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Abstract
Grammatical Error Correction (GEC) is a fun-
damental task in Natural Language Processing
that focuses on automatically detecting and cor-
recting grammatical errors in text. In this pa-
per, we present a novel approach for Gujarati
GEC. Gujarati is an Indian language spoken
by over 55 million people worldwide. Our ap-
proach combines a large language model with
non-parametric memory modules to address
the low-resource challenge. We have evalu-
ated our system on human-annotated and syn-
thetic datasets. The overall result indicates
promising results for Gujarati. The proposed
approach is generic enough to be adopted by
other languages. Furthermore, we release a
publicly available evaluation dataset for Gu-
jarati GEC along with an adapted version of
the ERRANT framework to enable error-type-
wise evaluation in Gujarati.

1 Introduction

Grammatical Error Correction (GEC) is necessary
not only for enhancing the quality of text but also
for applications such as language learning and
automated writing evaluation. For instance, Gu-
jarati typing systems, such as Google’s GBoard,
take Roman transliterations from the user as in-
put and convert them into Gujarati script based on
dictionary lookup and word frequency. This ap-
proach is prone to grammatical errors, and an ac-
curate GEC system can be beneficial in this con-
text. GEC can be viewed as a form of machine
translation that transforms the input text by cor-
recting the errors and producing a corrected out-
put (Yuan and Briscoe, 2016). Over the years,
the field has advanced considerably, evolving from
rule-based approaches and statistical classifiers to
statistical machine translation (SMT), neural ma-
chine translation (NMT) systems, and most re-
cently, the transformer-based models (Wang et al.,
2020). These approaches typically require a large
amount of labeled data, which is not feasible for

low-resource languages such as Gujarati. The rich
morphology and complex lexicography of Gujarati
(Patel and Patel, 2015) further complicate the task.
We classified grammatical errors into the cate-

gories as described in Figure 1.

Figure 1: Examples of grammatical errors with translit-
erations and analogous English examples

The emergence of large language models
(LLMs) opened up new avenues for low-resource
languages. Approaches such as advanced prompt-
ing techniques, synthetic data generation using
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LLMs, and information retrieval reduce the need
for labeled data.
The key contribution of this work is following:

1. We present a system for Gujarati grammatical
error correction that incorporates non-parametric
memory with LLM. We compare its performance
against a fine-tuned transformer-based model
trained on synthetic data.1

2. We release a resource suite for Gujarati GEC,
including an adaptation of the ERRANT toolkit
for detailed error-typewise evaluation2, a synthetic
dataset consisting of 5,000 samples, and a high-
quality human-annotated dataset consisting of 300
samples for evaluation purpose. Moreover, we re-
lease 10,000 gold-standard Gujarati sentences.

2 Related Work

GEC research has evolved through multiple stages.
Early work in GEC focused on classifier-based
methods using manually designed features for spe-
cific error types (Lee, 2004). With the availabil-
ity of annotated corpora like NUCLE (Dahlmeier
et al., 2013), monolingual translation and Statis-
tical Machine Translation (SMT) were applied to
solve the problem. (Junczys-Dowmunt and Grund-
kiewicz, 2014). Later, Neural Machine Transla-
tion (NMT) approaches using RNNs (Yuan and
Briscoe, 2016), CNNs (Kalchbrenner and Blun-
som, 2013), and Transformers (Grundkiewicz and
Junczys-Dowmunt, 2018) started dominating. Re-
cently, edit-based methods have also gained popu-
larity. GECToR (Omelianchuk et al., 2020) frames
GEC as a sequence tagging problem. Seq2Edits
(Stahlberg and Kumar, 2020), on the other hand,
frames it as a sequence-to-sequence edit genera-
tion task (Bryant et al., 2023).
Large language models (LLMs) have achieved

strong results with zero-shot and few-shot Chain-
of-Thought settings (Fang et al., 2023). Long-term
memory, inspired by humans (Wu et al., 2025;
Zhang et al., 2024), allows the LLM to store,
update, and reuse useful knowledge over time.
Advancements in non-parametric memory mecha-
nisms for LLMs, such as RAG for long-term mem-
ory (Lewis et al., 2020) and ReAct for short-term
memory (Yao et al., 2023), have gained popularity
across a wide range of domains (Wu et al., 2025).

1https://github.com/VGD3626/
Smruti-GEC-for-Gujarati

2https://github.com/VGD3626/
ERRANT-for-Gujarati

The design of our system is inspired by the long-
term memory frameworks proposed in Wang et al.,
2025 and Gutiérrez et al., 2025.
A widely adopted strategy to mitigate data

scarcity is to train or fine-tune an LLM or
transformer-based model on a synthetic dataset.
This approach has been explored for several
languages such as Hindi (shares linguistic fea-
tures with Gujarati) (Sharma and Bhattacharyya,
2025), Czech (Náplava and Straka, 2019), Indone-
sian (Musyafa et al., 2022), Spanish (Kubal and
Nagvenkar, 2025), and Chinese (Fan et al., 2023).
Apart from this, Li et al., 2025 uses separately re-
trieved grammatically correct and erroneous sen-
tences to guide the LLM in generating responses.
Gujarati GEC remains an underexplored area;

existing research has primarily focused on spelling
correction. Patel et al., 2021 employed string
matching techniques for spell correction, fol-
lowed by a rule-based spell checker proposed in
Gondaliya et al., 2022. Additionally, Panchal and
Shah, 2024 applied Norvig’s algorithm for Gu-
jarati spelling correction.

3 Dataset

To the best of our knowledge, there is no standard-
ized labeled dataset available for Gujarati to solve
the problem of GEC. We have created a dataset
for GEC; we find collecting correct sentences and
introducing errors in them relatively easier. Pub-
licly available unlabeled datasets such as Indic-
Corp (Doddapaneni et al., 2023) and CC-100 (Con-
neau et al., 2020; Wenzek et al., 2020) contain data
from news articles and web crawling. Hence, we
created a pool of 2,04,169 unique sentences from
the books of Gujarati literature to ensure higher lin-
guistic quality and diversity (Gujarati Wikisource
contributors). The text taken from the book was
divided into sentences by using the GPT-4o-mini
LLM. Then, a Python script was used to create the
dataset splits described in Table 1. We also ensure
that there is no overlap of data among the splits.
Gold Sentences are verified, grammatically cor-

rect Gujarati sentences out of the pool. These sen-
tences are used for populating memory module M1

as shown in Section 4.2.
Erroneous Sentences are used to evaluate the

impact of M2 memory module on the overall per-
formance of the system. This split is created by
introducing errors in correct sentences using a rule-
based method as described below:
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Figure 2: Distribution of various error types in evaluation set

Dataset Format #Samples #Errors #Tokens Purpose

Gold Sentences Correct Sentences 10,000 – 150,898 Populating M1
Erroneous Sentences Incorrect Sentences 10,000 8,216 165,463 Populating M2
Human Evaluation Set Correct–Incorrect Tuples 300 570 7,428 Evaluation
Synthetic Evaluation Set Correct–Incorrect Pairs 5,000 6,092 164,666 Evaluation

Table 1: Summary of the datasets used in our experiments. The symbol ‘#’ indicates the count. The table provides
the format, total number of samples, total errors, and total tokens for each dataset.

Let S be the randomly selected sentence from
a set of grammatically correct Gujarati sentences.
Then, one of the following four operations is ap-
plied toS, with respective probabilitiesP1, P2, P3,
and P4:

• Punctuation Error: Select a punctuation
mark p ∈ S uniformly at random and either
delete it or replace it with an alternative punc-
tuation mark p′, where p′ ̸= p.

• Morphological Error: Select a word w ∈ S,
apply a rule-based Gujarati stemmer to obtain
its stemws, and attach a randomly chosen suf-
fix σ from the set of Gujarati suffixes Σ. If
the resulting word w′ = ws + σ is not found
in the lexicon L, discard the current sentence
and repeat the process on another sentence un-
til a word w′ ∈ L is generated, to introduce
an inflectional or derivational error.

• Word Order Error: Randomly choose two ad-
jacent non-punctuation words wi, wi+1 ∈ S
and swap their positions to generate a syntac-
tic error.

• Orthographic Error: Select a word w ∈ S,
and either insert/delete an anusvāra ormodify
a mātrā within w to generate an orthographic
error.

We limit the maximum number of errors per sen-
tence to 3 to maintain sentence interpretability. We
obtained a less-skewed error-type distribution by
setting the probabilities as P1 = 0.10, P2 = 0.65,
P3 = 0.10, and P4 = 0.15.

3.1 Evaluation Set

We evaluated the system on human-annotated and
synthetic datasets. The synthetic dataset, compris-
ing 5,000 samples, was generated using the error
generationmethod described above under the same
settings.
The human-annotated dataset, on the other hand,

was generatedwith the process of dictation. Hence,
this dataset contains transcription errors. Two
native Gujarati individuals volunteered to write
1,000 sentences were taken from the pool, and
these sentences were given to a linguist, a different
individual, to identify the errors. As identified by
the linguist, there were 366 sentences with errors.
From these 366 sentences, 300 sentences were se-
lected randomly with the help of a Python code
in order to achieve a perfect figure of 300. Then,
the linguist corrected these 300 sentences. The lin-
guist was allowed to annotate an incorrect sentence
with more than one correct sentence.
Figure 2 presents the error-type distribution in

the evaluation set based on our Gujarati ERRANT

475



Figure 3: System Architecture Diagram

adaptation, as described in Section 5. Since the
ERRANT adaptation relies on limited linguistic re-
sources, the distribution may include some noise
and should be interpreted as an approximate esti-
mate.

4 Proposed System

As shown in Figure 3, our system consists of three
major components:

1. A large language model (LLM) for correcting
the sentence.

2. An embeddingmodel for generating sentence-
level embeddings.

3. Memory modules M1 and M2 for storing nec-
essary information.

Initially, M1 is populated with gold-standard
sentences. M2 is empty initially and is updated as
the system performs corrections. The operational
aspects of our system include sentence correction,
memory management, and hyperparameter tuning.

4.1 Sentence Correction
The error correction is performed using the follow-
ing steps:

1. The user provides an incorrect sentence as
input. Embedding model generates an n-
dimensional sentence-level embedding for
the input.

2. k1 and k2 records are retrieved from mem-
ory modules M1 and M2 respectively. These
retrieved records are included in the prompt
along with task-specific instructions.

3. The LLM generates a corrected version of
the sentence based on the constructed prompt.
The system then waits for human feedback on
the generated correction.

4. The human feedback is considered positive,
either because the user confirms that the
LLM’s correction is accurate or the user man-
ually provides the correct version, the system
adds the (incorrect, corrected) sentence pair
to the human-curated dataset.

5. Additionally, the sentence pair (incorrect, cor-
rected), along with an embedding for the in-
correct sentence, is stored in memory module
M2 if the condition for writing into M2 is sat-
isfied.

4.2 Memory Management
Memory plays an important role in the overall per-
formance of the system. The memory modules
M1 and M2 function as long-term memory, while
the prompt serves as a form of short-term memory
(Wu et al., 2025).
The purpose of Memory module M1 is to pro-

vide context for generating the response. To pre-
serve M1’s integrity and avoid introducing errors,
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it is kept as a read-only memory. M2 gives the sys-
tem the ability of non-parametric continual learn-
ing (Gutiérrez et al., 2025). Corrections stored
by M2 act as few-shot examples for future correc-
tions.

4.2.1 Memory Read
Let q ∈ Rn be the sentence embedding correspond-
ing to the incorrect sentence (user input), and let
mi ∈ Rn denote the embedding stored for the i-th
record in memory.
A semantic search is performed by computing

the distance between q and each mi. The top-k
most similar records are retrieved based on this dis-
tance.
We use cosine-distance as a distance matrix in

our experiments. The distance between the incor-
rect sentence and a memory record is defined as:

d(q,mi) = 1− q ·mi

∥q∥ ∥mi∥
(1)

4.2.2 Memory Write
Among the two memory modules, only M2 gets
updated over time. The following considerations
are taken into account while writing into M2:

1. If the correction generated by the LLM is in-
correct, storing it provides no value and may
degrade the quality of memory.

2. If a similar correction already exists in mem-
ory, adding another similar record can lead to
redundancy.

3. If the correction receives positive feedback
from the user, it is considered valuable and
is stored in memory.

Let q denote the incorrect sentence (user input)
and r be the response generated by the LLM. Let
m

(1)
1 ,m

(1)
2 , . . . ,m

(1)
k1

represent the embeddings of
the top-k1 records retrieved from memory M1, and
m

(2)
1 , . . . ,m

(2)
k2

represent the embeddings of the
top-k2 records retrieved from memory M2. Con-
sider the logical statements P , Q, and R :

P :
1

k1

k1∑

i=1

d(q,m
(1)
i ) ≤ δ1, wherem(1)

i ∈ Rn

The statement P follows a hypothesis that if the
average distance between embeddings of the incor-
rect sentence and the top-k1 retrieved records from

M1 is below a threshold δ1, then the likelihood of
generating an accurate correction is higher.

Q : min
1≤i≤k2

d(r,m
(2)
i ) ≥ δ2, wherem(2)

i ∈ Rn

The statementQ ensures that even the most similar
record in M2 is at least δ2 away from the LLM’s
response to avoid redundancy in memory.

R =

{
TRUE if the user gives positive feedback
FALSE otherwise

Based on these statements, the final condition
for writing into memory module M2 is given by,

(
P ∨R

)
∧Q

If this condition is satisfied, a record consisting of
the incorrect sentence, the corrected sentence, and
the embedding for the incorrect sentence is stored
in M2.

4.3 Hyperparameter Tuning
The system requires the following hyperparame-
ters to be tuned for achieving a good performance
with time:

k1, k2: Number of records (gold-standard sen-
tences) retrieved from M1 and number of records
(few-shot examples) retrieved from M2, respec-
tively.

δ1: The value of δ1 was initially set to a low
threshold and gradually increased as the number
of examples stored in M2 grew. As the number of
records in the memory module M2 increases, the
variety of records within M2 should also increase,
since the parameter δ2 prevents redundancy in this
module. We hypothesize that this increased vari-
ety improves the relevance of the records retrieved
fromM2. As more relevant few-shot examples are
included in the prompt, the system should be able
to handle increasingly difficult examples.
Furthermore, as the quality and diversity of the

records stored in M2 improve, the LLM should
be able to correct difficult examples even when
the records retrieved from memory module M1

are semantically distant from the user input. Con-
sequently, δ1, which ensures the relevance of
the records retrieved from M1, can be made less
stringent—that is, it can be increased.
This can be illustrated with the following exam-

ple.
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Suppose that the few-shot examples retrieved
fromM2 are of very high quality, but the input sen-
tence is quite semantically distant from those re-
trieved fromM1, and the logical statement P (Sec-
tion 4.2) becomes false. This results in the mem-
ory write condition being evaluated as false. How-
ever, since the few-shot examples retrieved from
M2 are of high quality, the likelihood of producing
an accurate correction remains high and, therefore,
these examples should be stored in M2.
We employed three heuristics to update δ1. The

first heuristic kept δ1 constant, which contradicted
the hypothesis. The second heuristic increased δ1
linearly with the number of stored examples. The
third heuristic increased δ1 exponentially. Let t be
the total number of records stored in M2, and let
δ
(0)
1 be the initial value of δ1. The value of δ

(t)
1 in

each case is defined as:

δ
(t)
1 = δ

(0)
1 (Constant)

δ
(t)
1 = δ

(0)
1 + αt (Linear)

δ
(t)
1 = δ

(0)
1 + α×

(
eαt − 1

)
(Exponential)

The value of α, which controls the scaling of the
update function, was set based on the total num-
ber of sentences the systemwas expected to correct
during its operation.

δ2: This threshold was initialized with a suitable
value and kept constant throughout the operation
of the system.

5 Experiments and Results

5.1 Evaluation Metrics
We use M2 (max-match) score (Dahlmeier and
Ng, 2012) for evaluating our system3. Since no
public error annotation tools exist for Gujarati,
we adapted the Error Annotation Toolkit (ERRANT)
(Bryant et al., 2017). We used a rule-based stem-
mer, a rule-based lemmatizer backed by the Uni-
morph dataset (Batsuren et al., 2022) as a dic-
tionary, and a transformer-based POS and morph
model (Baxi et al., 2024) for implementation. We
follow the error classes mentioned in Bryant et al.,
2017. While the output can contain misclassifi-
cations, it enables coarse-grained error-type analy-
sis for Gujarati. Our implementation incorporates
two Gujarati-specific error types to further classify
spelling errors: SPELL:MATRA for mātrā related
errors (e.g., દીવસ- dīvasa → Ĭદવસ- divasa) and

3https://github.com/nusnlp/m2scorer

Figure 4: Size of M2 with number of sentences cor-
rected for three heuristics

SPELL:ANUSVARA for anusvāra related errors (e.g.,
અબર- abara→અંબર- aṁbara).

5.2 Setup and Results
We conducted experiments using the GPT-4o-mini
model. Sentence-level embeddings were gener-
ated using the multilingual jina-embeddings-v3
model (Sturua et al., 2024). Zero-shot perfor-
mance of GPT-4o-mini model on the evaluation
dataset was taken as a baseline. As shown in Ta-
ble 2, Chain-of-Thought prompting gave a small
improvement.
We continued experiments with Chain-of-

Thought prompting by first incorporating the
memory module M1, which contained 10,000
gold-standard Gujarati sentences. We initialized
δ
(0)
1 to 0.3 and δ2 to 0.1, and we arbitrarily set
k1 = 5 and k2 = 2 to explore the best update
strategy for δ1. The system was then provided
with 10,000 erroneous sentences for correction to
populate M2. As described in Section 4.3, δ1 is
updated using three different heuristics. To ob-
serve the system’s behavior accurately, we relied
primarily on the human-annotated evaluation set,
as small changes might not be reliably captured
on the synthetic dataset due to inherent noise. The
observations are shown in Table 3. Observations
indicate that an exponential increase in δ1 gives
the best results.
Figure 4 illustrates the size of M2 with the num-

ber of sentences corrected. We observe that the sys-
tem started storing most of the sentences into the
memory in case of linear and exponential increase
after hitting a certain value of δ1; it is likely due to
the behaviour of the embedding model.
After finalizing the update strategy for δ1, we

tuned the hyperparameters k1 and k2. We per-
form a grid search over the set {0, 1, 3, 5, 7} ×
{0, 1, 3, 5, 7} to observe the system’s behavior
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Experiment name Human annotated Synthetic
P R F0.5 P R F0.5

GPT-4o-mini zeroshot (baseline) 46.67 31.41 42.53 29.64 28.05 29.30
GPT-4o-mini Chain-of-Thought 48.83 30.26 43.49 30.03 27.25 29.43
GPT-4o-mini with M1 and M2 58.68 41.61 54.43 32.46 31.22 32.20
Finetuned mT5-base 38.96 12.99 27.83 74.62 50.03 67.94

Table 2: Comparison of the system’s performance with the baseline, Chain-of-Thought prompting and fine-tuned
mT5 model performance on human-annotated and synthetic evaluation sets.

Figure 5: Performance of the system on various error types

Heuristic δ
(0)
1 α P R F0.5

constant 0.3 – 54.82 38.64 50.58
exponential 0.3 0.0035 57.01 40.72 52.79
linear 0.3 0.0001 55.36 40.72 51.65

Table 3: Comparison of heuristic strategies for updating
δ1, evaluated using M2 score: Precision, Recall, and
F0.5.

across different combinations of k1 and k2 on the
human-annotated evaluation set. We observe the
maximum F0.5 score of 54.43 for k1 = 7 and
k2 = 1. Additionally, we found that setting k1
to zero while varying k2 improves the F0.5 score
by 3.52 points for k2 = 5. This indicates that the
LLM’s performance benefits from few-shot exam-
ples generated by the LLM itself.
We compared the system’s performancewith the

conventional approach of fine-tuning transformer-
based models. Specifically, we fine-tuned the mul-
tilingual mT5-base model (Xue et al., 2021). For
training and validation, we introduced errors in
gold-standard sentences as described in Section 3
and combined erroneous sentences with the cor-
responding correct sentences. It resulted in a la-

beled dataset of 20,000 samples. This dataset was
then split into training and validation sets using an
80/20 ratio. The model was trained for 10 epochs
with a batch size of 8 and a learning rate of 3×10−5.
The model performed well on the synthetic evalu-
ation set. It is likely due to the method used for
introducing errors was the same for the synthetic
dataset as well as the model’s training data.
Table 4 shows the output of the system. To better

understand its behavior, we analyzed the system
using the Gujarati ERRANT adaptation. The error-
type-wise performance of our system is shown in
Figure 5. We observe that the system performed
relatively well in the case of inflection and other
morphological errors. However, it struggled to
interpret gender and number for less commonly
used nouns; for example,ભસ્મ (bhasma— ash) is
feminine, but the system takes it as neuter. Addi-
tionally, it encountered difficulties with language-
specific usages, such as બળૠણામ (pranạ̄m— a noun
for greeting) — which is masculine and is always
used as plural in Gujarati. The system performed
well in spelling and punctuation errors, except for
some tricky cases. For example, પાણી (pānị̄)
means water, while પાિણ (pānị) means hand. The
system was unable to correct these errors based on
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Input: સંતાતા સૂયર્ સોનેરી રંગ િક્ષિતજ ઉપર છાંટી હતી.
santātā sūrya sonerī raṅga ksịtija upar chānṭị̄ hatī.
Translation: The setting sun was spreading a golden hue over the horizon.

Reference: સંતાતા સૂયૉળૠ સોનેરી રંગ િક્ષિતજ ઉપર છાંડૠો હતો.
santātā sūrye sonerī raṅga ksịtija upar chānṭỵo hato.
Translation: The setting sun had spread a golden hue over the horizon.
સંતાતા સૂયર્એ સોનેરી રંગ િક્ષિતજ ઉપર છાંડૠો હતો.
santātā sūryae sonerī raṅga ksịtija upar chānṭỵo hato.
Translation: The setting sun had spread a golden hue over the horizon.

zeroshot: સંતાતા સૂયર્ સોનેરી રંગ િક્ષિતજ ઉપર છાંટતો હતો.
santātā sūrya sonerī raṅga ksịtija upar chānṭạto hato.
Translation: The setting sun was scattering a golden hue over the horizon.

Our system: સંતાતા સૂયૉળૠ સોનેરી રંગ િક્ષિતજ ઉપર છાંડૠો હતો.
santātā sūrye sonerī raṅga ksịtija upar chānṭỵo hato.
Translation: The setting sun had spread a golden hue over the horizon.

Table 4: Example illustrating system correction compared to the baseline. While the LLM produces an incorrect
correction, our system successfully corrects the sentence.

context. We observe that the system often leaves
even simple word-order errors uncorrected. The
next section presents the system’s ablation study.

5.3 Ablation Study

Configuration P R F0.5
Removing M2 55.59 40.21 51.64
Removing M1 51.56 31.97 45.93
Without CoT 53.58 36.60 49.03

Table 5: Ablation study showing the effect of each com-
ponent.

We conducted an ablation study to assess the ef-
fects of the prompting technique andmemorymod-
ules in our system. Specifically, we evaluated the
system under three configurations as shown in Ta-
ble 5. Removing M2 decreased F0.5 by 2.8 points,
and substituting Chain-of-Thought promptingwith
a simple technique decreased F0.5 by 5.4 points.
The removal of M1 decreased F0.5 by 8.5 points.

6 Conclusion and Future Work

In this work, we propose a system for Gujarati
GEC. Our approach integrates non-parametric
long-term and short-term memory modules with
LLMs. The system requires embedding models,
and they are comparatively easier to obtain even
for low-resource languages. The integration of

memory modules led to significant improvements.
It increased the M2 score by 11.9 points on the
human-annotated dataset and 2.9 points on the syn-
thetic dataset.
The modular architecture of our system allows

easy replacement of the embedding model and
LLM. This makes it possible to adapt the system
to other languages. Such flexibility opens new op-
portunities for developing GEC systems for other
low-resource languages with minimal labeled data.
Our ERRANT implementation for Gujarati will
help to improve the interpretability of future work
on Gujarati GEC. Additionally, we provide a de-
tailed analysis of the system’s performance across
various error categories. This highlights current
challenges and identifies areas for future research
in Gujarati GEC. The proposed approach can be
adopted for other similar Indian languages also,
e.g., Hindi and Marathi. With increased use of the
system, the proposed memory-based model can be
used to generate high-quality error data, which can
further be used to develop supervised models.

7 Limitations

The proposed work has the following limitation:
our adaptation of the ERRANT toolkit for Gujarati
relies on an existing Part-of-Speech tagger, which
may introduce noise in error type classification.
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A Implementation Details

We accessed GPT-4o-mini model via the Ope-
nAI API. The LangChain4 framework was used to
build prompting pipelines and streamline model in-
ference. For implementing the memory modules
M1 and M2, we employed vector database pow-
ered by Milvus5, accessed via the Zilliz cloud
service6.
We fine-tuned the mT5-base model in the

Google Colab environment using a T4 GPU with
16 GB of RAM.

B Prompt Templates

B.1 Zeroshot Prompt Template
Task: Correct spelling and grammatical
errors in the given Gujarati sentence.

Instructions:

* Only fix errors, do not modify cor-
rect sentences, or make unnecessary
changes.

* Be confident in corrections. If unsure,
leave the sentence unchanged.

* Output only the corrected sentence, no
explanations or extra text.

Input Sentence: {sentence_to_correct}

B.2 The Final Prompt Template
Task: Correct spelling and grammatical
errors in the given Gujarati sentence.

Instructions:

* Only fix errors, do not modify cor-
rect sentences, or make unnecessary
changes.

* Be confident in corrections. If unsure,
leave the sentence unchanged.

* Output only the corrected sentence, no
explanations or extra text.

Example: પહેલો વરસ્યો વરસાદ કે
રાફડામાંથી પાંખવાળો મકોડા આકાશે
ઊણૠા આખો Ĭદવસ ઊણૠા, એકાદ રાત
પણ ઉણૠા; બીજે Ĭદવસે તેનો પાંખો જ્યાં
ત્યાં રખડતી આવી જોવામાં?

Let’s think step-by-step.
4https://www.langchain.com/
5https://milvus.io/
6https://zilliz.com/
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1. 'વરસાદ' is object and should be pre-
ceded by 'વરસ્યો' (verb).

2. 'પાંખવાળો' should be replaced
by 'પાંખવાળા' as 'મકોડા' is plural of
'મકોડો'.

3. There should be a semicolon (;) after
'આકાશે ઊણૠા', because the first clause
ends and both clauses are not connected
with a connector.

4. There will be a dirgha 'ઊ' in 'ઉણૠા'.

5. 'પાંખો' is plural and feminine, hence
'તેનો' will be replaced by 'તેની'.

6. 'આવી' (verb) should be preceded by
'જોવામાં', which is a verb used as an ad-
jective (called krudant in Gujarati).

7. The overall sentence is affirmative, so
the question mark (?) will be removed
and a period should be added.

corrected sentence: પહેલો વરસાદ વરસ્યો
કે રાફડામાંથી પાંખવાળા મકોડા આકાશે
ઊણૠા; આખો Ĭદવસ ઊણૠા, એકાદ રાત
પણ ઉણૠા; બીજા Ĭદવસે તેની પાંખો જ્યાં
ત્યાં રખડતી જોવામાં આવી.

Some examples for analysis:
{data_from_M2}

Also, refer to these grammatically
correct Gujarati sentences to under-
stand the Gujarati grammar better:
{data_from_M1}

Input Sentence: {sentence_to_correct}

C ERRANT for Gujarati

Our adaptation of the ERRANT toolkit extends
the original implementation for use with the Gu-
jarati language.7 The original version relies on
the spaCy pipeline for part-of-speech tagging, to-
kenization, and morphological analysis, which is
not available for Gujarati. Therefore, we imple-
ment a custom pipeline tailored to Gujarati. We
use a simple tokenizer and a rule-based stemmer
from the Gujarati NLP Toolkit8. For lemmatiza-
tion, we design a rule-based lemmatizer using the
Unimorph dataset as a dictionary, which includes
16,802 inflected forms of verbs, adjectives, and
nouns. Additionally, we use the Hunspell Gujarati

7https://github.com/chrisjbryant/errant
8https://github.com/Rutvik-Trivedi/

Gujarati-NLP-Toolkit

dictionary9 to identify spelling errors. Figure 6 il-
lustrates an example of error tagging performed by
our ERRANT adaptation.

9https://github.com/harshkothari410/
gu-hunspell
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Figure 6: Example illustrating the error-annotations generated by the ERRANT toolkit for a given input sentence
with multiple reference corrections.
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