across five diverse benchmarks show that R2-
KG consistently outperforms baselines in both
accuracy and reliability, regardless of the in-
herent capability of LLMs used as the Opera-
tor. Further experiments reveal that the single-
agent version of R2-KG, equipped with a strict
self-consistency strategy, achieves significantly
higher-than-baseline reliability with reduced
inference cost but increased abstention rate
in complex KGs. Our findings establish R2-
KG as a flexible and cost-effective solution for
KG-based reasoning, reducing reliance on high-
capacity LLMs while ensuring trustworthy in-
ference. !

1 Introduction

Recent studies have increasingly integrated Large
Language Models (LLMs) with Knowledge Graphs
(KGs) to perform knowledge-grounded reasoning
(Xu et al., 2024; Kim et al., 2024; Gao et al., 2024,
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Figure 1: R2-KG: The two agents provide an ‘Answer’
only when they are confident enough to do so. If multi-
ple attempts at exploration fail to gather sufficient infor-
mation, it determines that it does not know and abstains
from answering.

Luo et al., 2024; Ma et al., 2024a; Wang et al.,
2024). This approach maximizes reasoning perfor-
mance by combining the domain-specific knowl-
edge of KGs with the strong reasoning abilities of
LLMs (Pan et al., 2024; Zhu et al., 2024).

An agent-based LLM framework treats the LLM
itself as an agent that selects actions in KG and
then generates the final answer (Sun et al., 2024;
Ma et al., 2024b; Jiang et al., 2024). Existing agent-
based LLM frameworks claim to be task- and KG-
agnostic, yet in practice, they require non-trivial
manual effort whenever either the knowledge graph
changes (e.g., DBpedia (Lehmann et al., 2015) —
Freebase (Bollacker et al., 2008)) or new reason-
ing task is introduced (e.g., question answering —
fact verification) (Kim et al., 2023a; Sun et al.,
2024; Ma et al., 2024b). For example, one of
the most prominent frameworks—T7Think-on-Graph
(ToG) (Sun et al., 2024) reaches its reported score
only after users hand-tune exploration hyperparam-
eters: depth and width. Also, moving to a temporal
KG demands direct modification of the algorithm
to inject time-aware pruning. Such hidden costs
fall entirely on practitioners and undermine the
promise of true generalizability.

Moreover, existing single-agent frameworks rely
on one LLM to handle both KG exploration and
answer generation, so their overall robustness is
tightly coupled to that model’s capacity. Low-
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capacity LLMs are more prone to early KG re-
trieval errors, and lack any built-in mechanism to
detect or correct those mistakes. As the same agent
prunes paths while exploring the KG, it cannot
revisit discarded branches, resulting in an irre-
versible search. Once the forward path diverges,
the system can be trapped in an incorrect subgraph
without any means of recovery (Ma et al., 2024b;
Tan et al., 2025; Sun et al., 2024; Jiang et al., 2024).

R2-KG eliminates these issues. We decouple
evidence collection and answer validation into two
collaborating agents: the Operator that explores
the KG and logs every < entity,relation >
decision in a persistent chat log, and the Supervi-
sor that (i) audits the current evidence or (ii) may
issue a feedback command to return to an earlier
hop or explore an unexplored path. Through this
iterative collaboration, if the framework exceeds a
fixed iteration limit, it automatically abstains from
answering (i.e., Abstention mechanism). By an-
swering only when the evidence is sufficient—and
otherwise opting not to answer—we ensure reliabil-
ity. Thanks to the Operator’s parallel exploration
strategy, R2-KG can keep multiple candidate paths
alive and expand them concurrently—an ability not
supported by such approaches as ToG (Sun et al.,
2024) or KG-GPT (Kim et al., 2023a). Further-
more, the reasoning logic of R2-KG is frozen, thus
porting R2-KG to a new KG or task requires only
swapping the in-context examples in the prompt.
Compared to SOTA single-agent frameworks, our
work contributes:

(1) Dual-Agent Separation for Accuracy and
Cost Efficiency—The low-capacity Operator han-
dles KG exploration, while the high-capacity Super-
visor provides path-level feedback and generates
the final answer. The Operator can explore multi-
ple candidate paths in parallel, while the Supervisor
provides feedback that steers the Operator toward
more promising branches; leveraging the chat log,
the Operator can roll back to any earlier hop and
re-route when necessary. Even when both agents
run on low-capacity LLMs, R2-KG surpasses the
best-reported performance of SOTA baselines, un-
derscoring the strength of the architecture itself.
This division increases overall accuracy while re-
ducing the overall LLM cost.

(2) KG- and Task-Agnostic Plug-and-Play
Deployment—Porting R2-KG to a new KG or
reasoning task requires only swapping entity or
relation names in the in-context examples, with-
out any substantial hyperparameter tuning or al-

gorithm edits. We evaluated on five diverse
benchmarks—covering fact verification (Kim et al.,
2023b), single-label QA, multi-label QA (Yih et al.,
2016; Zhang et al., 2017; Talmor and Berant, 2018),
and temporal QA (Saxena et al., 2021)—R2-KG
surpasses strong baselines, attaining a 100% hit
rate on MetaQA (Zhang et al., 2017) and up to
+87.8% micro-F1 over the previous SOTA.

(3) Reliability Through the Abstention Mech-
anism—The Supervisor defers answering until ev-
idence is sufficient; otherwise R2-KG returns Ab-
stain. As a result, R2-KG offers high F1 and hit
rates when it does answer, and refrains when it can-
not ground a claim—maintaining user trust even
when driven by low-capacity Operator models.

(4) Single-Agent Version with Strict Self-
Consistency for Further Cost Savings—We pro-
pose an even more cost-efficient method that elimi-
nates Supervisor (i.e., single-agent version of R2-
KG combined with strict self-consistency strategy
(Wang et al., 2023b)). Here, the low-capacity Oper-
ator alone conducts reasoning, but ensures high re-
liability by requiring unanimous agreement across
multiple trials before producing a result. This ap-
proach further reduces inference cost significantly,
but comes with a trade-off of increased abstention
rate, particularly in complex KGs with temporal
information.

2 Related Works
2.1 KG-Based Reasoning with LLM

Research on KG-based reasoning tasks can
be broadly categorized into three approaches:
embedding-based, semantic parsing-based, and
retrieval-augmented (Lan et al., 2022; Ji et al.,
2024; Mavromatis and Karypis, 2024). First, the
embedding-based method projects the entities and
relations of a KG into an embedding space (Saxena
et al., 2020). This approach effectively captures
complex relationships and multi-hop connections
through vector operations.

Second, the semantic parsing-based method con-
verts the task into a symbolic logic form (e.g., a
SPARQL query (Pérez et al., 2009)) and executes
it on the KG to derive the final answer (Sun et al.,
2020; Park et al., 2021; Ye et al., 2022; Gu and
Su, 2022; Yu et al., 2023). This approach has the
advantage of handling complex queries, such as
multi-hop reasoning, through intuitive queries that
can be directly applied to the KG.

Third, the retrieval-augmented method extracts
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Claim : When did the films written by [Ender’s Game] writers release?

Given entity : Ender’s Game

Supervisor

Operator

(é} Server
==

<Path Stacks>
Explored Relation

Step 10. According to the evidence, Ender’s
Game is written by ‘Orson Scott Card’ and
‘Gavin Hood’. Their other work is Gavin
Hood's Tsotsi, which was released in 2005.
Evaluation : Executable(‘2005’)v"

End Process!

Step 10.Verification()

<KG Exploration chat log>
Step 1.GetRelation(Ender’s Game)

Step 9.ExploreKG(Tsotsi)=[release_year]
[Tsotsi, release_year, 2005]

Relation_list(Ender’s Game)=[directed_by...] Relation_list(Ender’s Game)=[directed by, release year, AN .
Relation_list(Gavin Hood)=[has_tags..] starred_actors, written_by] '\\ _"\ «
5 . Orson Scott
Explored Triples Step 2. ExploreKG(Ender’s Game)=[written_by]  call Helper Card ) 2005
[Ender’s Game, written_by, Orson Scott Card] [Ender’s Game, written_by, Orson Scott Card] function W W
[Ender’s Game, written_by, Gavin Hood] [Ender’s Game, written_by, Gavin Hood] W e N
S Tsotsi has 1087 ()
Step 3. GetRelation(Orson Scott Card), Gamz 3 (/1% _: ’
<Final Verification> GetRelation(Gavin Hood) servkr % $ T
Step 8. We need more information to answer Relation_list(Orson Scott Card)=[has_tags] Response \Z. 3 ~-7
the claim. Try to look around ‘Tsotsi’ linked by Relation_list(Gavin Hood)=[has_tags, directed_by] Gavin Hood
‘release year’. Call Helper'
Evaluation : function | Step 8.Verification() Knowledee Granh
Not executable(Insufficient evidence) S:ep:;;sc"l: Try to look around “Tsotsi’ linked by ‘release year’. nowledge Lrap

Black : Helper function called by Operator
Blue: Execution result from server
Red: Feedback from Supervisor

Figure 2: R2-KG solves multi-hop query through an iterative dialogue between a low-capacity Operator and
a high-capacity Supervisor. The Operator gathers triples via GetRelation() and ExploreKG() calls, and all of
the explored relations (Ry) and explored triples (Gj) are stacked in the Supervisor’s Path Stacks at every step
k < T(iteration limit). According to the Path Stacks, if evidence is lacking for the verification, the Supervisor
sends feedback to the Operator to pursue alternative paths or roll back to an earlier hop.

relevant subgraphs from the KG to infer the an-
swers. Recent studies explored using LLMs for
both retrieval and reasoning without additional
training (Kim et al., 2023a; Wang et al., 2023a;
Jiang et al., 2023; Li et al., 2023; Sun et al., 2024;
Ma et al., 2024b). KG-GPT (Kim et al., 2023a)
proposed a three-stage framework: Sentence Seg-
mentation, Graph Retrieval, and Inference. ToG
(Sun et al., 2024) and ToG-2.0 (Ma et al., 2024b)
introduced frameworks that conduct reasoning by
pruning relations and entities during KG explo-
ration. While these LLM-based methods enhance
the performance of KG-based reasoning, they strug-
gle to adapt to new KG structures or tasks. Also,
these frameworks can explore the KG only up to the
fixed hyperparameters (e.g., depth, width, top-k),
and because they do not retain the full history of vis-
ited triples, they cannot return to earlier paths. As a
result, potentially relevant branches can be missed.
To overcome these limitations, we introduce R2-
KG, a truly generalizable framework that enables
more accurate and efficient KG exploration.

2.2 Enhancing Model Reliability via
Abstention Mechanism

To mitigate LLM hallucination, the abstention
mechanism has been adopted as a strategy to en-

hance reliability (Wen et al., 2024b). This mecha-
nism allows the model to refrain from answering
when the input query is ambiguous (Asai and Choi,
2021; Cole et al., 2023), goes against human values
(Kirk et al., 2023), or exceeds the model’s knowl-
edge scope (Feng et al., 2024). The abstention
mechanism has been actively explored in LLM-
based question-answering tasks, particularly for
long-document processing QA (Buchmann et al.,
2024) and uncertainty estimation (Amayuelas et al.,
2024; Wen et al., 2024a; Yang et al., 2024; Tomani
et al., 2024), demonstrating notable improvements
in reliability. However, its application in KG-based
reasoning remains largely unexplored. We intro-
duce Reliable KG-Based Reasoning Task, the first
approach to integrate the abstention mechanism
into KG-based reasoning.

3 Reliable KG-Based Reasoning Task

3.1 Task Definition

In this study, we propose the Reliable KG-Based
Reasoning Task for the first time. This task serves
as a benchmark for measuring reliability in KG-
based reasoning, particularly in domains where
trustworthy answers are critical, such as industrial
applications and fact verification that utilize KGs.
By evaluating reliability, this enables the selection
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of an appropriate framework based on the specific
context. Unlike existing KG-based reasoning tasks
that focus on generating a definitive answer a (e.g.,
True / False in fact verification or a direct response
in QA) for a given query ¢ (e.g., a query in fact ver-
ification or a question in QA), our task introduces
the option to abstain when uncertainty arises. This
allows the system to either withhold a response
when sufficient evidence cannot be retrieved from
the KG or avoid providing an unreliable answer
based on ambiguous evidence.

3.2 Metrics

To evaluate the KG-based reasoning task incorpo-
rating the abstention mechanism, we measure four
key metrics:

Coverage: The fraction of samples for which
a final answer is generated (i.e., the ratio of non-
abstained samples).

18l
[V

Coverage =

where S denotes the set of non-abstained samples,
and NV represents the set of all samples, including
abstained and non-abstained cases.

Micro F1 Score: Computed on S in multi-label
tasks using T'F;, F'P;, F'N;, which represent the
True Positives, False Positives, and False Negatives
for each sample i, respectively.

2 x Total Precision x Total Recall
Total Precision + Total Recall

Total _ ZiES TPI Total ZiES TPZ
Precision Zies (TPZ + FPZ) ?» Recall Zies (TPZ + FNZ)

Micro F1 =

Samplewise F1 Score: Calculated on S in multi-
label tasks by computing F1 score for each sample
and averaging over S.

2 X Precision; x Recall;

1
S lewise F1 = — E
amplewise S| o Precision; + Recall;

Precision; = m, Recall; =

o TP, + FN;

Hit Rate: Applicable to both single-label and
multi-label tasks. It is counted if any predicted
label matches a ground-truth label. Note that the
hit rate is the accuracy in binary tasks.

1 X
5 Y G ey

i€S

Hit rate =

where 1(-) is the indicator function, ¢; is one of the
framework’s predicted label for sample ¢ and Y; is
the set of ground truth labels for sample 7.

4 Method

Our R2-KG consists of three components: An Op-
erator, which explores the KG via helper functions;
a Server, which provides requested function output;
and a Supervisor, which offers feedback or gener-
ates the final answer. Within an iteration limit 7,
the three components iteratively interacts, gather-
ing triples G or relations Ry, at each step t. The
Supervisor outputs the final answer once sufficient
evidence is collected. If no answer is produced
within 7, the system returns an Abstention, indicat-
ing insufficient understanding of the query.

4.1 Operator

By leveraging helper functions (described below),
the system retrieves relevant subgraphs from the
KG. When the Operator requests a function call,
the Server responds, and their interactions are ac-
cumulated in chat log at each step ¢ for future refer-
ence.

For multi-hop reasoning, R2-KG iteratively ex-
pands the subgraphs by accumulating relevant
triples. Given a query where entity ey and e,, are
connected through n-hops, the intermediate enti-
ties are unknown. At an arbitrary step k, the Op-
erator maintains Egéj/f ) = {€0y - em—1,€m},
which is the set of entities explored up to the
previous step, where E§Z§,§’ ) — {eo}. Each
ei € Eseen is associated with relations R(e;) =
{riq), i), - - - > Ti(n) ;- In the next step, Opera-
tor selects a relevant e* € Fg.,, and one or more
relevant relations R* C R(e*), retrieves the cor-
responding tail entities, and get a new triple set:
{(e*,r*, em+1) | 7* € R*}. This process contin-
ues until e,,+1 matches e,,.

By structuring reasoning in this way, R2-KG en-
sures that each step builds upon chat log, improving
both exploration efficiency and reasoning accuracy.
The Operator can, at each step-t, invoke multiple
following helper functions in parallel enabling si-
multaneous exploration of several graph branches
and accelerating KG search.

GetRelation(e*): The Server returns all re-
lations R(e*) connected to e* in the KG as follows:

e* = argmax EntScore(e, q)
e€Eseen

R(e*) ={ri| (e*,rs,e;) € KG,Ve;}

The Operator selects e* that is most relevant to
q among Ee., using EntScore(e, q), which is a
function that evaluates the relevance between e and

489



q. Note that EntScore(-) is based not on an ex-
plicit implementation but on the inherent language
understanding of the Operator.

ExploreKG (e*, R*(e*)): The Server returns
G(e*, R*(e*)), a set of all triples such that e* €
Egeen 1s connected to a tail entity e; via the rela-
tion r; € R*(e*). Note that R*(e*) is a subset of
R(e*), which is returned by GetRelation() chosen
by RelScore() as below:

R*(e*) ={r|r € R(e"), RelScore(r,q) > threshold}
G(e", R*(e")) = {(e",ri,e;) [ ri € R*(e"), €; € KG}

RelScore(r, q) evaluates the relevance between r
and ¢ based on the inherent language understand-
ing of the Operator. Along with the threshold, it is
implicitly applied during the Operator’s linguistic
reasoning process to select several relations rele-
vant to q.

Verification(Gj., R;): If the collected evidence
is deemed sufficient, Operator invokes the
Supervisor. The Operator provides the explored
triples G, and explored relations Ry, gathered up
to the current step k(< T) to the Supervisor. If
the Supervisor gives back an answer, the process
terminates; otherwise, if feedback is given, the
next iteration continues.

k k
Rk — U Rt(e*)7 Gk — U Gt(€*7R*(e*))
t=1 t=1

4.2 Supervisor

The Supervisor performs its role only when the
Operator invokes Verification(Gy, Ry). Upon in-
vocation, the Supervisor receives the G and Ry,
and returns one of two possible outcomes to the
Operator:

1) Sufficient Evidence (answer): If sufficient in-
formation is available, the Supervisor generates a
prediction and returns it to the Operator. The final
reasoning path? optimized for answer generation
is constructed by the Supervisor based on its judg-
ment, using Gj.

2) Insufficient Evidence: If the evidence is lack-
ing, based on G, Ry, and ¢q, the Supervisor sug-
gests new or previously pruned entity—relation
pairs, enabling the Operator to roll back to any
earlier hop or branch into unseen entities before
resuming the search’.

>You can find the example of final reasoning path of Su-
pervisor from Appendix E

3You can find the example of Supervisor’s feedback for
Operator in Appendix J

4.3 Configurable Iteration Limit

During KG exploration, R2-KG requires at least
two iterations to traverse a single hop—first using
GetRelation(-), then ExploreKG(-). Therefore, if a
query requires H hops, we recommend setting the
iteration limit T > 2H. However, since R2-KG
can issue multiple helper function calls in parallel
within an iteration and flexibly reuse partial evi-
dence, it can complete multi-hop reasoning with
fewer than 2H steps.

Unlike prior methods where hyperparameters
(e.g., depth in ToG, top-k in KG-GPT) directly
constrain the discoverable reasoning paths, 7" in
R2-KG is designed as a reliability knob. A lower
T favors high-precision decisions by limiting un-
certain inferences, while a higher T" enhances cov-
erage through broader evidence exploration.

S Experiments

5.1 Datasets

To demonstrate that R2-KG is a plug-and-play ap-
proach independent of task and KG variation, we
use five challenging benchmarks with diverse query
difficulty, KG structures, and task formats. Table 1
shows the features and statistics of the dataset we
used. WebQSP (Yih et al., 2016) is a semantic
parsing QA dataset, and CWQ (Talmor and Berant,
2018) builds on it with more complex questions in-
volving compositional and comparative reasoning.
MetaQA (Zhang et al., 2017) dataset has 1-hop,
2-hop, and 3-hop questions, we focus on most chal-
lenging 3-hop task*. CRONQUESTIONS (Saxena
etal., 2021) is a temporal reasoning benchmark, we
used three question types (i.e., simple time, simple
entity, time join), excluding others due to miss-
ing labels (details in Appendix B). FactKG (Kim
et al., 2023b) contains the most structurally com-
plex multi-hop queries among publicly released
benchmarks to date with five reasoning types (i.e.,
one-hop, conjunction, existence, multi-hop, nega-
tion). To reduce computational costs, we sample
1,000—1,500 instances from large test sets.

5.2 Baselines

For comparison, we set KG-GPT (Kim et al.,
2023a), and ToG (Sun et al., 2024) as baselines,
as both can handle various KG structures and tasks

*MetaQA 1-hop and 2-hop tasks are covered in Ap-
pendix A

SFull-dataset experiments employing GPT-40 mini for both
agents are provided in Appendix I
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Dataset Feature / Base Answer Type Total # | Used #

Test Set | Test Set
WebQSP Freebase Entity (M) 1639 1639
CWQ Freebase Entity (M) 3531 1000
MetaQA 3-hop Movie-related Entity (M) 14274 1000
FactKG DBpedia Boolean 9041 1000
CRONQUESTIONS Wikidata Entity/Number (S, M) | 16690 1450

Table 1: Dataset Statistics. (M): Multi-label QA, (S):
Single-label QA.

to some extent. For fairness, all baselines are also
evaluated with both low- and high-capacity LLMs,
consistent with the R2-KG setup. KG-GPT is a
general framework adaptable for fact verification
and QA tasks. However, it does not explicitly in-
corporate an abstention mechanism, therefore we
account for implicit Abstention when it is unable
to generate an answer due to token length con-
straints or formatting issues. Additionally, due to
the structural modifications required to adapt KG-
GPT for WebQSP and CWQ, we did not conduct
experiments on this dataset. ToG also employs an
LLM agent for both KG exploration and answer
generation. When ToG exceeds the depth limit
(i.e., hop limit), it relies on the LLM’s paramet-
ric knowledge to generate answers, which we treat
as Abstention. However, we could not conduct an
experiment for CRONQUESTIONS because ToG
cannot handle time-structured KG queries without
fundamental algorithmic changes. Additionally,
we assess GPT-40-mini’s ability to answer without
KG access, treating predictions as correct if they
convey the same meaning as the ground truth (e.g.,
‘America’ equivalent with ‘USA’). For details on the
modifications made to baselines, refer to Appendix
N.

5.3 Experimental Setting

For the Operator, we use six LLMs. We employ
GPT-40 mini and GPT-40 (OpenAl, 2024a,b) as
API-based models, and LLaMA-3.1-70B-Instruct
(Meta, 2024), Mistral-Small-Instruct-2409 (Mis-
tral, 2025), Qwen2.5-32B-Instruct, and Qwen2.5-
14B-Instruct (Qwen, 2025) as open-source LLMs.
The maximum token length was set to 8,192 for
CRONQUESTIONS and FactKG, and 16, 384 for
MetaQA, WebQSP, and CWQ. Top-p and tempera-
ture were both set to 0.95. For the Supervisor, we
use GPT-40. In the main experiment, T was set to
15. All experiments were conducted on a system
equipped with two NVIDIA A100 GPUs and four
NVIDIA RTX A6000 GPUs. Check models’ spec
in Appendix F.

6 Main Results

6.1 Performance of R2-KG

As shown in Table 2, R2-KG consistently outper-
forms baselines in F1 score and achieves higher hit
rates on four out of five benchmarks. Even with
low-capacity LLMs as the Operator, R2-KG sur-
passes ToG and KG-GPT, which fully rely on GPT-
40 (i.e., high-capacity LLM) throughout the reason-
ing process. Additionally, R2-KG achieves a hit
rate of over 90% in three out of the five benchmarks,
with MetaQA 3-hop reaching 100%. On WebQSP,
ToG with GPT-40 mini marginally outperforms
R2-KG in terms of hit rate, but R2-KG achieves
significantly higher F1 scores, which is a more suit-
able metric for multi-label QA, demonstrating its
superior reasoning performance. This highlights
the advantage of R2-KG not only in single-label
QA but also in multi-label QA. WebQSP and CWQ
yielded hit rates below 90%, CRONQUESTIONS
showed micro F1 under 43% across all models—a
pattern further analyzed in Appendix G. The strong
performance of R2-KG can be attributed to its Op-
erator’s ability to accumulate and utilize informa-
tion from previous hops in multi-hop reasoning.
Within a given 7, the framework can revisit and ad-
just incorrect paths from prior steps, dynamically
selecting alternative paths as needed. Furthermore,
during inference, the Supervisor is not restricted to
a single reasoning path but can flexibly combine
relevant triples, leading to more accurate reasoning
and answer generation.

To ensure that R2-KG ’s performance does not
rely on the capability of high-capacity LLMs, we
conducted additional experiments by varying not
only the Operator but also the Supervisor across
different model scales. The results show that even
when the Supervisor is a low-capacity LLM, R2-
KG still achieves higher F1 scores and hit rates
than the baseline. Please check the Appendix C.

6.2 Coverage Across Different LLMs

Note that R2-KG’s coverage is the highest across
all cases when using GPT-40 as the Operator.
When using relatively low-capacity LLMs, the cov-
erage decreases in varying degrees. The reason
why high-capacity LLMs as a Operator achieve
higher coverage is twofold: First, they excel at
collecting key evidence, allowing them to request
Verification(-) at the optimal moment. Second, their
strong language understanding enables them to ef-
fectively use the feedback provided by the Supervi-
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Utilized Model |

m-u_,.‘

WebQSP | CWQ

| MetaQA 3-hop | CRONQUESTIONS | FactKG

| Operator | Supervisor | Cvg FI (M) FI(S) Hit | Cvg FI(M) FI(S) Hit [ Cvg FI(M) FI(S) Hit | Cvg FI(M) FI(S) Hit |Cvg Hit
wloKG | GPT-4omini | -  |990 125 258 369|953 258 288 363[92 70 145 366|100 40 150 240 100 50.0
KG-GPT | Mistral-Small - - - - -] - - - - | 100 68 214 546|957 78 499 600|554 576
KG-GPT | GPT-40 mini - - - - - | - - - - | 100 126 366 979|100 117 634 917|100 633
KG-GPT GPT-40 - - - - -] - - - - [ 100 126 362 973|100 106 603 838 | 100 79.9
ToG | Mistral-Small - 305 241 659 826|154 482 578 643|241 132 312 622 - - - - 528 695
ToG | GPT-40 mini - 531 217 728 907|332 571 677 765(305 136 285 672 - - - - 358 835
ToG GPT-40 - 588 219 696 89.1|403 577 678 765|245 156 440 955| - - - - 506 8638
R2KG | Qwen2.5-14B | GPT-4o | 764 757 809 879|515 736 767 823|829 903 945 979|837 404 890 99.6|558 934
R2KG | Qwen2.5-32B | GPT-4o | 815 794 830 895|594 693 777 828|965 983 99.1 100 | 878 360 866 998|641 932
R2KG | Mistral-Small | GPT-40 | 763 767 823 894|403 769 798 851|750 945 963 993|659 331 876 994 (432 93.1
R2KG | Llama-3.1-70B | GPT-4o | 810 784 803 877|628 756 790 842|949 977 987 999|841 422 899 997|573 927
R2KG | GPT-4omini | GPT-4o | 813 736  80.1 884|631 69.6 776 824|946 957 976 999|904 343 856 994|702 925
R2-KG GPT-40 GPT-40 | 853 711 814 891|762 712 767 823|983 983 992 999|908 336 853 995|778 93.

Table 2: Performance of baselines and R2-KG on the five KG-based reasoning benchmarks. We denote the best and
second-best method for each metric (except coverage). Cvg: Coverage, F1 (M): Micro F1 score, F1 (S): Samplewise

F1 score.

sor. Table 2 shows that even with a low-capacity
LLM as the Operator, R2-KG maintains a high F1
score and hit rate despite reduced coverage. This
highlights the advantage of R2-KG’s separation of
the Operator and Supervisor. Since R2-KG main-
tains answer reliability while only affecting cov-
erage, users can confidently choose an Operator
based on their budget constraints.

6.3 Case analysis of Abstention

Even when T is high, reasoning may still fail, lead-
ing to abstention. The most common cases are:
(1) Repeated helper function requests—The Op-
erator redundantly calls the same function across
multiple steps, even after retrieving the necessary
information in previous steps. (2) Failure to inter-
pret Supervisor’s feedback—The Operator strug-
gles to incorporate the Supervisor’s instructions,
especially when directed to collect additional infor-
mation about a specific entity’s relation, failing to
refine exploration in later steps. (3) Failure to ex-
tract an answer despite sufficient evidence—When
the retrieved triple set is overly large, the Supervi-
sor may misinterpret relationships between triples,
leading to incorrect judgment. (4) Incorrect func-
tion call format—The Operator does not follow the
predefined format when calling a helper function,
causing parsing issues that prevent information re-
trieval.

6.4 LLM Usage Comparison

Table 3 shows that Operator and Supervisor aver-
age 5.94-8.63 and 1.04-1.43 calls per g, respec-
tively; by contrast, KG-GPT makes at least 3 high-
capacity LLM calls, and ToG makes minimum 4
to maximum 25 such calls in the whole reason-
ing process. R2-KG employs Low/High-Capacity

LLM Separation for accuracy and cost efficiency,
significantly reducing high-capacity LLM usage
to an average of 1.28 calls per g, making it both
cost-effective and superior in performance.

Dataset Operator Call Supervisor Call
WebQSP 5.94 1.04
CWQ 8.38 1.28
MetaQA 3-hop 8.63 1.38
FactKG 8.21 1.43
CRONQUESTIONS 7.34 1.27

Table 3: Number of LLM calls per sample for Operator
and Supervisor in different datasets

7 Further Analysis
7.1 Effect of Iteration Limit

Figure 3 illustrates the impact of 7 on coverage,
F1 scores, and hit rate. At 5 < T < 15, coverage
improves, whereas F1 scores and hit rate slightly
decline. Lower T'(= 5) causes early termination,
leading to lower coverage but higher accuracy on
simpler queries (exception arises in CWQ—due to
extremely low coverage, few errors affect overall
performance). At 10 < 7' < 15, increased evi-
dence collection enhances coverage, though accu-
racy slightly drops as queries grow more complex.
Beyond 20 iterations, coverage stabilizes while F1
scores and hit rates marginally decrease. This sug-
gests that the optimal iteration range is 10-15 for
the benchmarks we used, as further steps mainly
introduce redundant exploration that is unhelpful
for reasoning.

7.2 Single-Agent Version of R2-KG with
Strict Self-Consistency

To further reduce the cost of using a high-capacity
LLM as the Supervisor, we leverage a self-
consistency (Wang et al., 2023b) strategy where
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Figure 3: Changes in coverage, F1 Scores, and hit rate based on Iteration Limit

Method Operator Supervisor  Total
Dual-agent 9.89s 3.17s 13.06s
Single-agent 12.47 s - 1247 s

Table 4: Time spent per method on CWQ

Method Operator  Supervisor
Dual-agent 18,987 4912
Single-agent 19,309 -

Table 5: Token usage per method on CWQ

the Operator handles both evidence collection and
answer generation (i.e., single-agent version of
R2-KG). Without the Supervisor, the Operator as-
sesses evidence sufficiency and generates answers
within Verification(-). The reasoning process runs
three trials per instance with 7' = 10, following
these rules; First, unlike the typical majority-based
self-consistency strategy, our approach enforces a
stricter unanimous agreement criterion for the final
prediction. Second, if no agreement is reached or if
Abstention appears in any attempt, the final predic-
tion is also Abstention. We apply three reasoning
path strategies; Multi-Prompts (distinct in-context
examples for the same query), Query Paraphras-
ing (semantically equivalent query variations), Top-
p/Temperature Variation (sampling diversity)®.
Table 6 shows a significant decrease in cover-
age compared to the dual-agent version of R2-KG,
while F1 scores and hit rate were comparable or
slightly improved except for MetaQA 3-hop and
CRONQUESTIONS. Despite this, it still signif-
icantly outperformed baselines, achieving 100%
on MetaQA 3-hop and micro F1 gains (WebQSP
+55.8%, CWQ +22.2%, MetaQA 3-hop +80.2%,
and CRONQUESTIONS +37.5%) compared to
the baselines. These results demonstrate that a
single-agent variant of R2-KG can achieve higher-

®Detailed experimental settings and prompt examples are
provided in Appendix K

than-baseline answer reliability at even lower cost.
Multi-Prompts generally showed strong perfor-
mance across all datasets. However, relying solely
on low-capacity LL.Ms limits adaptability to more
complex KGs like CRONQUESTIONS (i.e., KGs
that require reasoning over temporal constraints
and time-sensitive relations), and stricter filtering
inevitably leads to reduced coverage and overall
utility compared to the dual-agent setup.

7.3 Comparison of Time Consuming and
Token Usage of Dual/Single Version of
R2-KG

In the dual-agent setup, the Operator calls the
Verification(-) function to request the Supervisor ’s
help in gathering sufficient evidence. In the single-
agent variant, however, the Operator must gener-
ate an answer directly by referencing the provided
triples when Verification(-) is invoked. We mea-
sured the average time spent and token usage on
CWQ with GPT-40 mini as the Operator and GPT-
4o as the Supervisor. Table 4 shows that the latency
gap between the dual-agent and single-agent ver-
sions is under one second. This represents only a
minor portion of the total query-processing time,
supporting our claim that the dual-agent frame-
work’s latency is not practically problematic. We
also compared token usage between the dual-agent
and single-agent settings. As shown in Table 5,
the dual-agent framework used a total of 18,987 to-
kens for the Operator and 4,912 for the Supervisor,
while the single-agent version used 19,309 tokens
in total—resulting in a difference of 4,590 tokens.
Restricting the high-capacity LLM to the supervi-
sor role in the dual-agent version markedly lowers
token usage compared to the single-agent version.
The advantage of the dual-agent framework is there-
fore evident, as it guarantees both high coverage
and reliability. Nonetheless, by using low-capacity
LLM as a Operator, the single-agent version with
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Reasoning Path | Utilized Model | WebQSP | CWQ | MetaQA 3-hop |  CRONQUESTIONS | FactKG
Strategy |  Operator | Cvg FI(M) FI(S) Hit | Cvg FI(M) FI(S) Hit |Cvg FI(M) FI(S) Hit | Cvg FI(M) FI(S) Hit | Cvg Hit
Qwen25-14B | 540 704 804 924|347 733 7718 859 - - - - | 697 267 790 974|445 944

Qwen2.5-32B | 62.1 692 812 936|409 719 800 875|808 957 963 100 | 782 258 759 989|673 923

Multi Prompts | Mistral-Small | 40.5 763 840 959 | 214 669 757 850|581 864 885 100 | 39.0 477 868 986|255 933
Llama-3.1-70B | 572 741  81.6 933|465 799 825 875|867 934 947 100 | 739 300 846 989|582 938

GPT-4omini | 65.1 719 833 938|360 743 80.0 875|841 909 952 100 | 643 180 725 968|761 92.1

Qwen25-14B | 547 610 780 940|334 718 761 838| - - - - | 543 406 817 97.1|486 942

Qwen2.5-32B | 68.4 648 784 926|399 753 784 855|777 948 957 999|956 273 767 975|479 953

Paraphrasing | Mistral-Small | 50.5 703  81.4 938|190 635 721 826|604 825 848 997|581 475 843 982|246 95.1
Llama-3.1-70B | 57.0 753 828 944 | 444 794 819 878|895 958 961 100 | 788 375 731 977|502 948

GPT-4omini | 69.6 605 812 925|440 69.1 803 886|824 929 958 100 | 941 294 801 967|717 925

Qwen25-14B | 513  67.6  80.1 943|364 738 788 865| - - - - | 600 461 840 969|422 929

Top-p/ Qwen2.5-32B | 67.5 638 789 919|412 713 785 859|745 930 949 999|133 127 297 927|489 929
Temperature Mistral-Small | 514 753 842 950|141 599 714 837|610 87.6 89.8 998|719 381 841 985|157 904
Llama-3.1-70B | 63.1  79.9 825 93.1 [49.1 786 810 864|910 952 965 100 | 944 492 832 972|586 93.3

GPT-4omini | 69.1 619 798 91.1|425 79.8 83.0 882|844 904 941 992959 312 801 968|379 953

Table 6: Performance of single-agent version of R2-KG with self-consistency on the five KG-based reasoning
benchmarks. We denote the best and second-best method for each metric (except coverage). Cvg: Coverage, F1

(M): Micro F1 score, F1 (S): Samplewise F1 score.

self-consistency remains a practical alternative for
cost-sensitive applications; although its coverage is
somewhat reduced, it still ensures high reliability,
making it a viable option when cost is the primary
constraint.

8 Conclusion

We propose R2-KG, the first general KG-based
reasoning framework with an abstention mecha-
nism, ensuring the reliability for various KG-based
reasoning tasks. Separation of Operator and Super-
visor reduced high-capacity LLM usage, leading to
a cost-effective solution for KG-based reasoning.
Moreover, in simpler KGs, the single-agent version
of R2-KG with strict self-consistency can maintain
reliability while further reducing cost.

Limitations

The Supervisor makes the final prediction based
solely on the triple set and relation list collected by
the Operator. Consequently, it cannot determine
whether the retrieved information is minimal or ex-
haustive. In multi-label QA tasks, this limitation
may cause underprediction, where the framework
generates fewer answers than the actual number
of correct labels. Additionally, if a query can be
answered through multiple relation paths, the Su-
pervisor may provide an answer as long as one
valid path exists, potentially overlooking alterna-
tive correct paths. One way to mitigate this would
be to involve the Supervisor in every iteration step,
but this would remove the distinction between the
Operator and Supervisor roles, increasing compu-
tational costs. These constraints stem from the
trade-off between cost-effectiveness and reasoning
efficiency. While the current design optimizes re-

source usage, it may not always capture all possible
answers in complex reasoning scenarios.

Ethical Consideration

LLM-based KG reasoning requires substantial com-
putational resources, which can contribute to en-
vironmental concerns. While our study proposes
methods to reduce overall LLM usage, the reliance
on large-scale models remains a consideration in
terms of environmental impact.
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A Performance on 1-Hop and 2-Hop
Questions

The MetaQA dataset consists of 1-hop, 2-hop, and
3-hop questions; however, our experiments focused
exclusively on 3-hop questions. Given that the KG
of MetaQA is relatively small and that 1-hop and 2-
hop questions are considerably simpler than 3-hop
questions, we excluded them from our primary eval-
uation. Nevertheless, to assess the R2-KG across
different levels of task complexity, we randomly
sampled 100 questions from 1-hop and 2-hop sets
and evaluated the performance. As shown in Ta-
ble 8, R2-KG exhibited strong performance with
high coverage.

B Examples of the Two Excluded
Question Types in CRONQUESTIONS

Unlike the four other datasets, CRONQUESTIONS
is constructed with a five-element KG, where each
quintuple follows the format: [head, relation, tail,
start time, end time]. This structure includes tem-
poral information, specifying the start and end
years of an event. CRONQUESTIONS contains
five types of reasoning tasks: Simple time, Sim-
ple entity, Before/After, First/Last, and Time Join.
However, in our experiments, we excluded the Be-
fore/After and First/Last question types. The pri-
mary reason is that, while our framework predicts
answers based on the KG, these question types of-
ten contain subjective ground truth labels that do
not fully align with the available KG information.
For example, this is a sample of Before/After ques-
tion: “Which team did Roberto Baggio play for
before the Italy national football team?” Using our
framework, we can retrieve the following KG facts
related to Roberto Baggio: [Roberto Baggio, mem-
ber of sports team, ACF Fiorentina, 1985, 1990]
[Roberto Baggio, member of sports team, Bres-
cia Calcio, 2000, 2004] [Roberto Baggio, mem-
ber of sports team, Vicenza Calcio, 1982, 1985]
[Roberto Baggio, member of sports team, Juven-
tus F.C., 1990, 1995] [Roberto Baggio, member
of sports team, Italy national football team, 1988,
2004] [Roberto Baggio, member of sports team,
A.C. Milan, 1995, 1997] [Roberto Baggio, member
of sports team, Bologna F.C. 1909, 1997, 1998].
According to the KG, Roberto Baggio joined the
Italy national football team in 1988. Before that,
he played for Vicenza Calcio (starting in 1982) and
ACEF Fiorentina (starting in 1985), meaning both
teams are valid answers. However, the ground truth
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Model Parameter Architecture
Qwen2.5-14B 14.7B transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
Qwen2.5-32B 32B transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
Llama-3.1-70B 70B auto-regressive language model that uses an optimized transformer architecture.
Mistral-Small-Instruct-2409 22B Unknown
GPT-40 mini, GPT-40 Unknown Unknown
Table 7: Specification of models
| Metrics D Prompt Structure and Usage
Dataset -
| Coverage  F1(M) FI(S) Hit Euch prompt for Operator consists of three com-
MetaQA 1-hop | 100 95.3 98.9 100 ponents: Task description, Helper function expla-
MetaQA 2-hop | 96.0 99.9 997 100 hations, and three few-shot examples. When using

Table 8: Performance of R2-KG in MetaQA 1-hop and
2-hop. F1 (M): Micro F1 score, F1 (S): Samplewise F1
score.

label in the dataset only includes ACF Fiorentina,
omitting Vicenza Calcio, despite it being a correct
answer based on the KG. Due to this labeling in-
consistency, objective evaluation of these question
types becomes unreliable. As a result, we decided
to exclude these types from our experiments.

C R2-KG vs. baselines with various
LLMs as Operator and Supervisor

To demonstrate that R2-KG consistently outper-
forms the baseline regardless of the underlying
LLM'’s capability, we conducted the following ex-
periment. In the dual-agent setup, we varied not
only the Operator but also the Supervisor across
three different LLMs(LLMs—Mistral-Small, GPT-
40 mini, and GPT-40). The results show that even
when the Supervisor is a low-capacity LLM, R2-
KG still achieves higher F1 scores and hit rates than
the baseline. As shown in Table 12, on both the
FactKG and MetaQA 3-hop datasets, R2-KG con-
sistently outperforms ToG by a substantial margin.
In FactKG, when both the Operator and Supervi-
sor use GPT-40 mini, R2-KG achieves a hit rate
of 89.1%, whereas ToG with GPT-40 reaches only
86.8%. This clearly demonstrates that even when
using a low-capacity model, R2-KG surpasses the
baseline equipped with a high-capacity model. Sim-
ilarly, on MetaQA 3-hop, R2-KG outperforms ToG
by nearly 30% in terms of hit rate, further con-
firming its robustness and efficiency across model
scales.

R2-KG, users only need to modify the few-shot ex-
amples to match the specific dataset while keeping
the rest of the prompt unchanged. Examining the
prompts reveals that when the Operator requests a
helper function, the Operator can request multiple
instances in a single iteration based on its needs.
Additionally, it can request different types of func-
tions simultaneously. The prompt for Supervisor
contains the following elements: Task description,
triples collected so far by the Operator, a relation
list for each entity, and few-shot examples. The rea-
son for explicitly including the entity-wise relation
list is to ensure that when the Supervisor provides
feedback to the Operator, it requests subgraphs
that actually exist in the KG. During pilot testing,
when the relation list was not provided, the system
occasionally requested non-existent entity-relation
pairs in the KG. This resulted in ineffective feed-
back and ultimately failed to assist the Operator in
its KG exploration.

E Final Reasoning Path Construction

When sufficient evidences are given from Opera-
tor to Supervisor, then the Supervisor selects the
necessary triples and constructs a final reasoning
path that aligns with the claim structure. Assume
that the given query is “Which languages were
used in the films directed by the same directors
as [The Vanishing American]” and G given by
the Operator are as follows (tilde (~) represents
the inverse direction of relation): [The Vanishing
American, directed_by, George B. Seitz], [George
B. Seitz, ~directed_by, The Last of the Mohicans],
[George B. Seitz, ~directed_by, Love Finds Andy
Hardy], [The Last of the Mohicans, in_language,
English], [Love Finds Andy Hardy, in_language,
French]. Then, Supervisor generates two final rea-
soning paths: (The Vanishing American-George
B. Seitz-The Last of the Mohicans-English), and
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Reasoning Path | Utilized Model | WebQSP | MetaQA 3-hop | CRONQUESTIONS |  FactKG
Strategy ‘ Operator ‘ Supervisor ‘ Coverage F1 (M) FI1(S) Hit ‘ Coverage F1 (M) FI1(S) Hit ‘ Coverage F1 (M) FI(S) Hit ‘ Coverage  Hit
Multi Prompts | GPT-4o mini | GPT-40 | 692 771 855 936 89.2 923 954 100 | 836 345 851 986 563 945
Paraphrasing | GPT-4omini | GPT-40 | 70.7 738 857 939 873 925 959 999 | 840 335 842 984 | 550 936
Top-p/ GPT4o | 736 812 860 928 | 87.1 924 958 100 | 239 278 774 997 166 952

‘ GPT-40 mini

Temperature

Table 9: Performance of dual-agent version of R2-KG with self-consistency on the four KG-based reasoning
benchmarks. We denote the best method for each metric (except coverage). F1 (M): Micro F1 score, F1 (S):

Samplewise F1 score.

Utilized Model | WebQSP

MetaQA 3-hop

CRONQUESTIONS FactKG

Operator ‘ Supervisor ‘Coverage F1 (M) F1(S) Hit

Coverage F1 (M)

FI1(S) Hit Coverage F1 (M) FI(S) Hit Coverage Hit

GPT-40 mini | GPT-40 mini | ~ 85.0 788 799 883 657

92.8 957 98.6 84.9 30.5 81.8 98.8 78.4 93.0

Table 10: Performance of baselines and R2-KG on the four KG-based reasoning benchmarks on the entire test set.

F1 (M): Micro F1 score, F1 (S): Samplewise F1 score.

Method \ Utilized Model |  Synthetic MetaQA 3-hop FactKG
‘ Operator | Supervisor | Cvg  F1 (M) FI1(S) Hit
Mistral-Small - 100 45 161 42,0 Method Model CVg Hit
KG-GPT | GPT-4o mini - 99.0 108 270 949
M,G"f‘;“’ — ‘;’Z(S) 130‘39 277': j:g ToG Mistral-Small ~ 52.8  69.5
1stral-Smal - . . . . 111
ToG | GPT-4o mini - 150 142 195 700 ToG GPT-40 mini 358 83.5
GPT-4o - 145 153 211 897 ToG GPT-40 50.6 86.8
Qwen2.5-14B | GPT-4o | 880 891  89.6 9338 )
Qwen25-32B | GPTdo | 905 984 988 994 R2-KG Mistral-Small 56.2 82.9
x| Mumim | G 85 2i nioo RIKG GPTdomini 784 8911
GPT-4omini | GPT4o | 875 930 941 966 R2-KG GPT-4o0 77.8 93.1
GPT-4o GPT-4o | 970 981  99.1 100
. . . MetaQA 3-hop
Table 11: Performance using synthetic KG (modified -
KG based on MetaQA). We denote the best method for Method  Model Cvg FI(M) FI(S) Hit
each metric (except coverage). Cvg: Coverage, F1 (M): ToG Mistral-Small  24.1  13.2  31.2 622
Micro F1 score, F1 (S): Samplewise F1 score. ToG GPT-4omini 30.5 13.6 28.5 672
ToG GPT-40 24.5 15.6 44.0 955
o , . R2-KG  Mistral-Small  79.0 779 843 927
(The Vanishing American-George B. Seitz-Love R2-KG GPT4omini 657 928 957 986
Finds Andy Hardy-French). Finally, Supervisor R2-KG  GPT-4o 983 983 992 999

generates an answer and returns to Operator (i.e.,
English, French in the given example).

F Model Spec

Please check Table 7. Entries labeled as “Unknown”
indicate that the information is not publicly avail-
able.

G Discussion for the Low Metric Scores
for WebQSP, CWQ, and
CRONQUESTIONS

Based on the result shown in Table 2, R2-KG
showed slightly lower performance in the micro
F1 score, sample-wise F1 score, and hit rate for
WebQSP and CWQ (< 90%), and micro F1 score
for CRONQUESTIONS (< 50%). Through insights
from the original paper and our empirical experi-
ments, we observed that these datasets exhibit in-

Table 12: Results on FactKG and MetaQA 3-hop bench-
marks. R2-KG employs both Operator and Supervisor
agents with three different models.

herent limitations. This suggests the existence of
upper bounds that make achieving 100% perfor-
mance infeasible even though they are used in many
previous research.

In the original WebQSP paper (Yih et al., 2016),
experts manually annotated 50 sample questions
by constructing corresponding SQL queries. The
reported correctness of these annotations ranged
from 92% to 94%, indicating that even human-
generated queries did not achieve perfect accuracy.
This highlights the intrinsic difficulty of achieving
complete evidence collection for every query in the
WebQSP dataset. Although the original paper of
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CWQ does not provide a quantitative correctness
analysis, the dataset is derived from WebQSP and
inherits similar structural issues.

Through our own experiments, we observed sev-
eral such limitations in both WebQSP and CWQ.
The most critical issue was that, in some cases, a
correct answer (other than the ground-truth label)
entity could be retrieved using a semantically equiv-
alent but different relation than the one used in the
annotated query; however, such answers were not
included in the ground-truth labels. Other minor
issues included mismatches between the recorded
entity and the actual answer, and inconsistencies
between the question and the label (e.g., questions
asking for "two states" but only one state being
annotated for the label).

These factors collectively suggest that achieving
100% performance in terms of F1 scores or hit rate
is practically infeasible on these datasets. As a
result, the slightly lower scores we observe can be
attributed, at least in part, to these dataset-inherent
limitations rather than model deficiencies alone.

CRONQUESTIONS exhibits high variance in
the number of labels per question—some questions
have a single answer, while others require many. As
the number of label of the question increases, the
corresponding subgraph lengthens, leading to to-
ken length issue or prediction failures. Even when
the reasoning path is correct, covering all labels be-
comes challenging, which substantially impacts the
micro F1 score. However, as seen from the sample-
wise F1—where CRONQUESTIONS still achieves
89%—R2-KG generally demonstrates strong rea-
soning capability even under such challenging con-
dition.

H R2-KG Dual-Agent Approach
Combined with Self-Consistency
Strategy

Table 9 shows the result of combining the self-
consistency strategy with the dual-agent approach.
The Supervisor generated the final answer based
on three trials, leading to stricter predictions. As a
result, coverage was lower compared to using dual-
agent R2-KG alone. For WebQSP and MetaQA,
the F1 score was lower than that of a single trial
of the dual-agent R2-KG, whereas the hit rate was
significantly higher. This is because, applying the
strict self-consistency technique, some multi-label
predictions were filtered out, meaning the model
did not perfectly match all ground truth labels but

still correctly predicted at least one. For CRON-
QUESTIONS, coverage, F1 scores, and hit rate
were relatively lower. This dataset contains a sig-
nificantly higher number of ground truth labels
than others, making it difficult for any single trial
to cover all labels. Consequently, the final pre-
diction lacked sufficient labels. In FactKG, cov-
erage varied widely, ranging from 10% to 50%
depending on the reasoning path method. How-
ever, the hit rate consistently remained above 93%,
indicating strong performance. Overall, for multi-
label tasks with many ground truth labels, a single
trial using R2-KG: a single trial of dual-agent ap-
proach performed more effectively than dual-agent
with self-consistency strategy, suggesting that dual-
agent with self-consistency strategy is not always
beneficial for complex multi-label reasoning tasks.

I R2-KG Using the Full Dataset

Table 10 presents the results obtained using the
full dataset. In this experiment, both the Operator
and Supervisor were set to GPT-40 mini, and the
experimental setup remained identical to the main
experiment.

For MetaQA 3-hop, CRONQUESTIONS, and
FactKG, the hit rate exceeded 90%, with CRON-
QUESTIONS reaching an impressive 98.6%. How-
ever, coverage was generally lower or similar com-
pared to the main experiment. This decline is likely
due to the Supervisor’s limited ability to construct
the correct reasoning path using the triple set dur-
ing inference, as it was replaced with GPT-40 mini
instead of GPT-40. Although sufficient evidence
was available, the Supervisor struggled to appro-
priately combine the necessary components of the
query, leading to failed predictions. These results
further highlight the critical role of the Supervisor
in the reasoning process.

Despite the slight performance drop compared
to the main experiment due to the relatively low-
capacity Supervisor, the framework still signifi-
cantly outperforms baseline methods. The effec-
tiveness of the abstention mechanism remains ev-
ident, ensuring that the system generates reliable
predictions while maintaining robustness against
uncertainty.

J Qualitative Analysis

Figure 4 illustrates an example where R2-KG suc-
cessfully performs reasoning on WebQSP, while
Figure 5 shows a case where it fails. Within the
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T of 15, each box represents the Operator’s rea-
soning (gray), the Server’s execution result (blue),
and the Supervisor’s reasoning (red). Some parts
of the iteration process have been omitted due to
excessive length.

K Details of Single-Agent Version of
R2-KG combined with
Self-Consistency Strategy

The typical Self-Consistency strategy allows the
language model to generate multiple reasoning
paths and selects the most common answer across
all trials. In contrast, our approach applies a stricter
criterion, selecting the final answer only when all
trials reach unanimous agreement. The details of
various reasoning paths to generate multiple re-
sponses are as follows; The prompt used for the
single-agent approach, where the Operator handles
both KG retrieval and answer generation, is shown
in Figure 8. For the Multi-Prompt approach, the
same base prompt was used, with only the few-shot
examples adjusted for in-context learning. The
prompt used for query paraphrasing is identical
to that in Figure 9. In this approach, each query
is rewritten into three semantically equivalent but
structurally different forms, and each variation is
processed independently by a low-capacity LLM
for three reasoning attempts. The parameter com-
binations used for LLM Top-p / Temperature vari-
ation are as follows: (Top-p, Temperature) = (0.3,
0.5), (0.7, 1.0), (0.95, 0.95)

L LLM Usage Statistics and Latency
Analysis

KG-GPT requires at least 3 calls (i.e., Sentence
Segmentation, Graph Retrieval, and Inference) to
a high-capacity LLM, and ToG makes a minimum
of 4 and maximum of 25 such requests, depend-
ing on the number of reasoning paths, which is
closely related to the depth and width limit (i.e.,
hop limit, beam search width limit in KGs) used
for ToG hyperparameter. This represents a sub-
stantial reduction compared to R2-KG ’s invoca-
tion of high-capacity LLMs fewer than 1.43 times
per query. In other words, R2-KG dramatically
lowers model usage costs while ensuring superior
performance. One might also worry about added
latency from Supervisor —Operator interactions;
however, measuring per-query inference times for
the single-agent and dual-agent versions reveals
only a 0.97s difference, which we confirm is not

practically problematic.

M Token Efficiency and Cost Analysis

In Section 7.3, we presented the token usage data,
which is summarized in Table 5. This section pro-
vides a detailed analysis of the associated token
costs.

As of July 28, 2025, under OpenAl’s pricing pol-
icy GPT-40-mini charges USD 0.15 (input) + USD
0.60 (output) per 1M tokens, and GPT-4o0 charges
USD 2.50 (input) + USD 10.00 (output) per 1M
tokens. Therefore, on CWQ the single-agent ver-
sion (19,309 tokens with GPT-40) costs about USD
0.0483 and the dual-agent version (18,987 tokens
with GPT-40-mini + 4,912 tokens with GPT-40)
costs USD 0.0153 per query. In this way, by clearly
separating the Operator and Supervisor roles, we
achieve a USD 0.033 per query saving compared to
using a high-capacity LLM for the entire process.

N Experimental Setting for Baselines

Among the baselines used in the experiment, ToG
allows width and depth to be set as hyperparam-
eters. In our experiments, the depth was set to 3
for all datasets except FactKG, where it was set to
4. By default, ToG’s width is set to 3, meaning it
considers up to three entities or relations per step,
regardless of the type of subject. However, this set-
ting was highly ineffective for multi-label tasks. To
improve its performance, we separately configured
(relation-width, entity-width) to optimize results.
The values used in the main experiment were as
follows: FactKG, MetaQA, and WebQSP were set
to (3,7), (2, 5), and (3, 3), respectively.

Additionally, when ToG fails to retrieve support-
ing evidence from the KG, it generates answers
based on the LLM’s internal knowledge. To ensure
a fair comparison based solely on KG-derived in-
formation, we treated cases where ToG relied on
internal knowledge after KG retrieval as Absten-
tions. Similarly, while KG-GPT does not have a
built-in abstention mechanism, we considered in-
stances where the model failed to generate a final
answer due to errors during its three-step process
(sentence segmentation, graph-retrieval, and infer-
ence)—such as token length limits or parsing fail-
ures—as Abstentions.

For both baselines, prompt tuning was conducted
to align them with each dataset. Specifically, we
modified the few-shot examples extracted from
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Original Modified (Contradic-

tory)
[Inception, [Inception,
directed_by, directed_by,

Christopher Nolan] | Mario Van Peebles]
Q: Who is the director | Q: Who is the director
of Inception? of Inception?

A: Christopher Nolan | A: Mario Van Peebles

Table 13: Original vs. contradictory triples and QA pairs
(MetaQA)

each dataset while keeping the default prompt struc-
ture unchanged.

O Experiment for Measuring Knowledge
Shortcut for R2-KG and Baselines

We further carried out an experiment to determine
whether the LLM answers by drawing on its pre-
trained world knowledge (internal knowledge) or
by relying on the subgraph it has explored. To
make this distinction, we built a synthetic KG that
contradicts commonly accepted facts and ran R2-
KG on it. We constructed the synthetic KG/queries
as follows based on MetaQA as shown in Table 13.

As shown in Table 11, R2-KG maintains high
F1 score and hit rates even when evaluated on a
KG that deliberately contradicts real-world facts,
along with corresponding queries. This confirms
that when a subgraph is provided, the LLM bases
its reasoning on the retrieved structure rather than
latent, pre-trained knowledge. In contrast, ToG
shows extremely low accuracy, as it relies on in-
ternal knowledge when its KG exploration fails.
These results demonstrate that R2-KG not only ex-
plores KGs more effectively, but also grounds its
answers in retrieved evidence—substantially miti-
gating knowledge shortcuts.
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Qid : WebQTest-62
Question : what was jesse james killed with?
GT entity : ('Jesse James', 'm.02khkd')
Iteration
Statement: First, I need to find informationrelated to Jesse James. I'll start by checking the relations linked to Jesse James.
Helper function: getRelation['Jesse James']
Execution result:

0 Relations_list["Jesse James"] = ['people.person.date_of birth', 'user.alexander.misc.murdered person.date_murdered', 'common.topic.description',
'base.popstra.celebrity dated', 'people.person.parents', 'base.popstra.celebrity. friendship', 'common.topic.topic_equivalent webpage', 'common.topic.webpage',
‘common.topic.notable_types', 'people.person.place_of birth', 'type.object.name), 'people.person.sibling_s', 'en’, 'common.topic.image', 'common.topic.notable_for',
‘common.topic.alias', 'user.alexander.misc.murdered_person.murder method’, ...

Statement: To find out how Jesse James was killed, I will explore the graph for the relations related to the murder method.
Helper function: exploreKG['Jesse James']=['user.alexander.misc.murdered_person.murder_method']

1

Execution result:

['Jesse James', 'user.alexander.misc.murdered_person.murder_method', 'Assassination']

Statement: Jesse James was killed by assassination. Therefore, the answer to the claim about what Jesse James was killed with is 'Assassination’'.
Helper function: Verification[]

2 Execution result:

The triple set provides information that Jesse James was murdered using the method 'Assassination'. However, the claim specifically asks for the weapon ortool
used in the killing, which is not explicitly provided by the given relation 'user.alexander.misc.murdered person.murder method'. Therefore, the current data is
insufficient to determine the exact weapon used.

Statement: Since the informationI received only specifies that Jesse James was killed by assassination and does not provide details about the weapon used, I need to
gather more information to find out what specific weapon or tool was involved in the assassination. I'll check forany relations that might give details about the

3 weapon used in the murder.

~ Helper function: getRelation['Jesse James']

6 Execution result:

Relations_list["Jesse James"] = ['people.person.date_of birth', 'user.alexander.misc.murdered person.date_murdered', 'common.topic.description',
'base.popstra.celebrity dated', 'people.person.parents', 'base.popstra.celebrity. friendship’, ....

Statement: Jesse James was murdered at the Jesse James Home Museum. However, this information does not provide insights into the specific weaponused in the
assassination. As I have not yet found the necessary details regarding the weapon, I will try exploring otherrelations linked to Jesse James that may provide clues
about the murder.

7 Helper function: exploreKG['Jesse James']=["people.deceased_person.cause_of death']

Execution result:

['Jesse James', 'people.deceased_person.cause of death','Assassination'], ['Jesse James', 'people.deceased person.cause_of death', 'Firearm']

Statement: The evidence indicates that Jesse James's cause of death was classified as 'Assassination' and specifically involveda 'Firearm'. This suggests thata
firearm was the weapon used in his assassination. Therefore, the answer to the claim about what Jesse James was killed with is 'Firearm'.

8 Helper function: Verification[]

Execution result: Done!! predict : ['Firearm’], gt _label:['Firearm']

Figure 4: Successful Case in WebQSP. Supervisor effectively guides the model to extract a more relevant answer for
the question. Operator, Server Response, Supervisor for each colored box.
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Qid : WebQTest-142
Question : who developed the tcp ip reference model?
GT entity : ('"Transmission Control Protocol','m.07hzk'")

Iteration

Statement: First, I need to find information about the Transmission Control Protocol to identify its relationships and any relevant connections to the TCP/IP
reference model.
Helper function: getRelation['Transmission Control Protocol']

Execution result:

Relations_list["Transmission Control Protocol"] =['common.topic.description’, 'common.topic.topic_equivalent webpage', 'common.topic.notable_types',
'type.object.name', 'en’, 'common.topic.image', 'common topic.notable_for','common.topic.alias', 'type.object.type', 'computer.internet_protocol.software used by',
‘common.topic.article', 'base.argumentmaps.original_idea.innovator', 'base.ontologies.ontology instance.equivalent instances',
'user.avh.default_domain.ellerdale_topic.ellerdale id','law.invention.inventor, 'type.object.key’, 'base.schemastaging.context name.pronunciation',
‘user.avh.ellerdale', 'kg.object_profile.prominent_type']

Statement: To find out who developed the TCP/IP reference model, I need to explore the graph with a relation that may link to its inventoror origin. The relation
that seems mostrelevant is 'base.argumentmaps.original_idea.innovator' as it could lead to the innovator ofthe TCP/IP model.
Helper function: exploreKG[' Transmission Control Protocol'}=['base.argumentmaps.original_idea.innovator']

Execution result:
['Transmission Control Protocol', 'base.argumentmaps.original idea.innovator, 'Robert E. Kahn'], ['Transmission Control Protocol',
'base.argumentmaps.original_idea.innovator', 'Vint Cerf']

Statement: The evidence shows that the TCP/IP reference model was developed by Robert E. Kahn and Vint Cerf. Therefore, the answer to the claim about who
developed the TCP/IP reference model is both 'Robert E. Kahn' and 'Vint Cerf'.
Helper function: Verification[]

2 Execution result:

The triple set indicates that the 'Transmission Control Protocol' was developed by 'Robert E. Kahn' and'Vint Cerf' using the relation

'base.argumentmaps.original idea.innovator'. However, it does not explicitly state whether these individuals also developed the TCP/IP reference model' as a whole.
The relations provided for 'Transmission Control Protocol' donot include any specific relation indicating its connection to the "TCP/IP reference model'. Hence, we
lack sufficient evidence to confirm that these individuals developed the 'TCP/IP reference model'.

Statement: Since we need more information to verify the direct connection between Robert E. Kahn, Vint Cerf, and the development of the TCP/IP reference model,
Iwill look for additional evidenceregarding either Robert E. Kahn or Vint Cerf that explicitly links them to the TCP/IP reference model. I will start by finding
relations associated with Robert E. Kahn.

3 Helper function: getRelation['Robert E. Kahn']

Execution result:
You gave wrong format of getRelation[] function. Follow the format ofexamples.

Statement: I need to gather informationabout Robert E. Kahn to find relevant connections to the TCP/IP referencemodel.
Helper function: getRelation['m.0k4q8'] ## getRelation['m.0k4q9']

Execution result:
You gave wrong format of getRelation[] function. Follow the format ofexamples.

Statement: I apologize for the error. I will first find the relations linked to Robert E. Kahn to gather more information.
Helper function: getRelation['Robert E. Kahn']

14 Execution result:
You gave wrong format of getRelation[] function. Follow the format ofexamples.

Exceed ”Abstain”
Limit

Figure 5: Failure Case in WebQSP. Supervisor fails to infer, leading the Operator to invoke functions in the wrong
format repeatedly. Operator, Server Response, Supervisor for each colored box.
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Prompt for Operator

Your task is finding properlabels for given claim based on the graph data without your base knowledge.

You can use below helper functions to find the evidence for finding labels.

<Helper Functions>

1.getRelation[entity]: Returns the list of relations linked to the entity. You can choose several relations from the list that seem related to the claim.
2.exploreKG[entity]=[relation_I,relation 2, ... relation_K]: Returns the triple set around the entity. Forexample, [entity, relation_2, tail entity] etc. You can
choose relation from [User]'s execution result.

3.Verification[]: After getting enough evidence after exploreKG() helper function and if verification can be done, call this function. If[User] requires more
information, you need to collect more triples in following steps.

You must follow the exact format of the given helper function. Now, I will give you a claim and Given Entity that you can referto. However, some of the
entitiesneeded in verificationare not includedin Given Entity. You have to use properhelper functions to find properinformation to verify the given claim.
Once you give aresponse about helper function, stop for [User] response. If response has made, continue your [Your Task] (Do not make multiple 'Helper
function: 'lines). Importantly, Do not change the format of the entity orrelation including '~'.

Here are some examples.

<3 Few-shot Examples>

(Example 1)

Question : Who was district attorney when J. D. Rees was the Member of the 3 1st Parliament of the United Kingdom
Given entity : ['district attorney','Member of the 3 1 st Parliament of the United Kingdom, J. D. Rees']

[Your Task]

Statement : Let's see what relations linked to each entity, 'district attorney','Member of the 3 1 st Parliament of the United Kingdom, 'J. D. Rees'.
Helper function : getRelation['district attorney’] ## getRelation[Member ofthe 3 1st Parliament ofthe United Kingdom’] ## getRelation['J. D. Rees']
[User]

Execution result :

Relation_list['district attorney']=['~position held','~occupation’]

Relation_list{'Member ofthe 3 1st Parliament ofthe United Kingdom'[=['~position held’]

Now, it's yourturn.
Claim: <<<Question>>>
Given entity: <<<Entity set>>>

Let's start the process.

Figure 6: Used for FactKG. [Your Task] is generated by the Operator, while [User] represents either the Server’s
response or the Supervisor’s answer.
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Prompt for Supervisor

You are the evaluator. I will show you a claim and a triple set extracted from a graph. Based on the given triple set and relation list of each
entity, determine whether the claim is True or False.

If given triple sets are lack of information to verify the claim, give the the combination of entity and relation you need. You can refer the given
relations list and choose what relation information is more needed.

The triple set takes the form [Head, Relation, Tail], which means 'Head's Relation is Tail." If the relation starts with '~
relation, meaning 'Tail's relation is head.'

The following cases may arise: Choose one option from 'Executable (True or False)' or 'Not executable(Insufficient evidence)'.

If you choose 'Not executable(Insufficient evidence)', You must specify in the statement which additional relation information is needed for a
particular entity. However, the relation can only be selected from the given Relation_list and cannot be created arbitrarily.

Refer to the explanations of the two options below to answer the Statement and Evaluation.

, it indicates a reverse

<Cases>
1. If the triple sets are sufficient to determine the True/False of the claim --> Executable (True or False)
2. If the triple set is insufficient or ambiguos to determine the True/False of the claim --> Not executable (Insufficient evidence)

<8 Few-shot examples>

(Example 1)

[User]

Claim : A fictional character, which was created by Joe Quesada, is broadcast on Lebanese Broadcasting Corporation and starred Tim Brooke-
Taylor.

Triple sets : [['Joe_Quesaa', '~creator', 'Azrael (comics)'], [Joe Quesaa', '~creator', 'Menace (Marvel Comics)’] ...

Relations of Entity :

Relations list["Tim_Brooke-Taylor"] = ['birthPlace', "honorificSuffix', '~after', 'notableWork', 'genre', 'years', 'spouse’, 'title', 'givenName',
'shortDescription', 'surname’...]

[Your Task]

Statement : We need more information for verification. Try to look relation '~starring' linked with Tim_Brooke-Taylor and relation
'broadcastArea, ~channel,~tv' linked with Lebanese Broadcasting_Corporation.

Evaluation : Not executable (Insufficient evidence)

Now, it's your turn. Continue your 'Statement and Evaluation' task. Response must have same form with upper examples.
[User]

Claim : <<<<CLAIM>>>>

Triple set : <<<<Triple set>>>>

Relations of Entity : <<<<GOLD RELATIONS>>>>

Figure 7: Used for FactKG. [Your Task] is generated by the Operator, while [User] contains the given query and the
evidence collected by the Operator.
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Prompt for Single-Agent version

Your task is finding proper labels for given claim based on the graph data without your base knowledge.
You can use one of the helper functions below to find the evidence for finding labels.

<Helper Functions>

1.getRelation[entity]: Returns the list of relations linked to the entity. You can choose several relations from the list that seem related to the
claim.

2.exploreKG[entity]=[relation_1,relation_2, ... relation K]: Returns the triple set around the entity. For example, [entity, relation 1, tail entity]
etc. You can choose relation from [User]'s execution result.

3. Verification[ True/False]: If you can judge the claim as True or False, give the answer.

You must follow the exact format of the given helper function.

Now, I will give you a claim and Given Entity that you can refer to.

However, some of the entities needed in verification are not included in Given Entity.

You have to use proper helper functions to find proper information to verify the given claim.

Once you give a response about helper function, stop for my response. If response has made, continue your 'Statement and Helper function' task.
Importantly, Do not change the format of the entity or relation including ‘~’.

<3 Few shot Examples>

Example 1)

Claim: Yea he was born in Zaoyang, Hubei
Given entity: ["Zaoyang", "Hubei"]

[Your Task]
Statement : First, I need to look around the given entities. I will start by getting the relation list linked to Zaoyang.
Helper function : getRelation["Zaoyang"]
[User]
Execution result :
Relations_list["Zaoyang"] = ['augRecordLowC', 'decLowC', 'aprRecordHighC', 'yearLowC', 'junMeanC', 'unitPrecipitationDays', 'novLowC',
'longm', 'julRecordLowC’,...
[Your Task]
Statement : Now, I need to look around the given entities. I will get the relation list linked to Hubei.
Helper function : getRelation["Hubei"]
[User]
Execution result :
Relations_list["Hubei"] = ['popyear’, '~placeOfDeath', 'south', '~territory', 'owl#differentFrom', '~routeStart, '~locale', '~capital', '~place',
'nationalities', 'prefectures', 'gdprank’,
[Your Task]
Statement : To verify the claim, I need to explore the graph for Zaoyang to find any relation with '~birthPlace' or '~placeOfBirth'.
Helper function : exploreKG["Zaoyang"]=["'~birthPlace', '~placeOfBirth’]
[User]
Execution result :
['Zaoyang', '~birthPlace', 'Nie Haisheng'], ['Zaoyang', '~placeOfBirth', 'Nie Haisheng']
[Your Task]
Statement : According to the triples, Nie Haisheng was born in Zaoyang. However, the claim does not specify who "he" refers to. To verify the
claim, I need to check if Zaoyang is part of Hubei. I will explore the graph for Zaoyang to find any relation with '~isPartOf'.
Helper function : exploreKG["Zaoyang"]=['~isPartOf’]
[User]
Execution result :
['Zaoyang', '~isPartOf', 'Xiangyang'], ['Zaoyang', '~isPartOf, "Hubei']
Statement : According to the triples, Zaoyang is part of Hubei. Therefore, the claim that "he was born in Zaoyang, Hubei" is consistent with the
information provided. The claim is True.
Helper function : Verification[ True]

Now, it's your turn. Your response must have same form with upper examples.
Claim: <<<<CLAIM>>>>
Given entity: <<<<GT_ENTITY>>>>

Figure 8: Prompt for single version of R2-KG [Your Task] is generated by the Operator, while [User] represents the
Server’s response.
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Algorithm 1: Dual-Agent R2-KG Reasoning Process

© ® NS UM A W N =

ek ek
N =S

13
14
15
16
17
18
19
20
21
22
23

24

Input: Claim ¢, Given entity eg, Iteration limit T’
Output: Final reasoning result or Abstain if limit exceeded
Egeen < {€0} // Set of seen entities
Relations <— {} // Dictionary for entity-relation pairs
gold_triples < {} // Collected triples
chat_log <— {} // Stored interaction logs
1< 0// Iteration counter
while : < 7" do
response < Opeartor_response(c, Egeen, Relations, chat_log)
Append response to chat_log
if response = getRelation(e) then
list_of_relations < Server_response(e)
Relationsle] < list_of_relations
Append list_of_relations to chat_log
else if response = exploreKG(e, rel) then
triples < Server_response(e, rel)
gold_triples < gold_triples U triples
Append triples to chat_log
else if response = verification() then
feedback <+ Supervisor_response(gold_triples, Relations)
if feedback is an answer then
result < feedback
Break

else

L Append feedback to chat_log

1+ 1+1

if : > T then

‘ Return Abstain
else

L Return result
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Prompt for Claim Paraphrasing

You are the paraphraser. Rewrite the following claim in a more formal tone, keeping the core idea intact.
If the given claim has a colloquial style format, paraphrase it into written style format.
Give three paraphrased sentences for given claim.

<8 Few shot Examples>

(Example 1)

[User]

Claim : The airport in Punjab, Pakistan is operated by the government agency of the Jinnah International Airport.

[ChatGPT]

1. The government agency responsible for Jinnah International Airport oversees operations at an airport located in Punjab, Pakistan.
2. An airport in Punjab, Pakistan is managed by the same governmental body that operates Jinnah International Airport.

3. The operations of an airport in Punjab, Pakistan are handled by the government agency managing Jinnah International Airport.

(Example 2)

[User]

Claim : Tim Brooke-Taylor starred as a fictional character, which was first aired on 10/03/1983 and was broadcast by STV.
[ChatGPT]

1. Tim Brooke-Taylor portrayed a fictional character in a show that premiered on October 3, 1983, and was aired by STV.
2. STV broadcasted a program featuring Tim Brooke-Taylor as a fictional character, first aired on October 3, 1983.

3. On October 3, 1983, STV premiered a show in which Tim Brooke-Taylor starred as a fictional character.

Now, it's your turn. Continue your paraphrasing task. Response must have same form with upper examples.
[User]
Claim : <<<<CLAIM>>>>

Figure 9: Prompt for query paraphrasing. [User] contains the query to be paraphrased, while [ChatGPT] generates

three different variations of the sentence.
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