
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 432–445

December 20-24, 2025 ©2025 Association for Computational Linguistics

SemShareKV: Efficient KVCache Sharing for Semantically Similar
Prompts via Token-Level LSH Matching

Xinye Zhao
University of Notre Dame

xzhao24@nd.edu

Spyridon Mastorakis
University of Notre Dame

smastor2@nd.edu

Abstract

As large language models (LLMs) continue to
scale, the memory footprint of Key-Value (KV)
caches during inference has become a signif-
icant bottleneck. Existing approaches primar-
ily focus on compressing KV caches within a
single prompt or reusing shared prefixes or fre-
quently occurred text segments across prompts.
However, such strategies are limited in sce-
narios where prompts are semantically similar
but lexically different, which frequently occurs
in tasks such as multi-document summariza-
tion and conversational agents. We propose
SemShareKV, a KV cache sharing and com-
pression framework that accelerates LLM in-
ference by reusing KV cache in semantically
similar prompts. Instead of relying on exact
token matches, SemShareKV applies fuzzy to-
ken matching using Locality-Sensitive Hash-
ing (LSH) on token embeddings and incorpo-
rates Rotary Position Embedding (RoPE) to
better preserve positional information. By se-
lectively reusing relevant KV pairs from a refer-
ence prompt’s cache, SemShareKV reduces re-
dundant computation while maintaining output
quality. Experiments on diverse summarization
datasets show up to 6.25× speedup and 42%
lower GPU memory usage with 5k tokens input,
with negligible quality degradation. These re-
sults highlight the potential of semantic-aware
cache sharing for efficient LLM inference.

1 Introduction

Large Language Models (LLMs) have exhibited
a strong capability to understand and process hu-
man languages, and have been shown to perform
comparably to humans in several fields, such as
math inference, text memorization, information
extraction, story telling (Naveed et al., 2023). Re-
cently released LLMs have significantly advanced
in processing and comprehending extremely long
prompts. However, this introduces a notable chal-
lenge: increased computational demand due to the

quadratic time complexity of their Decoder-Only
Transformer architecture when handling lengthy
text sequences. The issue is further compounded
during inference, as the auto-regressive decoding
process repeats the computation for each newly
generated token (Luohe et al., 2024).

Existing KV cache optimization approaches
primarily focus on single-prompt compression
through various techniques: (Yang et al., 2024a)
leverage decaying KV importance across layers
for selective extraction (though with limited small-
batch gains), (Gim et al., 2024) employ restrictive
markup schemas for text chunk reuse, and (Yao
et al., 2024) propose deviation-based recomputa-
tion that requires impractical per-chunk precom-
putation for long inputs. Crucially, these methods
operate within the constrained paradigm of single-
prompt optimization, failing to exploit the sub-
stantial efficiency potential of cross-prompt cache
reuse, a significant oversight given the prevalence
of semantically similar queries in real-world appli-
cations where shared computational savings could
be substantial.

Motivated by this challenge, we aim to address
the following research question: Can we reuse
the precomputed KV cache for prompts that are
semantically similar?

To answer this question, we proposed
SemShareKV, a KV cache framework that can
reuse the cache from one prompt for another that is
semantically similar to each other via fuzzy token
match. It speeds up prefill phase and compress KV
cache in memory. We show that our method can
reduce the pre-fill phase time by 6.25× and save
42% GPU memory space. We make the following
contributions.

• We introduce SemShareKV, which explores
KV cache sharing across semantically similar
prompts based on fuzzy token match.

• We evaluate SemShareKV across multiple

432



datasets, demonstrating its effectiveness in
accelerating the prefill phase while simulta-
neously reducing KV cache size.

• We explored the role of position encoding in
KV cache by injecting it into vector embed-
dings.

2 Related Work

Prior research on KV cache optimization can be
categorized into three key directions: (i) Conven-
tional KVCache Compression, which focuses on
reducing the storage and computational overhead
of KV cache by applying quantization, pruning, or
other compression techniques; (ii) KVCache Shar-
ing, which explores methods to reuse KV cache
across different queries or tasks to improve effi-
ciency while maintaining response quality; and (iii)
KVCache Reusing, which investigates strategies
to adapt and re-purpose precomputed KV cache for
semantically similar inputs, minimizing redundant
computation while preserving model accuracy.

2.1 Conventional KVCache Compression

To address long-context processing, many works
propose optimizing inference by retaining only in-
formative tokens. Token-level compression often
uses attention-based token selection (Zhang et al.,
2023; Xiao et al., 2024; Li et al., 2024; Yang et al.,
2024a; Zhong et al., 2024), low-rank decomposi-
tion (Sun et al., 2024), or quantization (Zhang et al.,
2024; Wang et al., 2024). Model-level approaches
redesign architectures to improve reuse (Sun et al.,
2025; Yan et al., 2024), while system-level meth-
ods focus on memory and scheduling (Kwon et al.,
2023; Sheng et al., 2023). Recent work has high-
lighted the use of value vectors to facilitate com-
pression (Guo et al., 2024).

2.2 KVCache Sharing

Some also emphasize reusing portions of the cache
for future or similar queries and prompts. For ex-
ample, PromptCache (Gim et al., 2024) stores text
segments that appear frequently on an inference
server using a schema, although this approach ham-
pers usability, as users must conform their natural
language to the schema format. Mooncake (Qin
et al., 2024), KVSharer (Yang et al., 2024b) and
MiniCache (Liu et al.) exploit the high similarity
of attention scores among adjacent transformer lay-
ers to improve KV cache reuse. By consolidating

or sharing KV pairs between similar layers, these
methods improve memory efficiency and stream-
line token processing. However, their approaches
are restricted to sharing in the layer or text segment
within adjacent layers or the same LLM, limiting
the broader applicability; GPTCache (Regmi and
Pun, 2024), (Rasool et al., 2024) and (Bang, 2023)
utilize similarity search among queries to reuse KV
cache. However, they have a high probability of
missing a hit and require the entire query to be
similar, offering limited flexibility.

2.3 KVCache Reusing
Limited attention has been directed toward the
sharing of KV cache in LLMs. DroidSpeak (Liu
et al., 2024b) improves context sharing between
fine-tuned LLMs by identifying critical KV cache
layers and selectively recomputing them for ef-
ficient reuse while maintaining accuracy. LM-
Cache (Cheng et al., 2024) introduces a Knowledge
Delivery Network (KDN) to optimize KV cache
storage and transfer, allowing cost-effective knowl-
edge injection in LLM inference. CacheBlend (Yao
et al., 2024), KVShare (Yang et al., 2025), and
EPIC (Hu et al., 2024) rely on exact context
matching, which is unsuitable for real user sce-
narios. SentenceKV (Zhu et al., 2025) suffers from
inter-sentence information loss, as noted in the
CacheBlend. In contrast, SemShareKV introduces
RoPE in token matching to address this issue.

3 Observations and Insights

We present three key insights derived from our ex-
periments on three LLMs: Mistral-7B (Jiang et al.,
2023), LLaMA-3.1-8B (Grattafiori et al., 2024),
and MPT-7B (Team, 2023). These insights show
consistent patterns across different LLMs, support-
ing the generality of our observations.

Insights 1 HD tokens stay consistent across
layers.
When reusing KV caches from semantically simi-
lar prompts, we ensure the reused cache maintains
high fidelity with fully recomputed caches to pre-
vent performance degradation. To compare the
similarity between two KV matrices, we used our
augmented MultiNews (Bai et al., 2023) dataset,
where each sample consists of a pair of semanti-
cally similar prompts: the Target Prompt, which
serves as the primary input to the model, and the
Reference Prompt (Ref Prompt), which acts as the
semantically similar counterpart. For each of the

433



Simantically Similar E Cache

Identical E Cache

Target
Prompt

Vector 
Embeddings

RoPE

LSH

RoPE
Rearranged

Cache

Ref Prompt 
Cache

LLM

Evicted TokenRecomputed Token Reused Token

Layer 1

Layer 2

Layer N-1

Layer N

Vector 
Embeddings

Ref
 Prompt

Figure 1: Schematic Overview of SemshareKV

1-2 6-7
11

-12
16

-17
21

-22
26

-27
31

-32

Layer Pair

0.75

0.80

0.85

0.90

0.95

Sp
ea

rm
an

 C
or

re
la

tio
n

LLama3.1-8B
Mistral-7B
MPT-7B

Figure 2: Insight 1: High-deviation tokens remain con-
sistent across layers.

aforementioned LLMs, we first computed the KV
caches for the prompt pairs independently. Sub-
sequently, we calculated the deviations between
the KV caches of the target and reference prompts
using the previously mentioned L2 norm. Tokens
with the highest 40% deviation were identified as
High Deviation (HD) tokens. To further quantify
this observation, we computed the Spearman cor-
relation of HD tokens between adjacent layers. As
shown in Figure 2, adjacent layers exhibit relatively
high consistency in HD token positions.

Insights 2 Deeper layers focuses on fewer tokens
To analyze attention patterns across layers, we first
averaged the attention scores across all heads in
each layer and then computed the mean along the
first dimension, resulting in a one-dimensional vec-
tor per layer. To quantify this behavior, we intro-
duce Attention Recovery (AR), defined as follows:

AR = min{k ∈ [n] |
∑k

i=1 Ti
∑n

i=1 Ti

≥ Thres} (1)

Where T is a sorted vector of average atten-
tion scores for each token, Stotal represents the
total attention score derived from the averaged self-
attention matrices, and Thres indicates the thresh-
old of attention score. AR indicates the number of

0 5 10 15 20 25 30

Layer
0%

20%

40%

60%

80%

100%

At
te

nt
io

n 
Re

co
ve

ry
 (A

R)
LLama3.1-8B
Mistral-7B
MPT-7B

Figure 3: Insight 2: Deeper layers attend to fewer to-
kens.

tokens that must be summed from highest to low-
est based on their average attention scores in order
to cover Thres% of the total attention score. We
computed AR for each layer, and the results (Fig-
ure 3) reveal a consistent trend: as depth increases,
AR decreases across all three LLMs, despite minor
fluctuations. This suggests that deeper layers con-
centrate attention on progressively fewer tokens,
reflecting more selective focus.

Insights 3 Deeper layers have more redundant
information.

To reduce memory overhead from the KV cache,
a key optimization strategy is to remove tokens
containing redundant information. Such tokens
contribute minimally to the prediction of next to-
kens during decoding but occupy substantial GPU
memory. However, selective token retention risks
information loss, necessitating careful trade-offs
between memory savings and generation quality.
We evaluate three KV cache retention strategies
using perplexity: Constant, with equal retention
across layers; Exponential Growth, with higher re-
tention in shallow layers; and Exponential Decay,
with more retained in deeper layers. More details
of the three retention patterns can be found in Fig-
ure C2 in the Appendix.

We applied these three retention patterns to

434



0.9
0

0.8
5

0.8
0

0.7
5

0.7
0

0.6
5

0.6
0

0.5
5

0.5
0

0.4
5

0.4
0

0.3
5

0.3
0

0.2
5

0.2
0

0.1
5

0.1
0

0.0
5

Retention Ratio

1.1

1.2

1.3

1.4

1.5
Pe

rp
le

xi
ty

Uniform
Increasing
Decreasing

(a) Llama3.1-8B Retention Pattern

0.9
0

0.8
5

0.8
0

0.7
5

0.7
0

0.6
5

0.6
0

0.5
5

0.5
0

0.4
5

0.4
0

0.3
5

0.3
0

0.2
5

0.2
0

0.1
5

0.1
0

0.0
5

Retention Ratio

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Pe
rp

le
xi

ty

Uniform
Increasing
Decreasing

(b) Mistral-7B Retention Pattern

0.9
0

0.8
5

0.8
0

0.7
5

0.7
0

0.6
5

0.6
0

0.5
5

0.5
0

0.4
5

0.4
0

0.3
5

0.3
0

0.2
5

0.2
0

0.1
5

0.1
0

0.0
5

Retention Ratio

1.3

1.4

1.5

1.6

1.7

Pe
rp

le
xi

ty

Uniform
Increasing
Decreasing

(c) MPT-7B Retention Pattern

Figure 4: Insight 3: Deeper layers contain more redundant information.

LLMs and evaluated generation performance using
perplexity. Across all three models, the Exponen-
tial Decay pattern achieves the lowest perplexity,
indicating the best performance and suggesting this
pattern aligns with how LLMs interpret prompt
knowledge. Notably, MPT-7B exhibits a spike in
AR at the final layer due to its structural differences
from Mistral and Llama3.2: unlike the RoPE-based
models, MPT-7B employs ALiBi positional encod-
ing and a pre-norm design. ALiBi biases interme-
diate layers toward recent tokens, while the final
layer compensates by attending to more distant to-
kens, resulting in broader attention patterns and
higher AR values.

4 Methodology

4.1 Relevant Concepts

Our work focuses on three critical cache compo-
nents in modern LLMs:

• Key Cache (K): Key vectors encode the struc-
tural relationships among tokens in a sequence.

• Value Cache (V): Value vectors containing
the actual content representations aggregated
through attention weights. These preserve the
contextual information of each token.

• Embedding Cache (E): Contextualized embed-
dings capturing fundamental semantic and syn-
tactic relationships (Mikolov et al., 2013), pro-
viding the fundamental token representations
before transformer processing.

4.2 Model Overview

The design of SemShareKV, illustrated in Figure 1,
is based on three key insights from Section 3. Our
approach employs two core strategies:

• Recomputation Strategy (Insights 1 & 2): Pri-
oritize the recomputing of more tokens in shal-
low layers while reducing the recomputation in

deeper layers, reflecting the varying importance
of the layer depth in attention mechanisms.

• Retention Strategy (Insights 1 & 3): Preserve
more tokens in shallow layers while evicting to-
kens from deeper layers, optimizing memory us-
age without significant accuracy degradation.

SemShareKV stores received prompts and their cor-
responding contextualized E caches in CPU mem-
ory. When the LLM receives a new prompt as the
target prompt, it retrieves a reference prompt by
computing an LSH-distance-based similarity score
between the target’s contextualized E cache and
all stored E caches. The reference prompt with
the highest similarity is then loaded onto the GPU
along with its corresponding KV cache for reuse.

Once a reference prompt is retrieved,
SemShareKV first applies RoPE to the E
caches of both the target and reference prompts.
Then it uses LSH to match each token in the target
prompt to its most similar tokens in the reference
prompt. Based on these LSH mappings, the
precomputed KV cache of the reference prompt
is rearranged token by token and injected into
LLM transformer layers. On the first transformer
layer, all tokens undergo full recomputation.
The recomputed outputs are compared with the
rearranged cache values via L2 norm, identifying
high-deviation tokens for prioritized recomputation
in subsequent layers. Simultaneously, the system
evicts tokens with the lowest attention scores
from recent computations, optimizing KV cache
memory usage dynamically.

4.3 KVCache Sharing Challenge
The primary challenge in cross-prompt KV cache
sharing stems from length disparity between
prompts. Inspired by (Liu et al., 2024b), we in-
corporates positional encoding within the E Cache
to enable accurate token alignment while preserv-
ing contextual relationships.

435



Specifically, we use LSH to identify, for each
token in the target prompt, the most similar token
in the reference prompt based on their vector rep-
resentations. We use LSH for efficient token sim-
ilarity search. This process allowed us to reorder
the KV cache of the reference prompt to align with
the token sequence of the target prompt. Conse-
quently, the reordered KV cache matches the target
prompt’s length, with its key-value pairs entirely
derived from the original KV cache of the reference
prompt. The LLM uses the reordered KV cache to
the target prompt. Additional details on LSH are
provided in Appendix A.2.

4.3.1 Use Relative Position Encoding to
Facilitate Fuzzy Token Match

A fundamental limitation of naive matching using
the E cache arises from the absence of positional
context in its representation. Since raw vector em-
beddings lack inherent positional information, LSH
fails to maintain crucial sequential relationships
when identifying reference-target token correspon-
dences. This positional agnosticism in the E cache
consequently produces semantically inferior map-
ping results.

To address this, we introduce positional encod-
ing into the E cache to enhance fuzzy token match-
ing. Two widely used positional encoding strate-
gies are absolute positional encoding (Vaswani
et al., 2017), which embeds explicit position infor-
mation, and relative positional encoding (Su et al.,
2024), which captures positional relationships be-
tween tokens. In our work, we incorporate Rotary
Position Embedding (RoPE) into the E cache and
evaluate its impact. Specifically, RoPE is applied to
the non-contextual embeddings (E cache) of both
the reference and target prompts. Then, LSH is
used to match each token in the target prompt’s
E cache with the most similar token in the refer-
ence prompt’s E cache. This step is crucial because
RoPE introduces position-sensitive information, al-
lowing the same token at different positions to carry
distinct semantics, enabling LSH to achieve more
accurate token-level matching.

Figure 6 further illustrates how maintaining posi-
tional relationships through RoPE improves align-
ment accuracy, leading to better token retrieval and
overall performance. Figure 6a compares the to-
ken positions in the original E cache with the re-
arranged positions after passing through the fuzzy
token matching block, while Figure 6b presents the
results when using an E cache with positional en-

K

Q

V
K Cache

V Cache

Position
Encoding

(a) Standard KVCache Store

K

Q

V
K Cache

V Cache

Position
Encoding

(b) Modified KVCache Store

Figure 5: Default vs. modified KV cache storage.

0 50 100 150 200 250 300 350 400

Token Position

Original

Rearranged

(a) Only E Cache

0 50 100 150 200 250 300 350 400

Token Position

Original

Rearranged

(b) E Cache with Relative Position Encoding

Figure 6: Fuzzy matching: with vs. without position
encoding.

coding. Notably, the first 20 tokens remain in their
original positions, as they represent query tokens.
This demonstrates that LSH correctly identifies and
preserves query positions.

Beyond the initial tokens, a key difference
emerges: without positional encoding, many to-
kens in the target prompt map to the initial tokens,
whereas with positional encoding, they align more
accurately with later tokens. We interpret this as
a manifestation of "attention sink", a phenomenon
in self-attention mechanisms where a significant
portion of attention scores is consistently assigned
to initial tokens, regardless of their actual relevance
to the task (Xiao et al., 2023; Fei et al., 2025). In-
corporating positional encoding into the E cache
effectively mitigates this issue, leading to more ac-
curate token matching and improved performance.

4.3.2 Impact from Position Encoding in
KVCache

The second challenge is that LSH-based token re-
arrangement disrupts position encoding in the pre-
computed KV cache, affecting the KV matrices
from the prefill phase. Previous studies (Gao et al.,
2024) have discussed the impact of different posi-
tion encoding strategies, suggesting that RoPE can
be excluded from KV cache by applying it after
storage, as illustrated in Figure 5. In evaluating the

436



0 5 10 15 20 25 30
Layer

200

300

400

500

600
KV

 D
ev

ia
tio

n

With Pos Encoding
Without Pos Encoding
Reapplied Pos Encoding

Figure 7: Impact of position encoding on E cache and
KV cache deviation.

role of RoPE in the E cache, we compared three
configurations of KV cache: (i) With position en-
coding, the standard setting where RoPE is applied
before storing KV cache; (ii) Without position en-
coding, where RoPE is not applied during storage;
and (iii) Wthout position encoding but reapplied,
where RoPE is omitted during storage but reapplied
after LSH-based reordering. Ideally, the rearranged
KV cache should closely match the ground-truth
KV cache for the target prompt. To quantify the
deviation, we compute the L2 norm between the
rearranged and ground-truth caches. As shown in
Figure 7, KV cache with position encoding has
the lowest deviation, followed by the version with-
out position encoding, while the configuration with
reapplied RoPE gives the highest deviation. This
highlights the importance of storing KV pairs after
RoPE is applied. Ensuring consistent position en-
coding between the E and KV cache is essential for
LLMs to fully leverage them and achieve optimal
generation quality.

4.3.3 Recomputation Strategy

We divide the layers into two groups: the first layer
and subsequent layers. Given that LLMs tend to
focus more on later tokens (Liu et al., 2024a; Yang
et al., 2024a), we categorize tokens into Cold (c)
and Hot (h) using a dynamic ratio rdynamic from
Attention Recovery with a threshold of 55%, mean-
ing rdynamic% of tokens with the highest cumu-
lative attention are selected as Hot, and the rest as
Cold. The total number of recomputed tokens is
defined as Recomputed = ωc · c + ωh · h, where
ωc = 0.1 and ωh = 0.5 in the SemShareKV.

Starting from the second layer, token selection
follows this rule: based on Insight 1, the tokens
selected in the next layer are derived from those
chosen in the previous layer based on a recompute
ratio αrecomp% of this layer. Based on Insight

2, αrecomp% in shallow layers will be relatively
small while in deeper layers will be relatively large.

4.3.4 Retention Strategy
Similar to token recomputation, we categorize the
layers into two groups: the first and the subse-
quent layers. On the first layer, the retention
ratio is determined also by rdynamic, follows
Retained = max(0.8, rdynamic). And retained
tokens are selected based on average attention
scores across the last (1 − rdynamic)% tokens,
and only retain the top rdynamic% tokens with
highest avg attention scores. In detail, the intuition
behind selecting retained tokens is as follows: In
the first layer, all hot tokens will be retained. To-
ken eviction occurs only among Cold tokens that
are not marked as recomputed. The underlying
principle is that recomputed tokens provide better
representations of the target prompt. If these to-
kens are evicted, the computational resources and
time spent on recomputing them will be wasted. In
subsequent layers, based on Insight 3, we should
retain fewer tokens.

5 Evaluation and Results

5.1 Experiments Setup

We select a diverse set of datasets cover-
ing a broad range of tasks. For Q&A, we
use WikiHow (Koupaee and Wang, 2018) and
Qasper (Dasigi et al., 2021). For summariza-
tion, we include MultiNews (Bai et al., 2023)
(multi-document), SAMsum (Gliwa et al., 2019)
(dialogue), and BookSum, PubMed, and Big-
Patent (Kwan et al., 2023), which represent nar-
rative, scientific, and patent documents, respec-
tively; all three are single-document summariza-
tion. For code completion, we use LLC (Guo et al.,
2023). For multiple-choice Q&A, we evaluate on
MMLU (Hendrycks et al., 2021b,a).

We compared SemShareKV against four base-
lines: (i) Fully Recompute: standard inference
using the unmodified model from the Transformers
library, where the entire prompt is input without
any KV cache reuse; (ii) SnapKV (Li et al., 2024):
a KV cache management method that accelerates
the prefill phase by efficient caching but does not
compress the KV cache; (iii) PyramidKV (Cai
et al., 2024): PyramidKV leverages the Pyramidal
Information Funneling pattern in LLMs by dynam-
ically adjusting KV cache sizes across layers, allo-
cating more in lower layers and less in higher ones;

437



Table 1: Performance comparison between SemShareKV and baseline methods

Method MultiN
ew

s

Wikihow

Qasper

SAMSum

PubMed

BookSum

BigPaten
t

LCC
MMLU

MISTRAL-7B
Full KV 22.10 20.50 17.10 18.79 24.66 22.44 25.47 22.41 34.00
SemShareKV 23.15 19.38 16.52 21.22 24.30 22.50 26.62 21.55 32.50
SnapKV 23.07 21.32 15.55 20.16 24.58 23.22 25.78 25.98 35.50
PyramidKV 23.71 20.06 16.34 20.59 25.13 23.87 26.20 15.83 33.00
H2O 23.04 21.33 15.88 20.50 23.53 22.77 24.99 16.57 33.00

LLAMA3.1-8B
Full KV 22.49 19.71 14.21 16.69 24.50 22.65 27.26 19.01 55.00
SemShareKV 23.18 20.41 14.41 18.61 24.04 21.66 26.71 21.39 51.00
SnapKV 23.84 21.65 14.70 16.07 24.82 22.76 27.48 19.16 52.50
PyramidKV 23.71 20.69 15.56 16.86 24.50 22.72 27.53 14.16 52.00
H2O 22.81 20.61 14.44 16.81 24.19 22.08 26.94 21.32 47.50

(iv) H2O (Zhang et al., 2023): a dynamic KV cache
eviction strategy that compresses KV memory by
prioritizing important tokens, but does not optimize
the prefill phase. We use a modified H2O compress-
ing 10% of the cache per layer, with SnapKV and
H2O as baselines for prefill optimization and KV
cache compression. Our framework is based on a
simple LRU mechanism to manage precomputed
caches, and SemShareKV can be easily integrated
with other cache management strategies. The ex-
periments were run on a single A100 GPU with
standard attention. The implementation details are
in Appendix D.

To the best of our knowledge, no existing dataset
benchmarks LLMs on KV cache sharing across
semantically similar prompts. To bridge this gap,
we constructed evaluation samples by randomly
selecting portions of entries from existing datasets
and rewriting them using the Llama3 model. Then,
these rewritten samples were manually verified to
ensure that they remained semantically close to the
originals. More details in the data preparation are
provided in the Appendix B.

5.2 Benchmarking Evaluation
We argue that using Fuzzy Token Match introduces
only a negligible overhead to model inference. Ta-
ble 1 reports the ROUGE-L scores (Lin, 2004).
Benchmarking results show that SemShareKV
achieves performance comparable to or better than
other baseline methods. Notably, in most of the
evaluated datasets, Fully Recompute fails to attain
the highest performance scores. We attribute this
phenomenon to the token eviction mechanisms em-
ployed by SemShareKV, SnapKV, PyramidKV and
H2O. By selectively retaining only the most seman-

0.5k 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k
Input Length

0

200

400

600

800

1000

1200

TT
FT

 (m
s)

Fully Recompute
SemShareKV
SnapKV
H2O
PyramidKV

(a) TTFT Comparison

0.5k 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k
Input Length

0

100

200

300

400

500

600

KV
 C

ac
he

 S
ize

 (M
B)

Fully Recompute
SemShareKV
SnapKV
H2O
PyramidKV

(b) KVCache Size Comparison

Figure 8: Efficiency Evaluation Results.

tically significant tokens for self-attention compu-
tation, these methods effectively reduce redundant
information in the semantic representation, thereby
enhancing the model’s generation quality.

5.3 Efficiency Evaluation

We evaluate SemShareKV based on Time To First
Token (TTFT) and KV cache GPU KV memory
usage, benchmarking it against Fully Recompute,
SnapKV, and the unmodified H2O model. Fig-
ure 8 demonstrates the efficiency advantages of
SemShareKV on the MultiNews dataset, showing

438



10% 30% 50% 70% 90%
Elimination / Replacement Ratio

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250
Ro

ug
e-

L

LLaMA Baseline: 0.2318
Mistral Baseline: 0.2315
LLaMA Elimination
LLaMA Replacement
Mistral Elimination
Mistral Replacement

Figure 9: Impact of Prompt Similarity

40%60%80%100%
KV Cache Retention

0.14

0.16

0.18

0.20

0.22

Ro
ug

e-
L

SemShareKV
Full Cache

Figure 10: Cache Retention Ratio and Performance

consistent improvements over baseline methods:
SemShareKV achieves 6.25× faster Time-To-First-
Token (TTFT) than Fully Recompute, PyramidKV
and H2O, 2.23× faster TTFT than SnapKV, while
reducing memory usage by 42%. Although Pyra-
midKV uses less KV cache than SemShareKV, it
does not accelerate the prefill phase, highlighting
the effectiveness of SemShareKV. However, as il-
lustrated in Figure 8b, SemShareKV offers limited
performance improvements for shorter prompts
(fewer than 700 tokens), which we attribute to
the overhead caused by fuzzy token matching and
the rearrangement of tokens from the precomputed
cache of the reference prompt. In future work, our
goal is to minimize this overhead.

5.4 Impact of Prompt Similarity on
Performance.

To evaluate similarity effects and SemShareKV per-
formance, we designed two studies using the same
percentage range (10% to 90% in 10% increments):
1) Randomly eliminating sentences from the con-
text, and 2) Randomly replacing sentences with
others from the MultiNews dataset. We then ap-
plied SemShareKV to reuse the cache from the
modified reference prompt for the target prompt.
As shown in Figure 9, performance gradually de-
grades as more sentences are removed, yet remains

Table 2: Ablation study on ROUGE-L for SemShareKV
and its ablations across datasets.

Method SAMSum(↑) MultiNews(↑)
SemShareKV 21.22 23.15
Fuzzy + Full Cache 17.27 21.34
Ablation-Zero 14.63 17.71
Ablation-Random 5.38 12.67

reasonable even with substantial reductions. No-
tably, SemShareKV maintains strong performance
even when 50% of context sentences are removed,
highlighting the effectiveness of LSH-based token-
level matching. This trend holds across both LLMs,
suggesting the generality of our approach. Addi-
tionally, based on the observed performance trend,
we empirically set a threshold of 0.8 for applying
SemShareKV, meaning that if two prompts have
an LSH similarity score above 0.8, SemShareKV
can be applied. Figure 9 illustrates how the LSH-
distance-based similarity changes as the replace-
ment and elimination ratios increase. More details
are in Appendix B.2.

5.5 Ablation Study

We conducted three ablation studies to assess the
effect of fuzzy token matching on semantic under-
standing. First, when applying the fuzzy matching
technique with the full cache, we observed a de-
cline in performance, indicating the necessity of the
token retention mechanism. Second, when matched
KV cache tokens were either zeroed out or replaced
with random ones, the ROUGE-L scores dropped
significantly compared to the full SemShareKV
method, confirming that fuzzy matching is cru-
cial to capture semantic relationships (Table 2).
Third, as shown in Figure 10, an analysis of the KV
cache compression ratio in the MultiNews dataset
revealed that retaining too much cache introduces
redundancy and degrades performance, while re-
taining too little leads to information loss, highlight-
ing the importance of a balanced cache retention
strategy.

6 Conclusion

We proposed SemShareKV, a KV cache sharing
framework that enables reuse across semantically
similar prompts through fuzzy token matching us-
ing LSH. SemShareKV achieves a speed of 6.25×
and saves up to 42% KV cache memory space com-
pared to conventional KV cache, with a minimum
performance drop.

439



Limitations

Although SemShareKV effectively shares KV
caches across semantically similar prompts, the
speedup decreases for shorter prompts because of
the overhead introduced by fuzzy token matching,
and several hyper-parameter require careful tuning.
Our current implementation focuses on demonstrat-
ing the effectiveness of SemShareKV and does not
yet support FlashAttention, which we plan to ex-
plore into future work. The matching threshold is
also empirically determined, and exploring adap-
tive strategies remains an open direction. In the
ablation study, we replaced sentences with other
samples from the same dataset, ensuring a fair com-
parison within a consistent data distribution. Al-
though cross-corpus replacement could test broader
robustness, our setup effectively isolates the impact
of semantic mismatches. This opens future work
not only to extend the experiments to cross-corpus
settings but also to construct datasets of semanti-
cally similar prompts to better evaluate robustness.

References
Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,

Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2023. Longbench: A bilingual, mul-
titask benchmark for long context understanding.
arXiv preprint arXiv:2308.14508.

Fu Bang. 2023. Gptcache: An open-source semantic
cache for llm applications enabling faster answers
and cost savings. In Proceedings of the 3rd Work-
shop for Natural Language Processing Open Source
Software (NLP-OSS 2023), pages 212–218.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu,
Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and 1 others. 2024. Pyra-
midkv: Dynamic kv cache compression based on
pyramidal information funneling. arXiv preprint
arXiv:2406.02069.

Yihua Cheng, Kuntai Du, Jiayi Yao, and Junchen Jiang.
2024. Do large language models need a content
delivery network? arXiv preprint arXiv:2409.13761.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,
Noah A. Smith, and Matt Gardner. 2021. A dataset of
information-seeking questions and answers anchored
in research papers.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Va-
hab S Mirrokni. 2004. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceed-
ings of the twentieth annual symposium on Computa-
tional geometry, pages 253–262.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou.
2024. The faiss library.

Weizhi Fei, Xueyan Niu, Guoqing Xie, Yingqing Liu,
Bo Bai, and Wei Han. 2025. Efficient prompt com-
pression with evaluator heads for long-context trans-
former inference. arXiv preprint arXiv:2501.12959.

Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang,
Djordje Jevdjic, Junbo Deng, Xingkun Yang, Zhou
Yu, and Pengfei Zuo. 2024. Cost-efficient large lan-
guage model serving for multi-turn conversations
with cachedattention. In USENIX Annual Technical
Conference.

In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda,
Anurag Khandelwal, and Lin Zhong. 2024. Prompt
cache: Modular attention reuse for low-latency infer-
ence. Proceedings of Machine Learning and Systems,
6:325–338.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summa-
rization. In Proceedings of the 2nd Workshop on
New Frontiers in Summarization, pages 70–79, Hong
Kong, China. Association for Computational Linguis-
tics.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Ju-
lian McAuley. 2023. Longcoder: A long-range pre-
trained language model for code completion. In In-
ternational Conference on Machine Learning, pages
12098–12107. PMLR.

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe.
2024. Attention score is not all you need for token
importance indicator in kv cache reduction: Value
also matters. arXiv preprint arXiv:2406.12335.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew
Critch, Jerry Li, Dawn Song, and Jacob Steinhardt.
2021a. Aligning ai with shared human values. Pro-
ceedings of the International Conference on Learning
Representations (ICLR).

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021b. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Junhao Hu, Wenrui Huang, Haoyi Wang, Weidong
Wang, Tiancheng Hu, Qin Zhang, Hao Feng,
Xusheng Chen, Yizhou Shan, and Tao Xie. 2024.
Epic: Efficient position-independent context caching
for serving large language models. arXiv preprint
arXiv:2410.15332.

440

https://arxiv.org/abs/2401.08281
https://api.semanticscholar.org/CorpusID:268793498
https://api.semanticscholar.org/CorpusID:268793498
https://api.semanticscholar.org/CorpusID:268793498
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409


Piotr Indyk and Rajeev Motwani. 1998. Approximate
nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth an-
nual ACM symposium on Theory of computing, pages
604–613.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, and 1 others. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Mahnaz Koupaee and William Yang Wang. 2018. Wiki-
how: A large scale text summarization dataset. arXiv
preprint arXiv:1810.09305.

Wai-Chung Kwan, Xingshan Zeng, Yufei Wang, Yusen
Sun, Liangyou Li, Lifeng Shang, Qun Liu, and Kam-
Fai Wong. 2023. M4LE: A Multi-Ability Multi-
Range Multi-Task Multi-Domain Long-Context Eval-
uation Benchmark for Large Language Models.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. Snapkv:
Llm knows what you are looking for before genera-
tion. arXiv preprint arXiv:2404.14469.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gho-
lamreza Haffari, and Bohan Zhuang. Minicache:
Kv cache compression in depth dimension for
large language models, 2024b. URL https://arxiv.
org/abs/2405.14366.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024a. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157–173.

Yuhan Liu, Esha Choukse, Shan Lu, Junchen Jiang,
and Madan Musuvathi. 2024b. Droidspeak: En-
hancing cross-llm communication. arXiv preprint
arXiv:2411.02820.

Shi Luohe, Zhang Hongyi, Yao Yao, Li Zuchao, and
Zhao Hai. 2024. Keep the cost down: A review on
methods to optimize llm’s kv-cache consumption.
arXiv preprint arXiv:2407.18003.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. 2013. Efficient estimation of word
representations in vector space. In International Con-
ference on Learning Representations.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad
Saqib, Saeed Anwar, Muhammad Usman, Naveed
Akhtar, Nick Barnes, and Ajmal Mian. 2023. A
comprehensive overview of large language models.
arXiv preprint arXiv:2307.06435.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang,
Yongwei Wu, Weimin Zheng, and Xinran Xu.
2024. Mooncake: A kvcache-centric disaggre-
gated architecture for llm serving. arXiv preprint
arXiv:2407.00079.

Zafaryab Rasool, Scott Barnett, David Willie, Stefanus
Kurniawan, Sherwin Balugo, Srikanth Thudumu,
and Mohamed Abdelrazek. 2024. Llms for test in-
put generation for semantic caches. arXiv preprint
arXiv:2401.08138.

Sajal Regmi and Chetan Phakami Pun. 2024. Gpt
semantic cache: Reducing llm costs and latency
via semantic embedding caching. arXiv preprint
arXiv:2411.05276.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-
han Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. 2023.
Flexgen: High-throughput generative inference of
large language models with a single gpu. In Inter-
national Conference on Machine Learning, pages
31094–31116. PMLR.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng,
Ningxin Zheng, Xin Liu, Harry Dong, Yuejie Chi,
and Beidi Chen. 2024. Shadowkv: Kv cache in shad-
ows for high-throughput long-context llm inference.
arXiv preprint arXiv:2410.21465.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui
Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang,
and Furu Wei. 2025. You only cache once: Decoder-
decoder architectures for language models. Advances
in Neural Information Processing Systems, 37:7339–
7361.

MosaicML NLP Team. 2023. Introducing mpt-7b: A
new standard for open-source, commercially usable
llms. Accessed: 2023-05-05.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Neural Information Processing Systems.

441

https://api.semanticscholar.org/CorpusID:5959482
https://api.semanticscholar.org/CorpusID:5959482
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489


Zihao Wang, Bin Cui, and Shaoduo Gan. 2024.
Squeezeattention: 2d management of kv-cache in
llm inference via layer-wise optimal budget. arXiv
preprint arXiv:2404.04793.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian
Guo, Shang Yang, Haotian Tang, Yao Fu, and Song
Han. 2024. Duoattention: Efficient long-context llm
inference with retrieval and streaming heads. arXiv
preprint arXiv:2410.10819.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks. arXiv preprint
arXiv:2309.17453.

Ruiqing Yan, Linghan Zheng, Xingbo Du, Han Zou,
Yufeng Guo, and Jianfei Yang. 2024. Recurformer:
Not all transformer heads need self-attention. arXiv
preprint arXiv:2410.12850.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin
Zhang, and Hai Zhao. 2024a. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm
inference. arXiv preprint arXiv:2405.12532.

Huan Yang, Renji Zhang, Mingzhe Huang, Weijun
Wang, Yin Tang, Yuanchun Li, Yunxin Liu, and Deyu
Zhang. 2025. Kvshare: An llm service system with
efficient and effective multi-tenant kv cache reuse.
arXiv preprint arXiv:2503.16525.

Yifei Yang, Zouying Cao, Qiguang Chen, Libo
Qin, Dongjie Yang, Hai Zhao, and Zhi Chen.
2024b. Kvsharer: Efficient inference via layer-
wise dissimilar kv cache sharing. arXiv preprint
arXiv:2410.18517.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua
Cheng, Qizheng Zhang, Kuntai Du, Shan Lu, and
Junchen Jiang. 2024. Cacheblend: Fast large lan-
guage model serving with cached knowledge fusion.
arXiv preprint arXiv:2405.16444.

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu,
Xupeng Miao, Xiaonan Nie, Weipeng Chen, and Bin
Cui. 2024. Pqcache: Product quantization-based kv-
cache for long context llm inference. arXiv preprint
arXiv:2407.12820.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, and 1 oth-
ers. 2023. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Ad-
vances in Neural Information Processing Systems,
36:34661–34710.

Meizhi Zhong, Xikai Liu, Chen Zhang, Yikun Lei, Yan
Gao, Yao Hu, Kehai Chen, and Min Zhang. 2024.
Zigzagkv: Dynamic kv cache compression for long-
context modeling based on layer uncertainty. arXiv
preprint arXiv:2412.09036.

Yuxuan Zhu, Ali Falahati, David H. Yang, and Moham-
mad Mohammadi Amiri. 2025. Sentencekv: Effi-
cient llm inference via sentence-level semantic kv
caching. ArXiv, abs/2504.00970.

A Formula and Inference

A.1 Rotary Position Encoding

In our methodology, we introduced the application
of Rotary Position Embedding (RoPE) to the E
cache, which improves the performance of fuzzy
token matching. RoPE is designed to incorporate
positional information directly into embeddings,
allowing for improved alignment between tokens
in a sequence. This is particularly important in
natural language processing tasks where the order
of words can significantly impact the meaning and
context.

The formula of RoPE in a 2-D case is shown
below:

RoPE(x) =
[
cos(θk) − sin(θk)
sin(θk) cos(θk)

] [
x2k
x2k+1

]
(1)

In this equation, θk = 10000−2k/d, where d repre-
sents the embedding dimension. The use of RoPE
allows for the effective encoding of relative po-
sitional information, enabling the model to bet-
ter capture the relationships between tokens in a
sequence. Integrating RoPE into the E cache fa-
cilitates the identification of semantically similar
tokens using LSH, leading to more accurate and
efficient fuzzy token matching. This enhancement
helps the model perform more accurately on tasks
that require strong semantic understanding.

A.2 Locality-Sensitive Hashing (LSH)

Locality-Sensitive Hashing (LSH) is a technique
that enables efficient approximate nearest neighbor
searches in high-dimensional spaces by ensuring
similar input items are hashed into the same bucket

442

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://api.semanticscholar.org/CorpusID:277468377
https://api.semanticscholar.org/CorpusID:277468377
https://api.semanticscholar.org/CorpusID:277468377


Table B1: Similarity evaluation on benchmarking datasets using ROUGE-L, BERTScore, and BLEU.

Metric MultiN
ew

s

Wikihow

Qasper

SAMSum

PubMed

BookSum

BigPaten
t

LCC
MMLU

N of Samples 100 100 100 100 100 100 100 100 200
Rewrite % (Avg) 54.58 100 28.99 46.75 45.64 44.31 28.55 29.51 76.39

ROUGE-L(%) 84.71 83.82 91.71 50.90 88.15 78.15 90.03 87.34 44.04
BERTScore(%) 95.85 95.98 98.13 86.97 95.48 95.58 96.07 98.41 89.57
BLEU(%) 90.40 87.84 91.32 24.68 89.22 81.16 89.29 89.76 40.51

Original (n=100)
100

80

60

40

20

0

To
ke

n 
Le

ng
th

 D
iff

er
en

ce
 (%

)

Mean: -1.4%
Std: 2.9%

10% Eliminated (n=100)
100

80

60

40

20

0

To
ke

n 
Le

ng
th

 D
iff

er
en

ce
 (%

)

Mean: -8.7%
Std: 3.5%

30% Eliminated (n=100)
100

80

60

40

20

0

To
ke

n 
Le

ng
th

 D
iff

er
en

ce
 (%

)
Mean: -28.8%

Std: 5.5%

50% Eliminated (n=100)
100

80

60

40

20

0

To
ke

n 
Le

ng
th

 D
iff

er
en

ce
 (%

)

Mean: -48.1%
Std: 9.1%

70% Eliminated (n=100)
100

80

60

40

20

0

To
ke

n 
Le

ng
th

 D
iff

er
en

ce
 (%

)

Mean: -67.5%
Std: 12.1%

90% Eliminated (n=100)
100

80

60

40

20

0

To
ke

n 
Le

ng
th

 D
iff

er
en

ce
 (%

)

Mean: -86.0%
Std: 16.9%

(a) Elimination from Multinews dataset

multinews_data (n=100)
0.0

0.2

0.4

0.6

0.8

1.0

BL
EU

 S
co

re

Mean: 0.820
Std: 0.183

multinews_rep_10 (n=100)
0.0

0.2

0.4

0.6

0.8

1.0

BL
EU

 S
co

re

Mean: 0.900
Std: 0.032

multinews_rep_30 (n=100)
0.0

0.2

0.4

0.6

0.8

1.0

BL
EU

 S
co

re

Mean: 0.718
Std: 0.056

multinews_rep_50 (n=100)
0.0

0.2

0.4

0.6

0.8

1.0

BL
EU

 S
co

re

Mean: 0.545
Std: 0.083

multinews_rep_70 (n=100)
0.0

0.2

0.4

0.6

0.8

1.0

BL
EU

 S
co

re

Mean: 0.371
Std: 0.109

multinews_rep_90 (n=100)
0.0

0.2

0.4

0.6

0.8

1.0

BL
EU

 S
co

re

Mean: 0.202
Std: 0.133

(b) Replace from Multinews dataset

Figure C1: Insight 3: Deeper layers contain more redundant information.

with high probability (Indyk and Motwani, 1998).
This reduces the number of distance computations
required, making LSH particularly useful for large
datasets in applications such as image retrieval and
natural language processing (Datar et al., 2004).
In LSH for Euclidean distance, a common hash
function is:

h(x) = ⌊x · r + b

w
⌋

where r is a random vector, b is a random offset,
and w is the hash width. This overview encapsu-
lates the theory and practical application of LSH in
our framework.

A.3 LSH-Distance Based Similarity Score
For retrieving reference prompts to reuse cache
with SEMSHAREKV, we compute a similarity
score by normalizing the LSH distance and invert-
ing it to fit within a [0, 1] range:

dnorm =
LSH_dist−min(dist)

max(dist)−min(dist)

Similarity = clip(1− dnorm, 0, 1)

(2)

where dnorm denotes the normalized LSH distance;
min(dist) is set to 0 and max(dist) is set to 30.

A.4 Key-Value Deviation
We define Key-Value Deviation with L2 norm as
below:

σK = ∥Kreused −Krecomputed∥2,
σV = ∥V reused − V recomputed∥2,

σKV = σK + σV

(3)

Where Kreused and V reused represent the Key and
Value matrices in cache reused from the semantic
similar prompt; Krecomputed and V recomputed refer
to the Key and Value matrices recomputed at the
current layer.

A.5 Token Recomputation
The total number of tokens recomputed on layer i
is represented as

Recomp[i] = T
i∏

j=1

αrecomp[j] (4)

Where T denotes the total number of tokens, i
represents the layer index.

A.6 Token Retention
The token retained on each layer is defined as:

Retain[i] = T
i∏

j=1

αretain[j] (5)

Where T is the total tokens, i the layer index, and
αretain[j] the token retention ratio at layer j; tokens
not retained are evicted. Typically, αretain is larger
in shallow layers and smaller in deeper ones.

443



B Data Preparation

B.1 Benchmark Datasets

We categorize these nine English-language datasets
into four groups based on how semantically similar
samples are constructed and the nature of the task.

1. MultiNews (Bai et al., 2023): This datasets
contain samples composed of multiple inde-
pendent passages or articles. To generate se-
mantically similar samples, we randomly se-
lect one passage or article from each sample
and use the Llama 3 model to rewrite it while
preserving the original semantics. The rewrit-
ten passage is constrained to have a similar
length to the original (within a 10% difference
in token count). We then replace the original
passage with the rewritten one to construct a
semantically similar prompt. The position of
the rewritten passage naturally varies across
samples, appearing at the beginning, middle,
or end of the context.

2. SAMSum (Gliwa et al., 2019), PubMed,
BigPatent, BookSum (Kwan et al., 2023),
LCC (Guo et al., 2023): These datasets con-
sist of semantically continuous text or codes.
For each sample, we divide the context into in-
dividual sentences and randomly select a con-
tiguous segment of the total sentence count.
This segment is rewritten using the Llama 3
model, with the constraint that the token count
deviates by less than 10% from the original.
The rewritten segment replaces the original
to create a semantically similar prompt, with
its position varying within the context in a
similar manner.

3. Qasper (Dasigi et al., 2021) and Wiki-
How (Koupaee and Wang, 2018): These
datasets consist of Q&A tasks where each
question must be answered based on a specific
provided context. To preserve the accuracy of
the questions, we use the LLM to rewrite only
part of the context, leaving the questions un-
changed.

4. MMLU (Hendrycks et al., 2021a): MMLU
is a multiple-choice question-answering
dataset. To ensure the logical integrity of the
questions and preserve the original answers,
we prompt the LLM to paraphrase each entire
question.

Table B2: Effieicny Comparision with Throughput

Method Input Length Token / Sec)
Fully Recompute 5k 12.681
SemShareKV 5k 34.065
SnapKV 5k 22.576
H2O 5k 16.273
PyramidKV 5k 3.991

0 5 10 15 20 25 30

Layer
0.0

0.2

0.4

0.6

0.8

1.0

Re
te

nt
io

n 
ra

tio

Pattern 1: Constant
Pattern 2: Exponential Growth
Pattern 3: Exponential Decay

Figure C2: The three retention patterns start from the
same retention ratio.

Table B1 presents the results of the similar-
ity evaluation, measured using ROUGE-L (Lin,
2004), BLEU (Papineni et al., 2002), and
BERTScore (Zhang et al., 2019). We include
both longest common subsequence-based metrics
(ROUGE-L), n-gram-based metrics (BLEU) and
embedding-based metrics (BERTScore) to provide
a comprehensive evaluation of semantic similarity
across rewritten datasets.

B.2 Eliminination and Replacement Dataset

To study the impact of prompt similarity on LLM
performance when applying SemShareKV, we de-
signed two ablation studies. In the first, we ran-
domly removed a portion of sentences from each
sample in the MULTINEWS dataset, then applied
SemShareKV to evaluate its effectiveness. Fig-
ure C1a presents box plots of token length dif-
ferences in the Elimination datasets compared to
the original dataset. Figure C1b shows the BLEU
scores of the Replacement datasets relative to the
original dataset.

C Extra Experimental Results

Figure C2 illustrates the three retention patterns
discussed in Insights 3. Table B2 provides addi-
tional benchmarking results of Total Batch Time
(TBT) and throughput. Since all experiments were
conducted with batch size equal to 1, the reported
throughput values are equivalent to TBT.

444



D Implementation and Hyperparameters

SemShareKV is implemented in Python using
the transformers library (Wolf et al., 2020),
with the monkeypatching technique. We use the
Locality-Sensitive Hashing from FAISS (Douze
et al., 2024) library. The code is avail-
able at: https://github.com/JasperZhao666/
SemShareKV-public.git. Details of the key func-
tions and their roles are outlined below:

• mistral_attn_forward: A modified ver-
sion of MistralAttention.forward from
the transformers library, incorporating the
SemShareKV mechanism. The hyperparame-
ters used in our experiments are also specified
in this function.

• replace_mistral_forward: Applies monkey-
patching to substitute the original Mistral
model attention forward function in the
transformers library with our customized
SemShareKV implementation.

• llama_attn_forward: A modified ver-
sion of LlamaAttention.forward from the
transformers library, incorporating the
SemShareKV mechanism. The hyperparame-
ters used in our experiments are also specified
in this function.

• replace_llama_forward: Applies monkey-
patching to substitute the original Llama
model attention forward function in the
transformers library with our customized
SemShareKV implementation.

• prepare_fuzzy_caches: Encodes ROPE into
E caches and performs fuzzy token matching
using locality-sensitive hashing (LSH).

In general, SemShareKV is built on the trans-
former architecture and consists of fewer than 300
new lines of code, which makes it lightweight and
easily transferable to other LLMs.

E Artifact Use and Compliance with
Intended Purpose

The datasets used in this study are publicly avail-
able and are consistent with their intended use, as
specified by the respective sources. In preparing the
data, we adhered to ethical guidelines and ensured
that the use of these publicly released datasets was
for research purposes only.

For the created artifacts, such as the semantically
similar samples, we have ensured that the use of
these modified datasets remains consistent with the
original intended research purpose. The generated
data serves the purpose of advancing research in
semantic similarity and does not extend beyond the
intended scope of the original datasets.

445

https://github.com/JasperZhao666/SemShareKV-public.git
https://github.com/JasperZhao666/SemShareKV-public.git

