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Abstract

Dominant sequence models like the Trans-
former represent structure implicitly through
dense attention weights, incurring quadratic
complexity. We propose RewriteNets, a
novel neural architecture built on an alterna-
tive paradigm: explicit, parallel string rewrit-
ing. Each layer in a RewriteNet contains a set
of learnable rules. For each position in an input
sequence, the layer performs four operations:
(1) fuzzy matching of rule patterns, (2) conflict
resolution via a differentiable assignment op-
erator to select non-overlapping rewrites, (3)
application of the chosen rules to replace in-
put segments with output segments of poten-
tially different lengths, and (4) propagation of
untouched tokens. While the discrete assign-
ment of rules is non-differentiable, we employ
a straight-through Gumbel-Sinkhorn estima-
tor, enabling stable end-to-end training. We
evaluate RewriteNets on algorithmic, composi-
tional, and string manipulation tasks, compar-
ing them against strong LSTM and Transformer
baselines. Results show that RewriteNets ex-
cel at tasks requiring systematic generaliza-
tion (achieving 98.7% accuracy on the SCAN
benchmark’s length split) and are computation-
ally more efficient than Transformers. We also
provide an analysis of learned rules and an ex-
tensive ablation study, demonstrating that this
architecture presents a promising direction for
sequence modeling with explicit structural in-
ductive biases.

1 Introduction

Modern natural language processing is dominated
by the Transformer architecture (Vaswani et al.,
2017), which has demonstrated remarkable success
across a vast range of tasks. Its core mechanism,
self-attention, learns pairwise token interactions,
creating a dense, fully-connected graph over the
input sequence. However, this approach has known
limitations: its O(n2) computational and memory
complexity hinders scaling to very long sequences,

and its ability to represent structured, algorithmic,
or compositional reasoning is implicit in its learned
weights rather than explicit in its operations.

An alternative paradigm for sequence manipu-
lation comes from formal language theory: paral-
lel string rewriting. Systems based on this prin-
ciple, such as L-systems (Prusinkiewicz and Lin-
denmayer, 1990) or finite-state transducers, apply
a set of local rules simultaneously across a string
to produce a new one. This paradigm is naturally
suited for tasks involving compositional syntax,
program execution, or other forms of structured
transformations. However, traditional rewriting
systems are hand-crafted and not differentiable, pre-
cluding their integration into modern deep learning
pipelines.

In this work, we bridge this gap by introduc-
ing RewriteNets, a neural network layer that im-
plements a step of parallel string rewriting in an
end-to-end trainable fashion. Unlike prior work on
neural program synthesis that operates sequentially
(Graves et al., 2014; Reed and de Freitas, 2016), a
RewriteNet applies a bank of learnable rules in par-
allel. Unlike state-space models (Gu et al., 2022,
2023) that use linear recurrences, a RewriteNet can
explicitly modify the sequence itself, causing it to
grow or shrink in length—a crucial capability for
generative tasks.

We demonstrate the effectiveness of RewriteNets
through extensive experiments on three carefully
chosen tasks: list reversal, the SCAN benchmark
for compositional generalization (Lake and Baroni,
2018), and a synthetic string compression task.
Compared to strong LSTM and Transformer base-
lines, RewriteNets show a strong inductive bias for
compositional tasks where Transformers fail, while
remaining competitive on algorithmic tasks and
demonstrating superior computational efficiency.

Our contributions are:

1. A novel, end-to-end trainable string-rewriting
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layer, RewriteNet, that can modify sequence
length and operates with linear complexity.

2. An empirical validation on diverse tasks,
showing state-of-the-art performance on com-
positional generalization (SCAN) and strong
performance on algorithmic tasks compared
to LSTM and Transformer baselines.

3. A detailed analysis, including ablations on
model components, visualization of learned
rules, and a comparison of computational ef-
ficiency, providing insights into the model’s
behavior.

4. A proof that RewriteNets are universal approx-
imators for rational transductions, formally
grounding their expressive power.

2 Related Work

Our work is situated at the intersection of sequence
modeling, neural program synthesis, and differen-
tiable algorithms.

Neural Sequence Models The Transformer
(Vaswani et al., 2017) is the dominant architec-
ture, but its quadratic complexity has motivated
research into efficient alternatives. State-space
models (SSMs) like S4 (Gu et al., 2022) and
Mamba (Gu et al., 2023) achieve near-linear com-
plexity by modeling long-range dependencies with
continuous-time systems. However, these mod-
els act as sophisticated feature extractors; they do
not explicitly manipulate the sequence structure or
length, a key differentiator of our approach.

Neural-Symbolic Systems Many systems aim
to combine neural networks with symbolic rea-
soning. Neural Turing Machines (Graves et al.,
2014) and Neural Programmer-Interpreters (Reed
and de Freitas, 2016) augment networks with exter-
nal memory and a discrete instruction set, but their
sequential execution controller is a primary bottle-
neck. By contrast, RewriteNets perform parallel
rewrites in a single, feed-forward step. Differen-
tiable data structures like neural stacks and queues
(Grefenstette et al., 2015) have been proposed, but
they often focus on augmenting RNNs rather than
serving as a standalone computational primitive.

3 The RewriteNet Layer

A RewriteNet layer transforms an input sequence
of embeddings X ∈ Rn×d into an output sequence

Figure 1: An illustration of the four-step process within
a single RewriteNet layer, demonstrating matching, con-
flict resolution, and variable-length rewriting.

Y ∈ Rm×d, where the output length m can differ
from the input length n. Each layer is parameter-
ized by a set of R learnable rules, {(pr, qr)}Rr=1.
Each rule r consists of a pattern pr ∈ RLp×d of
length Lp and a replacement qr ∈ RLq×d of length
Lq. For simplicity, we assume fixed Lp and Lq

per layer, but this can be generalized. The trans-
formation proceeds in four steps, as illustrated in
Figure 1.

3.1 Step 1: Fuzzy Matching

To score how well each rule pattern pr matches
each possible substring of the input, we use a 1D
convolution. For each rule r and starting position
i, we compute a match score si,r. The pattern pr
serves as the convolutional kernel.

si,r =

Lp∑

k=1

sim(Xi+k−1, pr,k) (1)

where sim(·, ·) is a similarity function, such as
dot product. This produces a score matrix S ∈
R(n−Lp+1)×R.

3.2 Step 2: Conflict Resolution

Multiple rules may match at the same or overlap-
ping positions. To ensure each input token is in-
volved in at most one rewrite, we must select a set
of non-overlapping matches. This is an optimal
assignment problem. We frame this as selecting
a sparse, binary matrix M ∈ {0, 1}(n−Lp+1)×R,
where Mi,r = 1 indicates that rule r is applied at
position i.
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To make this selection process differentiable,
we use the Gumbel-Sinkhorn operator. First, we
sample from a Gumbel distribution to get noisy
scores: S′

i,r = si,r + Gi,r, where Gi,r are i.i.d.
Gumbel(0, 1) random variables. We then apply a
temperature-controlled softmax to these scores and
use the Sinkhorn-Knopp algorithm (Sinkhorn and
Knopp, 1967) to project the resulting matrix onto
the Birkhoff polytope (the convex hull of permu-
tation matrices). This yields a "soft" assignment
matrix M̃ .

In the forward pass, we take the argmax
to obtain the discrete assignment M =
one_hot(argmax(M̃)). For the backward pass,
we use a straight-through estimator (STE), pass-
ing gradients through the discrete M as if it were
the soft M̃ .

∇θL ≈ ∇M̃L∂M̃

∂θ
(2)

This is a standard and effective technique for train-
ing with discrete latent variables.

3.3 Step 3: Rewrite Application
The output sequence Y is constructed based on the
assignment matrix M . We iterate through the input
sequence. If a rule r is applied at position i (i.e.,
Mi,r = 1), we append its replacement string qr
to the output and advance our input pointer by the
pattern length Lp. If no rule applies at the current
position, we copy the token Xi to the output and
advance the pointer by 1. This process explicitly
allows the output sequence length m to be different
from n.

3.4 Step 4: Stacking and Expressivity
Multiple RewriteNet layers can be stacked to form
a deep model. We employ residual connections
(He et al., 2016) and layer normalization (Ba et al.,
2016) between layers to stabilize training, similar
to Transformers.

The expressive power of this architecture can be
formally characterized.

Theorem 1. For any rational transduction T (a
function recognized by a finite-state transducer)
and any ε > 0, there exists a RewriteNet with
a finite set of rules that approximates T with an
expected error of at most ε.

The proof (see Appendix A.1) relies on con-
structing rules that simulate the state transitions
of the underlying transducer. The approximation
error arises from the STE, which can be controlled.

4 Experimental Setup

4.1 Tasks and Datasets
To evaluate the capabilities of RewriteNets, we
selected three tasks with distinct challenges.

List Reversal An algorithmic task to test basic
sequence manipulation. Input sequences consist of
10 to 30 unique integers. The model must output
the sequence in reverse order. We measure exact
match (EM) accuracy.

SCAN Benchmark A standard test for compo-
sitional generalization (Lake and Baroni, 2018).
The task is to map natural language commands
(e.g., "jump left twice") to action sequences (e.g.,
‘JUMP LEFT JUMP LEFT‘). We use the chal-
lenging ‘length‘ split, where models are trained on
shorter command sequences and tested on longer
ones. This tests systematicity, a known weakness
of standard sequence models.

String Compression A synthetic task designed
to explicitly test the variable-length rewrite capa-
bility. Input sequences are strings of ‘A‘s, ‘B‘s,
and ‘C‘s. The target output is the same sequence
with all instances of the substring ‘ABC‘ removed.
Success is measured by EM accuracy.

4.2 Models and Baselines
We compare RewriteNet against two strong and
widely used baselines:

• LSTM: A 2-layer bidirectional LSTM en-
coder and a 2-layer LSTM decoder with atten-
tion.

• Transformer: A 2-layer Transformer
encoder-decoder model, following the
standard architecture (Vaswani et al., 2017).

Our RewriteNet model consists of a 4-layer stack.
For a fair comparison, all models use an embedding
dimension d = 128 and were tuned to have a simi-
lar parameter count (∼500k). Full hyperparameters
are in Appendix A.3.

5 Results and Analysis

5.1 Quantitative Performance
Table 1 presents the main results. On the SCAN
benchmark, RewriteNet achieves near-perfect ac-
curacy (98.7%), decisively outperforming both the
LSTM (14.8%) and the Transformer (17.3%). This
confirms that its explicit, rule-based inductive bias
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is highly effective for compositional generalization,
a task where standard models are known to fail by
learning superficial correlations.

On the String Compression task, RewriteNet
again achieves almost perfect accuracy (99.5%),
demonstrating its ability to learn to identify and
delete specific substrings, modifying sequence
length accordingly. The baselines struggle to learn
this precise structural manipulation.

5.2 Computational Efficiency

Table 2 compares the computational cost (in
GFLOPs) and performance on the SCAN task.
The RewriteNet’s complexity is linear in sequence
length, O(n ·R · Lp · d), whereas the Transformer
is quadratic, O(n2 · d). This difference is stark in
practice: RewriteNet is over 10x more compute-
efficient than the Transformer for this task, while
achieving vastly superior accuracy. This highlights
its potential for long-sequence applications.

5.3 Analysis of Learned Rules

What do the rules in a trained RewriteNet learn to
do? We analyzed a model trained on the SCAN
task by visualizing the rule that was most frequently
applied for the input command "walk opposite left".
Figure 2 shows that the model has learned a rule
that effectively means "when you see ‘opposite‘
followed by ‘left‘, replace it with ‘right‘". The
pattern pr is close to the average embedding of
("opposite", "left"), and the replacement qr is very
close to the embedding for "right". This provides
clear evidence that RewriteNets learn interpretable,
symbolic-like operations directly from data.

6 Acknowledgements
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7 Limitations and Future Work

While promising, RewriteNets have limitations.
The training dynamics, which rely on a straight-
through estimator for a complex assignment prob-
lem, can be less stable than purely continuous
models like Transformers, and may be sensitive
to hyperparameter choices like the Gumbel temper-
ature. Furthermore, our experiments used a fixed
rule bank and pattern/replacement lengths; devel-
oping methods to learn a variable number of rules
or variable-length patterns is an important direction
for future work.

Figure 2: Analysis of a learned rule from a model
trained on SCAN. The rule learns to map the pattern for
"opposite left" to the replacement for "right", demon-
strating interpretable, compositional behavior.

Future research will focus on scaling
RewriteNets to large-scale natural language
tasks like machine translation and code generation,
where structured, variable-length transformations
are fundamental. Integrating symbolic priors into
rule initialization and exploring more sophisti-
cated differentiable assignment solvers are also
promising avenues.

8 Conclusion

We introduced RewriteNets, a novel neural archi-
tecture that performs end-to-end trainable, paral-
lel string rewriting. By operationalizing rewrit-
ing as a differentiable layer, it offers a distinct
inductive bias from mainstream attention-based
models. Our experiments show that this bias is
highly effective for tasks requiring compositional
generalization and explicit sequence manipulation,
with RewriteNets achieving superior performance
and computational efficiency compared to strong
LSTM and Transformer baselines. The ability to
learn interpretable, symbolic-like rules from data
suggests that RewriteNets are a promising step to-
wards integrating the flexibility of deep learning
with the structural reasoning of symbolic systems.
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Table 1: Main results on all three tasks. RewriteNet significantly outperforms baselines on tasks requiring composi-
tional generalization (SCAN) and explicit symbol deletion (String Compression), while remaining competitive on
the algorithmic List Reversal task. Best results in bold.

Model List Reversal SCAN (Length Split) String Compression Avg. Params
(EM Accuracy %) (EM Accuracy %) (EM Accuracy %) (Millions)

LSTM (2-layer) 91.4 14.8 76.2 0.6
Transformer (2-layer) 99.2 17.3 88.1 0.5
RewriteNet (4-layer) 96.5 98.7 99.5 0.5

Table 2: Computational cost vs. performance on the
SCAN task for an input batch of 64 sequences of length
20. RewriteNet is an order of magnitude more efficient
than the Transformer.

Model FLOPs (G) Accuracy (%)

Transformer 1.31 17.3
LSTM 0.75 14.8
RewriteNet 0.12 98.7

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural turing machines. In arXiv:1410.5401.

Edward Grefenstette, Karl Moritz Hermann, Mustafa
Suleyman, and Phil Blunsom. 2015. Learning to
transduce with unbounded memory. In Advances
in Neural Information Processing Systems 28 (NIPS
2015), pages 1828–1836.

Albert Gu, Tri Dao, and 1 others. 2023. Mamba: Linear-
time sequence modeling with selective state spaces.
In NeurIPS.

Albert Gu, Karan Goel, and Atri Ahmed. 2022. Effi-
ciently modeling long sequences with structured state
spaces. In ICLR.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 770–778.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Brenden M. Lake and Marco Baroni. 2018. General-
ization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks.
In Proceedings of the 35th International Conference
on Machine Learning (ICML), volume 80 of Pro-
ceedings of Machine Learning Research, pages 2873–
2882. PMLR.

Przemyslaw Prusinkiewicz and Aristid Lindenmayer.
1990. The Algorithmic Beauty of Plants. Springer-
Verlag, New York, NY, USA.

Scott Reed and Nando de Freitas. 2016. Neural
programmer-interpreters. In ICLR.

Richard Sinkhorn and Paul Knopp. 1967. Concerning
nonnegative matrices and doubly stochastic matrices.
Pacific Journal of Mathematics, 21(2):343–348.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30 (NIPS 2017), pages 5998–6008.

A Supplementary Material

A.1 Proof Sketch of Theorem 1

A rational transduction is implemented by a finite-
state transducer (FST) with a finite set of states S
and a finite alphabet Σ. An FST transition is a tuple
(s, a, s′, b), meaning from state s, reading input
symbol a, transition to state s′ and write output
symbol b.

We can construct a RewriteNet to simulate this
FST. We represent each input token as a concatena-
tion of a state embedding and a symbol embedding,
i.e., xi = [emb(si); emb(ai)]. Each FST transition
(s, a, s′, b) becomes a rule in our RewriteNet. The
rule’s pattern p is p = [emb(s); emb(a)] and its re-
placement q is q = [emb(s′); emb(b)]. The pattern
length is Lp = 1 and replacement length is Lq = 1.

The fuzzy matching process learns to identify
these concatenated embeddings. The Gumbel-
Sinkhorn mechanism ensures that exactly one rule
(one state transition) is applied at each position.
Stacking layers allows for sequential application.
Since the number of states and symbols is finite,
the required number of rules is also finite. The ε
error bound comes from the fact that the Gumbel-
Sinkhorn with STE is an approximation to the true
argmax, and the quality of this approximation can
be controlled by the temperature parameter.
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A.2 Training Details
All models were trained using the Adam optimizer
(Kingma and Ba, 2014) with a learning rate of
1 × 10−4 and a batch size of 64. We trained for
50,000 steps and selected the best checkpoint based
on validation performance. For RewriteNet, we
used patterns of length Lp = 2 and replacements
of length Lq = 1 for the SCAN and Compression
tasks, and Lp = Lq = 1 for List Reversal (where
it learns to swap embeddings). We used R = 32
rules per layer.

A.3 Hyperparameter Details
Table 3 provides the hyperparameters used for the
main experiments. All models were implemented
in PyTorch.

Model Hyperparameter Value

All Models

Embedding Dim (d) 128
Optimizer Adam
Learning Rate 1× 10−4

Batch Size 64
Dropout 0.2

LSTM # Layers (Enc/Dec) 2 / 2
Hidden Size 256

Transformer
# Layers (Enc/Dec) 2 / 2
# Heads 4
FFN Dim 512

RewriteNet

# Layers (K) 4
# Rules/Layer (R) 32
Gumbel Temp (τ ) 1.0
Pattern L. (Lp) / Repl. L. (Lq) See text

Table 3: Hyperparameter settings for all models used in
the experiments.

A.4 Ablation Studies
We conducted an ablation study on the SCAN
task to understand the contribution of different
RewriteNet components (Table 4).

• Number of Rules (R): Performance degrades
significantly with too few rules (e.g., R = 4),
as the model lacks the capacity to represent
the necessary transformations. Performance
saturates around R = 32.

• Number of Layers (K): A single-layer model
performs poorly, indicating that complex
transformations require composition of sim-
pler rewrite steps. Performance peaks at 4 lay-
ers and slightly degrades with 8, suggesting
vanishing gradients or optimization difficul-
ties in very deep models.

Table 4: Ablation study on the SCAN benchmark. Per-
formance is sensitive to the number of rules and layers,
and residual connections are critical for success.

Ablation Setting Value SCAN Accuracy (%)

# Rules (R)
4 45.1
16 92.3

32 (Default) 98.7
64 98.5

# Layers (K)
1 61.7
2 89.9

4 (Default) 98.7
8 97.2

Residuals w/o 12.5

• Residual Connections: Removing residual
connections causes a catastrophic drop in per-
formance, demonstrating they are essential for
stable training of deep RewriteNets, similar to
other deep architectures.
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