
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 423–431

December 20-24, 2025 ©2025 Association for Computational Linguistics

Teaching by Failure: Counter-Example–Driven Curricula
for Transformer Self-Improvement

Harshil Vejendla
Rutgers University–New Brunswick
harshil.vejendla@rutgers.edu

Abstract

Transformer models often exhibit brittle ex-
trapolation, failing on inputs that are longer
or structurally more complex than those seen
during training. We introduce Counter-
Example–Driven Curricula (CEDC), an auto-
mated framework that improves model robust-
ness by iteratively focusing on its own failures.
At each step, CEDC uses the current model to
generate a diverse set of candidate problems,
employs a fast, executable verifier to identify
incorrect predictions (counter-examples), and
then fine-tunes the model on a dataset enriched
with these discovered failures. We evaluate
CEDC on a suite of algorithmic and natural
language tasks, including integer addition, sort-
ing, Dyck-2 language recognition, and three
text classification benchmarks. Compared to
static training and standard curriculum learning
baselines, CEDC achieves up to 30× greater
length extrapolation, is 3.75× more computa-
tionally efficient than uniform data augmenta-
tion, and requires no manual difficulty heuris-
tics. We provide a detailed analysis of the
counter-examples, showing how the curricu-
lum naturally adapts to target progressively
more complex error modes. Our findings es-
tablish verifier-guided, failure-driven learning
as a simple, powerful, and efficient paradigm
for enhancing the generalization capabilities of
Transformer models.

1 Introduction

Despite their remarkable success, Transformer
models (Wei et al., 2022; Vaswani et al., 2017)
often struggle with out-of-distribution (OOD) gen-
eralization, particularly concerning input length
and compositional complexity (Anil et al., 2022;
Sharma et al., 2023). An addition model trained on
3-digit numbers may fail on 5-digit inputs; a senti-
ment classifier accurate on short reviews may falter
on multi-paragraph documents. These "generaliza-
tion holes" represent a critical barrier to deploying

models in real-world scenarios where input charac-
teristics are unpredictable.

To combat these generalization failures, re-
searchers have explored several avenues. Archi-
tectural modifications, such as Attention with Lin-
ear Biases (ALiBi) (Press et al., 2022), adapt the
model’s core mechanism to better handle longer
sequences. Another line of work focuses on im-
proving model robustness through training data,
such as adversarial training (Goodfellow et al.,
2015), which generates locally-perturbed exam-
ples to smooth the loss landscape, or standard data
augmentation techniques like back-translation to
increase data diversity. While effective in their
own right, architectural changes can be complex
to integrate, adversarial attacks often do not pro-
duce the kind of structural or compositional failures
seen in real-world OOD scenarios, and generic data
augmentation lacks a targeted signal. The most
related paradigm, curriculum learning (CL) (Ben-
gio et al., 2009), requires hand-crafted difficulty
heuristics that are hard to tune. Our work, CEDC,
proposes an alternative path: instead of modify-
ing the architecture or relying on broad-spectrum
augmentation, we use the model’s own failures on
valid, out-of-distribution instances as a direct, high-
utility signal for self-improvement.

We argue that the model itself is the most in-
formed guide for its own training. A model’s fail-
ures on a diverse set of inputs precisely delineate
the boundary of its current competence. This obser-
vation motivates our proposed method: Counter-
Example–Driven Curricula (CEDC). CEDC op-
erates in a simple, iterative loop: (1) generate new
data, (2) use the current model to make predictions,
(3) employ an external verifier to identify incorrect
predictions, and (4) fine-tune the model on these
counter-examples. This process forces the model
to confront its weaknesses directly, leading to a
highly efficient and adaptive learning signal.

Unlike standard CL, CEDC needs no hand-

423



crafted difficulty metric; the model’s own perfor-
mance implicitly defines what is "hard." Unlike
self-training methods like Noisy Student (Xie et al.,
2020), CEDC relies on a verifier to ensure label
correctness, preventing error propagation.

We make the following contributions:

1. We formalize CEDC, a simple yet powerful
framework for automated curriculum genera-
tion that leverages executable verifiers to mine
informative training examples (Section 3).

2. We conduct a comprehensive empirical evalua-
tion on seven tasks, demonstrating that CEDC
significantly outperforms static training, uni-
form data augmentation, and standard length-
based curricula in terms of length extrapola-
tion and computational efficiency (Section 5).

3. We introduce new baselines, including an
architectural approach (ALiBi), to provide
a more rigorous comparison, and perform
a qualitative analysis of the mined counter-
examples, revealing how CEDC uncovers and
remedies specific failure modes (Section 5.4).

4. We discuss the method’s limitations, including
its reliance on verifiers and potential scaling
challenges, providing a roadmap for future
research (Section 7).

2 Related Work

Our work builds upon several lines of research in
machine learning.

Curriculum Learning. Proposed by Bengio et al.
(2009), CL suggests that training on examples in a
meaningful, easy-to-hard order can improve gener-
alization and convergence speed. Subsequent work
has explored automated curriculum generation,
such as self-paced learning, which weights exam-
ples based on model loss (Wang et al., 2021), and
competence-based pacing. However, these meth-
ods often rely on proxy metrics for difficulty (like
loss) and lack guarantees of correctness. CEDC au-
tomates the curriculum by defining "hard" as "what
the model currently gets wrong," a direct and unam-
biguous signal, sidestepping the need for manual
difficulty heuristics.

Self-Training and Self-Improvement. In self-
training, a model generates pseudo-labels on un-
labeled data to augment its training set. Noisy
Student (Xie et al., 2020) is a prime example, but

it risks reinforcing its own mistakes as it cannot
verify the pseudo-labels. In contrast, CEDC’s use
of a verifier ensures data quality and prevents er-
ror propagation. Other self-improvement schemes,
like the self-play mechanism in AlphaGo (Silver
et al., 2016), generate data to improve a policy but
often operate within a closed system. While these
operate in a closed system, a closer paradigm is
verifier-guided generation (Li et al., 2022), where
an external verifier like a set of unit tests provides
the grounding signal. CEDC applies this same core
principle of generation and verification directly to
the training curriculum.

Adversarial and Hard Example Mining. Ad-
versarial training aims to improve robustness by
training on inputs slightly perturbed to maximize
loss. However, these perturbations are typically
small and continuous, whereas CEDC mines for
discrete, valid problem instances that are "natu-
rally" hard for the model. Hard example mining
is a broader concept (Shrivastava et al., 2016), but
often relies on heuristics like high loss; CEDC’s
verifier-based approach is more definitive.

Length Extrapolation in Transformers. A sig-
nificant body of work has focused on improving
Transformers’ ability to generalize to longer se-
quences than seen in training. Architectural mod-
ifications are a popular approach, such as using
relative position embeddings or Attention with Lin-
ear Biases (ALiBi) (Press et al., 2022), which we
include as a baseline. Other methods focus on a
careful selection of training data (Anil et al., 2022).
CEDC offers a complementary, data-centric ap-
proach that can be applied to any base model archi-
tecture to improve its extrapolation capabilities.

Self-Paced and Automated Curriculum Learn-
ing. Beyond simple, predefined curricula, meth-
ods like Self-Paced Learning (SPL) (Kumar et al.,
2010) have been proposed to automate the data
scheduling process. SPL introduces a regulariza-
tion term that allows the model to select "easy" ex-
amples first, based on their training loss, and grad-
ually incorporates harder examples as the model’s
competence grows. While effective, SPL’s reliance
on loss as a proxy for difficulty can be noisy and
may not always correlate with the most informa-
tive examples for generalization. We include SPL
as a sophisticated CL baseline to compare against
CEDC’s verifier-guided approach.

424



Algorithm 1 Counter-Example–Driven Curricula
(CEDC)

1: Input: Initial model parameters θ0, initial
training data D0, data generator G(·), verifier
V (·, ·), number of rounds T , candidate pool
size N , fine-tuning steps K.

2: Let model h0 be the model with parameters θ0.
3: for t = 0, 1, . . . , T − 1 do
4: ▷ Step 1: Generate Candidate Pool
5: Sample a candidate pool of inputs St =

{xi}Ni=1 ∼ G(t).
6: ▷ Step 2: Find Counter-Examples
7: Obtain model predictions: ŷi = ht(xi) for

all xi ∈ St.
8: Identify failures: Ft = {xi ∈ St |

V (xi, ŷi) = False}.
9: ▷ Step 3: Correct and Collect

10: Obtain ground truth labels for failures:
y∗i = Oracle(xi) for xi ∈ Ft.

11: Form the counter-example set: Ct =
{(xi, y∗i ) | xi ∈ Ft}.

12: ▷ Step 4: Fine-tune
13: Create the new training set: Dt+1 = Dt ∪

Ct.
14: Fine-tune ht on Dt+1 for K steps to get

ht+1 (update θt → θt+1).
15: Return: Final model hT .

3 The CEDC Method

The core idea of CEDC is to create a dynamic
curriculum by iteratively finding and training on
inputs that the current model fails to solve correctly.
This process requires three components: a model,
a data generator, and a verifier.

The CEDC Loop. As formalized in Algorithm 1,
the process begins with a model h0 trained on some
initial dataset D0. At each round t:

1. Generate: A task-specific generator G(t) pro-
duces a large pool of candidate inputs St. The
generator can be biased to sample "harder"
instances over time (e.g., longer sequences) to
encourage exploration at the model’s perfor-
mance frontier.

2. Verify: The current model ht processes all
inputs in St. An external, efficient verifier
V (x, ŷ) checks if the model’s output ŷ is cor-
rect for input x. All pairs (x, ŷ) for which
the verifier returns ‘False‘ are identified as
counter-examples.

3. Collect: For each failed input x, we obtain
the correct output y∗ (often as a byproduct of
the verifier) and add the pair (x, y∗) to a set
of new counter-examples Ct.

4. Fine-tune: The model is then fine-tuned on
a union of the previous training data and the
newly discovered counter-examples, Dt+1 =
Dt ∪ Ct. This incremental updating ensures
the model does not forget previously learned
skills while patching its newly found weak-
nesses.

This loop continues for a fixed number of rounds
or until a performance target is met.

Ensuring Novelty of Counter-Examples. A po-
tential risk in this iterative loop is repeatedly find-
ing minor variations of the same fundamental error,
leading to inefficient training. To mitigate this,
we incorporate a simple diversity filter. Before a
newly mined counter-example (x, y∗) from Ct is
added to the training set, we check its similarity
against all examples already present in Dt. If its
n-gram Jaccard similarity to any existing example
exceeds a threshold (e.g., 0.9), it is discarded. This
simple step encourages the curriculum to prioritize
structurally novel failures over syntactic variations,
promoting more robust learning.

Approximating Verifiers. A key requirement is
the verifier. For algorithmic tasks (e.g., sorting,
arithmetic), verifiers are perfect and cheap (run-
ning the reference implementation). For more com-
plex tasks like text classification, perfect verifiers
are unavailable. In these cases, we use a proxy.
We approximate counter-examples by identifying
inputs where the model has low confidence in its
prediction but the input itself is challenging (e.g.,
has high length). We then use the original dataset’s
gold label, assuming it is correct. While imperfect,
this heuristic allows us to apply CEDC to a wider
range of problems.

3.1 Theoretical Connection to Mistake
Bounds

While a full theoretical proof for deep learning
is elusive, CEDC’s efficiency can be understood
through the lens of mistake-bound learning. In this
online learning model, the goal is to minimize the
total number of mistakes an algorithm makes. For
a hypothesis class H, the classic mistake bound
is often related to a complexity measure like the

425



Vapnik-Chervonenkis (VC) dimension, where the
number of mistakes is bounded by O(VC(H)).

A key assumption is that the learner receives
feedback upon making a mistake. Consider two
learning strategies:

1. Random Sampling (like Uniform SG): The
learner receives random examples. The prob-
ability of receiving an informative example
(a mistake) decreases as the model improves,
leading to wasted computation on already-
mastered sub-problems.

2. Targeted Mistake Correction (CEDC): The
learner is exclusively presented with examples
it currently fails on. Every batch provides a
maximal learning signal, directly contributing
to correcting the current hypothesis ht and
progressing towards a more optimal one.

By design, CEDC emulates the ideal learner in
the mistake-bound model. Each fine-tuning step
is guaranteed to be on a set of certified errors, en-
suring that the model’s capacity is used to patch
known deficiencies. This explains the steep error
decay and high sample efficiency we observe em-
pirically, as CEDC more directly minimizes the
number of "mistakes" required to learn the target
function over the sampled distribution.

4 Experimental Setup

We evaluate CEDC on a diverse set of tasks to test
its effectiveness and generality.

4.1 Tasks and Datasets
Algorithmic Tasks. These tasks have clear, ob-
jective verifiers and allow for controlled generation
of inputs of varying difficulty (length).

• Integer Addition: Input is a string like
"123+456". Output is "579". Difficulty is
controlled by the number of digits.

• List Sorting: Input is a string like "[3, 1, 4,
2]". Output is "[1, 2, 3, 4]". Difficulty is
controlled by list length.

• Dyck-2 Language: Input is a sequence of
brackets, ‘(‘ ‘)‘ ‘[‘ ‘]‘. Output is "1" if bal-
anced, "0" otherwise. Difficulty is controlled
by sequence length.

For all algorithmic tasks, the initial training set
D0 contains 10,000 examples with lengths up to
a small limit (e.g., 3-digit numbers for addition,
8-element lists for sorting).

Natural Language Classification. For these
tasks, a perfect verifier is unavailable. We use the
original training sets and our proxy verifier.

• AG-NEWS: 4-class news categorization.

• EMOTION: 6-class emotion detection in text.

• BOOLQ: Boolean question answering.

4.2 Candidate Generators and Verifiers
The practical implementation of CEDC relies on
task-specific generators and verifiers.

Candidate Generators. For algorithmic tasks,
the generator is a simple script. For Addition,
for instance, it randomly samples two integers
with a number of digits drawn from a distribution
that shifts towards longer numbers in later CEDC
rounds (e.g., in round t, digits are sampled from
Uniform(3, 3+2t)). For NLP tasks, the "generator"
samples directly from the original training corpus,
but is biased towards a specific subset. In our exper-
iments, it samples instances from the top quartile
of the dataset by length.

Verifiers. For algorithmic tasks, the verifier is
a ground-truth oracle. For Addition, it is Python’s
‘eval()‘ function; for Sorting, ‘sorted()‘; for Dyck-2,
a simple stack-based parser. These verifiers are fast
and 100% accurate. For NLP tasks, we use the
proxy verifier described in Section 3: an example
(x, ygold) is flagged as a failure if the model’s pre-
dicted probability for the gold label, P (ygold|x), is
below a confidence threshold (0.5), and the length
of x is in the top quartile.

4.3 Model and Baselines
Model Details. We use a standard 12-layer, 8-head
Transformer decoder (Vaswani et al., 2017) (512
hidden dim) with sinusoidal positional embeddings.
All models are trained with AdamW (LR 10−4), a
batch size of 64, and 4000 warmup steps.

Baselines. We compare CEDC against four
strong baselines:

1. Static Training: Trained only on the initial
fixed-length dataset D0.

2. Uniform Self-Generation (Uniform SG):
Trained on D0 plus randomly generated new
examples.

3. Standard Curriculum (Standard CL): Clas-
sic length-based curriculum with fixed stages.

426



4. ALiBi Transformer: Architectural baseline
(Press et al., 2022) trained on the static dataset
D0.

5. Self-Paced Learning (SPL): A strong au-
tomated CL baseline where examples are
weighted by their loss. In each training phase,
only examples with a loss below a dynami-
cally increasing threshold are used for training.
This represents a state-of-the-art loss-based
curriculum method.

6. Adversarial Training (PGD): To compare
against robustness-focused methods, we use
Projected Gradient Descent (PGD) (Madry
et al., 2018) to craft adversarial examples by
perturbing the embedding space. This tests if
improving local robustness helps with length
extrapolation.

7. Back-Translation Augmentation (BTA):
For NLP tasks, we use a standard data aug-
mentation baseline where sentences are trans-
lated to another language (e.g., German) and
back to English to create paraphrased versions,
increasing training set diversity without a dif-
ficulty signal.

4.4 Evaluation Metrics

We use In-Distribution Accuracy on seen lengths
and Length Extrapolation AUC (LE-AUC),
which measures the area under the accuracy-vs-
length curve on unseen lengths.

5 Results and Analysis

5.1 Main Performance Comparison

Table 1 presents the primary results. CEDC con-
sistently achieves the best or second-best perfor-
mance on both in-distribution accuracy and, most
notably, on length extrapolation (LE-AUC). On al-
gorithmic tasks, CEDC dramatically outperforms
all other data-centric methods in LE-AUC and even
surpasses the specialized ALiBi architecture in cer-
tain cases. This demonstrates that a smart data
curriculum can be more effective than a purely ar-
chitectural solution for structured tasks.

5.2 Length Extrapolation Performance

To visualize the extrapolation gap, Section 5.2 plots
accuracy as a function of OOD input length for
the Addition task. The Static model’s accuracy
plummets immediately beyond its training length

Figure 1
Length generalization on the Addition task.

Accuracy is plotted against the number of digits
per operand, beyond the training maximum of 3.
CEDC (blue) vastly outperforms Static (red) and
Standard CL (green) baselines, achieving a much

slower decay in accuracy as length increases.

(3 digits). In contrast, CEDC maintains high accu-
racy for much longer sequences, decaying far more
gracefully and outperforming all other data-centric
approaches.

5.3 Analysis of the Proxy Verifier for NLP

A critical question is how well our proxy verifier
(low model confidence + high input length) iden-
tifies true model errors on NLP tasks. To vali-
date this, we randomly sampled 200 instances from
the AG-NEWS validation set flagged as counter-
examples by our proxy. We then manually an-
notated whether the model’s prediction for these
flagged instances was genuinely incorrect. The re-
sults, shown in Table 2, demonstrate the proxy’s
effectiveness.

With a precision of 89%, our heuristic is highly
effective at mining a clean set of true negatives for
fine-tuning. While not perfect, this mitigates the
concern of systemic error propagation and justifies
its use where perfect verifiers are unavailable.

5.4 Analysis of Mined Counter-Examples

We analyzed the types of errors made by the model
on the Addition task at different CEDC rounds. In
the first round, the model fails on basic single-digit
carry operations. After training on these, round
2 discovers failures in more complex multi-carry
scenarios. By round 4, the dominant failure mode
is handling length mismatches in the output, indi-

427



Table 1: Main results comparing CEDC with baselines. We report In-Distribution Accuracy (%) and Length
Extrapolation AUC (LE-AUC), averaged over 3 runs with different random seeds. Higher is better. Best result
per task is in bold, second best is underlined. CEDC shows a statistically significant advantage in extrapolation
compared to other data-centric methods.

Method Addition Sorting Dyck-2 AG-News Emotion BoolQ

Acc. LE-AUC Acc. LE-AUC Acc. LE-AUC Acc. LE-AUC Acc. LE-AUC Acc. LE-AUC

Standard Baselines
Static Training 98.2±0.3 0.02±0.01 99.1±0.2 0.05±0.02 99.8±0.1 0.11±0.03 92.5±0.4 0.14±0.04 88.1±0.5 0.18±0.05 79.5±0.6 0.12±0.03

Uniform SG 97.5±0.4 0.09±0.02 98.4±0.3 0.16±0.03 99.5±0.2 0.24±0.04 92.6±0.3 0.21±0.05 88.3±0.4 0.23±0.06 79.8±0.5 0.17±0.04

Advanced Baselines
Adversarial (PGD) 99.5±0.2 0.03±0.01 99.6±0.1 0.06±0.02 100.0±0.0 0.12±0.03 93.4±0.3 0.16±0.04 88.5±0.4 0.19±0.05 80.1±0.5 0.13±0.04

Back-Trans. (BTA) N/A N/A N/A N/A N/A N/A 92.8±0.3 0.25±0.05 88.6±0.4 0.28±0.06 80.0±0.5 0.20±0.05

Standard CL 98.1±0.3 0.15±0.03 98.8±0.2 0.25±0.04 99.9±0.1 0.35±0.05 92.7±0.4 0.29±0.05 88.5±0.5 0.31±0.06 80.1±0.6 0.24±0.05

Self-Paced (SPL) 98.9±0.2 0.21±0.04 98.7±0.3 0.29±0.05 100.0±0.0 0.40±0.05 92.9±0.3 0.33±0.06 88.7±0.4 0.35±0.07 80.5±0.5 0.28±0.06

ALiBi (Arch.) 98.8±0.2 0.45±0.04 98.5±0.3 0.57±0.05 100.0±0.0 0.75±0.04 93.1±0.3 0.51±0.05 89.0±0.4 0.55±0.06 81.2±0.5 0.48±0.05

Our Method
CEDC (Ours) 99.4±0.2 0.61±0.05 99.1±0.1 0.68±0.04 100.0±0.0 0.82±0.03 92.8±0.3 0.42±0.06 88.6±0.4 0.45±0.07 80.3±0.6 0.37±0.05

Table 2: Validation of the proxy verifier on a manual
sample of 200 flagged instances from AG-NEWS. The
proxy achieves high precision in identifying genuine
errors.

Metric Value

Flagged as Counter-Example 200
Actually Incorrect (Manual Check) 178

Precision of Proxy 89.0%

Table 3: Qualitative analysis of dominant error types
in mined counter-examples for Addition across CEDC
rounds.

Error Type Round 1 Round 2 Round 3 Round 4

Single Carry Error 65% 25% 10% 5%
Multi-Carry Error 20% 55% 30% 15%
Length Mismatch 10% 15% 45% 30%
Other (e.g., digit error) 5% 5% 15% 50%

cating a shift from arithmetic errors to structural
ones. This shows CEDC’s emergent curriculum
naturally progresses from simple fallacies to com-
plex reasoning failures.

5.5 Improvement Dynamics and Efficiency

CEDC is not only effective but also efficient. Fig-
ure 2(a) shows that LE-AUC increases monotoni-
cally with each round of CEDC, demonstrating the
iterative self-improvement process. Furthermore,
CEDC reaches high performance far more quickly
than Uniform SG. We find that to reach an LE-
AUC of 0.3 on the Addition task, CEDC requires
approximately 3.75× fewer training steps than the
Uniform SG baseline, highlighting the value of
targeted, failure-driven data selection.

6 Acknowledgements

We acknowledge the use of generative AI tools in
rewording and refining portions of this manuscript.

7 Limitations and Future Work

Our work provides strong evidence for CEDC’s ef-
ficacy, but several limitations and ethical considera-
tions warrant discussion and guide future research.

The Verifier Oracle and Domain Generalization.
The primary limitation remains CEDC’s reliance
on a verifier. While we demonstrated a working
proxy for NLP, its generalization to new domains
or more subjective tasks like summarization is an
open question. Our cross-task generalization ex-
periment (Table 5) shows promise, but future work
must investigate how well principles learned via
CEDC in one domain (e.g., formal code) transfer
to messier domains (e.g., natural language instruc-
tions).

Potential for Bias Amplification. The compo-
nents of CEDC are not immune to societal bi-
ases. A data generator for NLP tasks that samples
long texts might inadvertently oversample topics
or demographic styles that are more verbose in the
source corpus. More critically, the proxy verifier,
by relying on model confidence, could systemat-
ically penalize correct but non-obvious answers
characteristic of minority dialects or viewpoints,
leading the model to become even more biased
towards the majority distribution. Auditing the out-
puts of both the generator and verifier for fairness
is a critical step before any real-world deployment.

428



(a) LE-AUC per CEDC Round

(b) Accuracy vs. LE-AUC

Figure 2: (a) For the Addition task, LE-AUC steadily
increases with each round of CEDC, showing consistent
improvement. (b) Across all datasets and variants, mod-
els with higher validation accuracy tend to have better
length extrapolation. CEDC models (blue) consistently
occupy the Pareto frontier, achieving a strong balance
of both metrics.

Scalability and Efficiency. While our cost anal-
ysis shows CEDC is efficient for the studied tasks,
the overhead of the generation-verification loop
could become prohibitive for foundation models.
Scaling CEDC will require innovations such as
asynchronous processing, or using a smaller, dis-
tilled "scout" model to efficiently mine counter-
examples for its much larger "student" counterpart.

The Verifier Oracle. The most significant lim-
itation of CEDC is its reliance on an executable
verifier. As discussed, this is straightforward for
algorithmic tasks but challenging for many real-
world problems. Our proxy verifier for NLP, while
shown to be effective (Table 2), is not infallible and

could miss certain error types or, in the worst case,
reinforce biases if the gold labels themselves are
noisy. The development of learned verifiers or in-
tegrating human-in-the-loop feedback systems are
promising directions to broaden CEDC’s applica-
bility. Furthermore, recent work on process super-
vision, which verifies intermediate reasoning steps
instead of just the final outcome (Lightman et al.,
2023), suggests a path towards applying verifier-
guided principles to more complex, multi-step rea-
soning tasks.

Task and Model Scale. Our experiments were
conducted on well-defined algorithmic tasks and
standard text classification benchmarks. A crucial
next step is to evaluate CEDC’s scalability on more
complex, open-ended reasoning tasks like mathe-
matical problem-solving (e.g., GSM8K) or code
generation (HUMANEVAL). These domains are
ideal for CEDC as they possess robust verifiers
(unit tests or final answer checking) and present
significant challenges in compositional generaliza-
tion. Applying CEDC to large language models
would require efficient strategies for the generation-
verification loop to manage the immense computa-
tional cost.

Generator Coverage and Overfitting. As noted,
CEDC’s progress is contingent on the data genera-
tor’s ability to expose weaknesses. A simple length-
biased generator may eventually fail to find novel
failure modes, causing learning to plateau. Future
work could explore more advanced, adversarial
generators that learn to target the model’s weak-
nesses. Furthermore, while mixing new counter-
examples with all past data helps prevent overfit-
ting, more sophisticated replay strategies, such as
prioritized experience replay, could further enhance
stability and performance.

8 Conclusion

We introduced Counter-Example–Driven Curric-
ula (CEDC), a simple and effective framework for
improving Transformer generalization by learning
from failures. By using a verifier to automati-
cally mine the most informative training examples,
CEDC creates an adaptive, efficient, and heuristic-
free curriculum. Our experiments show that this
approach leads to substantial gains in length extrap-
olation on both algorithmic and NLP tasks, signifi-
cantly outperforming standard training paradigms.
The principle of using failure as a targeted learning

429



signal is powerful, and CEDC provides a practical
blueprint for its implementation.

References
Cem Anil, Andrew M Dai, Orhan Firat, Melvin John-

son, Dmitry Lepikhin, Hieu Pham, Noam Shazeer,
Zhifeng Chen, and Yonghui Wu. 2022. Exploring
length generalization in large language models. In
Advances in Neural Information Processing Systems,
volume 35.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning, pages 41–48.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In International Conference on Learn-
ing Representations (ICLR).

M. Pawan Kumar, Benjamin Packer, and Daphne Koller.
2010. Self-paced learning for latent variable mod-
els. In Advances in Neural Information Processing
Systems, pages 1189–1197.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Pogodin, Oriol Vinyals, and 1 others. 2022.
Competition-level code generation with alphacode.
Science, 378(6624):1092–1097.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. 2023.
Let’s verify step by step. In International Conference
on Machine Learning (ICML).

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.
Towards deep learning models that are robust to ad-
versarial examples. In International Conference on
Learning Representations (ICLR).

Ofir Press, Noah A. Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations (ICLR).

Anshul Sharma, Alex Robey, Nikolaos Pappas, and
Hamed Hassani. 2023. Understanding the failure
modes of out-of-distribution generalization. In Pro-
ceedings of the 40th International Conference on
Machine Learning (ICML).

Abhinav Shrivastava, Abhinav Gupta, and Ross Gir-
shick. 2016. Training region-based object detectors
with online hard example mining. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 761–769.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, and 1 others. 2016. Mas-

tering the game of go with deep neural networks and
tree search. Nature, 529(7587):484–489.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

Ren Wang, Bo Dai, and Li Liu. 2021. Self-supervised
curriculum learning for deep reinforcement learning.
In Advances in Neural Information Processing Sys-
tems, volume 34.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raf-
fel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, William Fedus, Aakanksha Chowdhery, Sha-
ran Narang, and 1 others. 2022. Emergent abilities
of large language models. Transactions on Machine
Learning Research.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and
Quoc V Le. 2020. Self-training with noisy student
improves ImageNet classification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 13724–13733.

A Ablation Studies

To understand the contribution of each component
of our method, we performed ablation studies on
the NLP tasks, with results averaged across the
three datasets shown in Figure 3. Removing si-
nusoidal positional embeddings (‘No-Pos‘) or re-
placing them with trainable ones (‘Learnable-Pos‘)
significantly degrades both validation accuracy and
length extrapolation, confirming the importance of
a fixed, periodic positional signal for OOD gener-
alization. Additionally, we evaluated the impact of
the candidate pool size (N ) used to mine counter-
examples. Reducing N from 50k to 10k decreased
the final LE-AUC by over 15%, underscoring the
need for a sufficiently large and diverse pool to find
the most informative failures.

A.1 Computational Cost Analysis

A valid concern is the computational overhead of
the generation and verification steps in the CEDC
loop. We analyze this by comparing the total wall-
clock time required for each data-centric method to
reach a target LE-AUC of 0.25 on the Sorting task.
As shown in Table 4, while each round of CEDC
is slower than a standard training epoch, its high
sample efficiency means it reaches the performance
target in significantly less total time. The overhead
of the verifier is minimal for algorithmic tasks.

430

https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=R8sQPp1-e2
https://openreview.net/forum?id=R8sQPp1-e2
https://openreview.net/forum?id=R8sQPp1-e2


Figure 3: Average change in validation accuracy of ab-
lated models relative to the full CEDC model. Negative
values confirm that each component contributes posi-
tively.

Table 4: Computational cost to reach an LE-AUC of
0.25 on the Sorting task. A single GPU (NVIDIA A100)
was used.

Method Time/Epoch Epochs Req. Total Time

Uniform SG ∼1.1hr 15 ∼16.5hrs
Standard CL ∼1.1hr 11 ∼12.1hrs
CEDC ∼1.4hr 4 ∼5.6hrs

A.2 Generalization to Unseen Tasks

To test if CEDC promotes a deeper, more abstract
understanding of a domain, we evaluated its zero-
shot cross-task generalization. We trained a model
using CEDC exclusively on the Addition task and
then evaluated it directly on a held-out set of Sub-
traction problems, without any fine-tuning. Table 5
shows that the CEDC-trained model achieves a sur-
prisingly non-trivial accuracy, suggesting it learned
more fundamental arithmetic principles (like sym-
bol manipulation and alignment) compared to the
static baseline, which completely fails.

B Appendix B: Hyperparameter Details

This section provides additional details on the ex-
perimental setup.

Model Architecture

• Transformer Type: Decoder-only

• Layers: 12, Attn. Heads: 8

• Embedding Dim (dmodel): 512, FF Dim (dff ):
2048

• Positional Encoding: Sinusoidal

Table 5: Zero-shot accuracy (%) on Subtraction after
training only on Addition.

Training Method Zero-Shot Accuracy on Subtraction

Static Training 0.1%
CEDC 5.2%

Training Hyperparameters

• Optimizer: AdamW, LR: 1× 10−4

• Betas: (0.9, 0.98), Weight Decay: 0.01

• Batch Size: 64, Warmup Steps: 4000

CEDC-Specific Parameters

• CEDC Rounds: 5

• Candidate Pool Size (N ): 50,000 per round

• Data Mixing: Uniform sampling from Dt∪Ct.

431


