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Abstract 

The development of large language models 

(LLMs) has resulted in significant 

transformations in the field of chemistry, 

with potential applications in molecular 

science. Traditionally, the exploration of 

methods to enhance pre-trained general-

purpose LLMs has focused on techniques 

like supervised fine-tuning (SFT) and 

retrieval-augmented generation (RAG), to 

improve model performance and tailor 

them to specific applications. General 

purpose extended approaches are being 

researched, but their adaptation within the 

chemical domain has not progressed 

significantly. This study advances the 

application of LLMs in molecular science 

by exploring SFT of LLMs, and developing 

RAG and multimodal models, 

incorporating molecular embeddings 

derived from molecular fingerprints and 

other properties.  Experimental results 

show that a multimodal model with 

fingerprint inputs achieved the highest MT 

scores, while RAG with fingerprints 

excelled in property-specific f1 score. For 

molecular representation based on SMILES 

notation, fingerprints effectively capture 

the structural information of molecular 

compounds, demonstrating the 

applicability of LLMs in drug discovery 

research. Our code is available at 

https://bitbucket.org/tech-kobo/ellm-mol-

cap. 

1 Introduction 

Large language models (LLMs) have recently 

demonstrated remarkable advancements in the 

field of natural language processing (NLP), mainly 

owing to the scaling up of the model parameters 

and training data sizes (Touvron et al., 2023; 

Achiam et al., 2023; Anil et al., 2023). Progress in 

LLMs has achieved state-of-the-art performance 

across diverse tasks, and also significantly 

impacted the field of chemistry, with applications 

rapidly emerging in areas such as drug discovery 

and domain-specific information retrieval (Zheng 

et al., 2024; Zhang et al., 2024; Xiao et al., 2024). 

Molecular captioning is a representative task in 

chemical application. In this task, a model takes 

chemical structure information, such as a 

simplified molecular input line entry system 

(SMILES) (Weininger, 1988) or molecular graph 

and generates a textual description of the 

compound's properties. It enables researchers to 

understand compound features more easily, 

accelerating drug discovery. Generally, SMILES, a 

textual data format, is used as input for this task 

with LLMs (Edwards et al., 2022). 

Improving the accuracy of LLMs for specialized 

tasks can be classified into two strategies: model-

centric improvements and prompt-centric 

improvements. The model-centric approach 

focuses on refining the LLM itself, for example 

through architectural changes, continual pre-

training, or supervised fine-tuning (SFT). In 

particular, SFT is a promising technique because of 

its relatively low training cost compared with pre-

training. The prompt-centric approach focuses on 

optimizing the input given to the model. This can 
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Figure 1: Overview of our molecular captioning task. 
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involve techniques like prompt engineering, in-

context learning or the use of retrieval-augmented 

generation (RAG) using text embedding to retrieve 

and incorporate relevant information from external 

sources.  

 Although considerable research has validated 

these approaches in general tasks (Ovadia et al., 

2024), their application to the molecular captioning 

task remains relatively unexplored. A key 

challenge in applying LLMs to chemistry is how to 

represent and input chemical structures for them. 

This critical question of optimal molecular 

representation within the LLM framework remains 

largely unaddressed. 

In this study, we investigate the effectiveness of 

various approaches for improving LLM-based 

molecular captioning tasks with SMILES notation 

(Figure 1). The first approach involves the SFT of 

a closed-source LLM, using SMILES text as the 

input and the corresponding descriptive text as the 

ground truth to create a specialized LLM for 

describing molecular compounds. Closed-source 

LLMs, which often possess larger model 

parameters, are hypothesized to achieve more 

precise inference than fine-tuning open-source 

LLMs. The second approach employs RAG to 

leverage the similarity of SMILES strings to 

retrieve the related compound data. This is 

intended to allow the LLM to describe molecular 

compounds that may not have been sufficiently 

learned or have complex properties not present in 

the training data. In addition to conventional text 

embedding-based retrieval for RAG, we 

incorporate fingerprint-based retrieval using the 

Tanimoto coefficient (Bajusz et al., 2015) as a 

similar metric to retrieve structurally similar 

compounds. The third approach uses multimodal-

LLMs with molecular compound embeddings. In 

multimodal models, the way to embed new modal 

data is crucial. Here, we compare different types of 

embeddings: molecular fingerprint, graph neural 

network embedding, and language model 

embedding. 

Experimental results on a benchmark dataset of 

molecular compounds show that, among molecular 

embeddings, the use of molecular fingerprints for 

RAG and the incorporation of molecular 

fingerprints as an integrated input for multimodal-

LLM yielded the highest accuracy in each 

approach. Specifically, the latter multimodal model 

demonstrated the highest performance in this study. 

This suggests that molecular fingerprints capture 

molecular property information better than the 

other two embedding methods, and it is more 

effective to use a general model with structural 

information (multimodal) than to improve 

unimodal model training methods. These findings 

suggest the potential to support the analysis of 

molecular compounds and improve the efficiency 

of drug discovery research. 

2 Related Works 

2.1 Representation of molecules 

There are three types of molecular representation 

methods that can be converted from SMILES: 

SMILES itself, Graph, and molecular fingerprint 

(Table 1). SMILES is a simple notation that 

represents molecular structures as a single string. It 

uses element symbols for atoms and symbols for 

bonds, making it easy to use in machine learning. 

SMILES embeddings are typically obtained using 

language models. For SMILES embedding, 

molecular language models that extend 

transformer-based models (Vaswani et al., 2017) 

like T5 (Raffel et al., 2020) or BERT (Devlin et al., 

2019) for chemistry, such as molbert or MolT5, are 

used (Edwards et al., 2022; Fabian et al., 2020; 

Chithrananda et al., 2020; Ahmad et al., 2022).  

Graphs are variable-length data structures 

capable of representing three-dimensional (3D) 

structural information. With advancements in deep 

learning, graph neural network (GNN)-based 

models (Zhou et al., 2020; Scarselli et al., 2008) are 

commonly used to generate graph embeddings like 

MolCLR (Wang et al., 2022).  

Molecular fingerprints are vectors, typically 

binary, that are calculated from SMILES strings 

using algorithms (Rogers & Hahn, 2010). These 

vectors store information about the presence or 

absence of structural features in a compound. Their 

fixed-length nature allows them to be readily input 

into general-purpose machine learning models. 

From the perspective of chemical structure 

validity, self-referencing embedded strings 

(SELFIES) (Krenn et al., 2020) is sometimes used 

as input for machine learning instead of SMILES. 

Because LLMs are trained on data crawled from 

the Web, using the more conventional SMILES as 

input yields higher accuracy (Guo et al., 2023). 

Therefore, in this study, we adopt SMILES as the 

input format for our model. 
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2.2 Molecule-text multimodality 

nach0 (Livne et al., 2024), a T5-based model 

trained to acquire molecular chemistry knowledge, 

enables multimodal reasoning by distinguishing 

between SMILES and natural language text tokens. 

Furthermore, research has been conducted on 

models that perform contrastive learning after 

encoding chemical structures and text to solve 

downstream tasks such as property prediction (Su 

et al., 2022; Liu et al., 2023; Luo et al., 2023) , and 

on models that have been extended to include 

images as input (Liu et al., 2024). As an extension 

of LLMs, models that perform multimodal 

reasoning by adding molecular graphs as inputs to 

accurately capture the structural information of 

molecular compounds are also being developed 

(Liu et al., 2023; Cao et al., 2023). Conversely, 

multimodal models using molecular fingerprints, 

as well as comparative studies of these, have not 

been conducted. 

3 Problem Settings 

This study assumes two tasks using SMILES 

notations of molecular compounds. The first is the 

molecular captioning task, which involves 

explaining the properties of a molecular compound 

from its SMILES notation. For this task, it is 

desirable to appropriately describe the properties of 

the molecular compounds represented by the 

SMILES. The second task is the molecular 

property prediction, and its experimental results are 

presented in detail in the Appendix as part of 

additional validation. 

We assumed that only SMILES is given as the 

data for molecular compounds, and cases in which 

molecular structure information is provided as data 

are not assumed. The molecular embedding models 

used are detailed in Table 1. RDKit was used for 

the transformation from SMILES to graph and 

molecular fingerprints. Extended-Connectivity 

Fingerprints 4 (ECFP4) was adopted as the 

algorithm for the transformation to molecular 

fingerprints. Furthermore, molt5-large was used for 

SMILES embeddings, and MolCLR was used for 

graph embeddings. 

4 Proposed Methods 

We propose three approaches for predicting the 

properties of molecular compounds based on their 

SMILES text (Figure 2). 

4.1  First Approach: SFT 

In our first approach, we perform SFT on a closed-

source LLM to specialize in generating descriptive 

text from SMILES notation. Although open-source 

LLMs offer greater parameter customization 

flexibility, they typically have fewer parameters 

than their closed-source counterparts. Because 

models with larger parameter counts generally 

demonstrate superior text generation capabilities, 

we selected a closed-source LLM for this task, 

using molecular SMILES strings as inputs and 

corresponding descriptive texts as outputs for the 

training process.  

4.2 Second Approach: RAG 

In the second approach, which uses RAG, a dataset 

of pairs of training molecule SMILES texts and 

their corresponding descriptive texts is stored in a 

database in advance. The molecule that was most 

similar to the input molecule was retrieved from the 

database. To prevent data leakage during the search, 

the SMILES stored in the database are not used in 

the test data. In this study, we performed similarity 

searches for similar molecular compounds via 

following retrievers: 

- Similarity between molecular fingerprints and 

molecular captions via CLIP 

 Image Feature Convert method  Encoding Method 

SMILES COc1ccc(C(C)=O)cc1 Variable-length 

text - 
Molecular Language Model 

(molt5-large is used in this study) 

Graph 

  

Graph including 

node and edge 

Rule based Graph Neural Network 

(MolCLR is used in this study) 

Molecular 

fingerprint 

 

Fixed-length 

vector 

Rule based 

(ECFP is used in 

this study) 
- 

Table 1: Three types of molecular representation. The right column represents the conversion methods from 

SMILES to their respective representation and the creation of embedding vectors employed in this study.  
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- Cosine similarity of embeddings of SMILES 

by MolT5 

- The cosine similarity of GNN embeddings for 

graph-represented molecules. 

- Tanimoto coefficient of molecular fingerprints 

The Tanimoto coefficient is most suitable for 

similarity comparison of molecules converted to 

fingerprints (Bajusz et al., 2015). In this study, we 

provided the top five SMILES and caption pairs 

obtained through a similarity search of LLM and 

instructed it to generate an appropriate caption for 

the input SMILES. 

4.3 Third Approach: Multimodal 

The third approach involves a multimodal-LLM 

using molecular fingerprints. This is an extension 

of the SFT method to the multimodal domain, 

where the LLM is given a molecular compound's 

SMILES text and fingerprint, enabling it to obtain 

structural information from SMILES and describe 

its properties. We implemented a multimodal LLM 

that processes instruction text and integrated inputs 

of SMILES, graph representations, or molecular 

fingerprints. The input SMILES undergoes a two-

 
1https://huggingface.co/datasets/lan

guage-plus-molecules/LPM-24_train 

step branching process. First, it is converted into a 

molecular embedding by an encoder model. This 

embedding is then transformed via a projector into 

a vector with the same dimensionality as the LLM 

input and fed into the LLM. The other step involves 

embedding the SMILES string directly into the 

prompt as text. Finally, these inputs are integrated, 

and the LLM generates text. By including graph 

embeddings or fingerprints as inputs, the LLM is 

able to generate text while having captured the 

structural information of the molecular compounds. 

5 Experiments and Results 

5.1 Dataset 

We used the L+M-24 dataset 1  and ChEBI-20 

dataset 2  (Table 2). L+M-24 is an open dataset 

containing SMILES notation text of molecular 

compounds and text describing their properties. 

There are 3502 property names. The property can 

be divided into four categories: Biomedical 

(=2032), Light and Electricity (=58), Human 

interaction and Organoleptic (=787), and 

Agriculture and Industry (=625). This is the most 

2https://huggingface.co/datasets/liu

pf/ChEBI-20-MM 

 

Figure 2: Details of our three approaches.  Embeddings are created using three patterns: SMILES + MolT5, 

Graph + MolCLR, and Molecular fingerprint. 

Dataset name L+M-24 ChEBI-20 

 train valid test train valid test 

Number of samples 101491 25373 33696 23760 5941 3297 

Average SMILES sequence length 108.5  105.4 105.4 77.2 76.6 74.4 

Average number of caption text words 30.3 30.4 29.5 43.3 43.7 43.9 

Table 2: Dataset overview. 
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common dataset containing pairs of SMILES 

notations of molecular compounds and text 

describing their properties in English. ChEBI-20 is 

a dataset containing pairs of molecular structural 

information and captions that describe them in 

natural language text. Whereas L+M-24 focuses on 

captioning, which explains physical properties, 

ChEBI-20 focuses on captioning the molecular 

structure itself. For each dataset, we split the non-

test data into training and validation sets with an 

8:2 ratio. 

5.2 LLMs 

For SFT approach, we utilized the custom tuning 

feature of Vertex AI Studio in a Google Cloud 

environment and used the gemini-2.5-flash model 

of the closed-source LLM. Also, we used molt5-

large (Edwards et al., 2022), biot5-base (Pei et al., 

2023), biot5-plus-base-chebi20 (Pei et al., 2024), 

Meta-Llama-3-8B (Grattafiori et al., 2024), 

meditron-7b (Chen et al., 2023), nach0_base 

(Livne et al., 2024) and ChemLLM-7B-Chat 

(Zhang et al., 2024) as the SFTs of the open-source 

LLMs. In addition, during the training of the LLM 

parameters, we used Lora to achieve lightweight 

fine-tuning. The computational environment for 

these experiments was an NVIDIA A100 40GB 

computer connected to Google Cloud Workstations. 

For RAG approach, because large context 

window is required, we used the same Gemini-2.5-

flash. This enables the simultaneous input of 

multiple SMILES and their caption pairs that are 

similar to the input molecule's SMILES into the 

LLM. In the RAG using CLIP, we used a distilbert-

base-uncased text encoder for captions to perform 

lightweight and high-speed training. It is necessary 

to unify the dimensionality of these embeddings, 

we added projectors both text encoder and 

molecular fingerprint with 256 output dimensions 

for CLIP training.  

For multimodal approach, from the perspective of 

high instruction-following ability and trainable 

parameters, Meta-Llama-3-8B (Grattafiori et al., 

2024) was used as the base model for the 

multimodal model. The training settings and 

computational environment for the training were 

the same as those for the SFT conducted with open-

source LLMs. The Projector uses linear 

transformation and Q-Former which was adopted 

in MolCA and 3D-MoLM (Liu et al., 2023, Li et al., 

2024). The Mol Encoder (MolT5, MolCLR) and Q-

Former Projector are pre-trained first. Then, the 

Mol Encoder, Projector, and LLM are trained 

simultaneously second. As the dimensionality of 

the hidden layer embeddings of Meta-Llama-3-8B 

is 4096, the projector from the Mol Encoder to the 

LLM has an output dimension of 4096. 

5.3 Evaluation Metrics 

Following the paper that created the L+M-24 

dataset (Edwards et al., 2024), we used two types 

of evaluation metrics. First, we used property-

specific scores that calculate whether the generated 

text includes property-specific words of molecular 

compounds. Property-specific scores are calculated 

by matching tokenized names within the generated 

captions, specifically using macro-F1, precision, 

and recall. Second, we employed machine 

translation (MT) evaluation metrics, which are 

common in NLP tasks like machine translation and 

text summarization. For the MT evaluation metrics, 

we performed evaluations using natural language 

generation metrics such as BLEU-2/4 (Papineni et 

al., 2002), METEOR (Banerjee & Lavie, 2005), 

and ROUGE-1/2/L (Lin, 2004).  

Comparing MT evaluation metrics and property-

specific scores, MT evaluation metrics are 

influenced by how grammatically similar they are 

to the ground-truth text. Therefore, the score may 

be high even if the characteristics of the molecular 

compound are not properly expressed. Property-

specific scores are more appropriate evaluation 

metrics for assessing whether the characteristics of 

molecular compounds have been correctly 

captured. It was only used with L+M-24 dataset 

because this metric is used to determine properties 

(Figure 3). 

5.4 Results 

We evaluated the performance of our three 

proposed approaches compared with domain-

specific baselines. Figure 3 compares models using 

overall property-scores on the 𝑦 -axis and models 

on the 𝑥 -axis. Table 3 and Table 4 delineate the 

model characteristics and MT evaluation metrics 

for each model, using the L+M-24 dataset and the 

ChEBI-20 dataset respectively. We compared 

against MolCLR, in Figure 3, represents a non-

LLM, GNN-based predictive model which 

leverages the three-dimensional structure of 

molecules. It does not generate captions but 

predicts the presence of property-related words to 

calculate property-specific scores. Among the 

baselines, ChemLLM achieved the highest 
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performance in both MT scores and property-

specific f1 score. Furthermore, categorized 

property-specific score is shown in Appendix A. 

Our proposed closed-source LLM, Gemini 

(Team Gemini et al., 2023), fine-tuned through 

SFT (Gemini SFT), did not outperform domain 

specific language model like ChemLLM, Meditron 

or nach0 in both MT scores and property-specific 

scores. The underperformance is likely due to 

Gemini's lack of specialization in chemical text 

generation and its inability to effectively 

distinguish SMILES strings from regular alphabet 

sequences during tokenization. This suggests that 

for domain-specific tasks with LLMs, a domain-

specific training approach is more vital than model 

parameter size. 

Conversely, the RAG approach, which does not 

involve SFT, yielded lower scores, failing to fully 

grasp the characteristics of captioning. Upon 

examining generated texts, we observed significant 

variations in grammar and phrasing compared to 

the ground truth, as well as instances of overly 

lengthy text. This is likely due to the LLM not 

having learned the structure of ground truth texts. 

This issue might be mitigated by adjusting the 

system prompt to encourage outputs that follow the 

ground truth text structure. For example, captions 

in the L+M-24 dataset often begin with "The 

Molecule is," a pattern not always captured by 

RAG-generated text. When comparing the 

property specific score, the molecular fingerprint 

Tanimoto coefficient-based RAG model 

(fingerprint-rag) had the highest f1 score among the 

entire approaches. From the high recall as well, we 

can see that it most accurately explains the 

properties of the molecules that should be 

explained. This suggests that this approach is the 

most appropriate when we want to generate 

captions without missing any molecular properties. 

Multimodal LLM captioning consistently 

achieved the highest prediction accuracy overall in 

MT score across all three approaches. When 

comparing Llama3 or MolCLR-only models with 

their Multimodal counterparts, we can confirm an 

improvement in accuracy. This suggests that, since 

the information content of SMILES sequences and 

molecular graphs is equivalent, Llama3 and 

MolCLR are likely capturing different features of 

molecules. Moreover, the multimodal model using 

fingerprint embeddings achieved the highest scores 

overall, with linear transformation proving to be 

more suitable as a projector than Q-Former. It's 

possible that a simpler projection was less prone to 

overfitting than the more complex Q-Former 

because molecular fingerprint information is 

relatively easy to capture.  It has higher 

performance than the combination of Graph 

encoder and Q-Former Projector adopted in 

MolCA (Liu et al., 2023).  

The superior performance of models that 

incorporate molecular structure information, either 

via multimodal methods or molecular fingerprints 

in RAG, suggests that accurately representing 

chemical structure is paramount for LLMs. Our 

results show that correctly encoding chemical 

structure allows general-purpose LLMs like 

Llama3 to outperform domain-specific unimodal 

models in tasks such as molecular captioning. The 

strong performance of models using molecular 

fingerprints in both RAG and multimodal settings 

underscores that text encoder-based 

representations like those in MolT5 and nach0 may 

not always fully capture crucial molecular features 

like the presence of atoms, bonds, and rings. If 

MolCLR or MolT5 cannot produce embeddings 

 

Figure 3: Overall property-specific score for molecular captioning using LLMs on L+M-24 dataset. 

Evaluation Metrics: macro-F1 score (f1), precision, recall. The model used for verification is the same as the 

one shown in Table 3. 
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that adequately capture these structural aspects, the 

prediction accuracy may suffer. In contrast, 

molecular fingerprints explicitly represent the local 

characteristics of molecules, enabling models to 

easily discern meaningful features. 

Based on these findings, the most effective 

approach depends on the evaluation criteria. While 

the multimodal model with SFT 

(Fingerprint+Llama3) achieved the highest scores 

on some MT evaluation metrics (BLEU-2, 

METEOR), the fingerprint-rag model achieved the 

highest property-specific f1 score. Given that 

property-specific scores are more appropriate for 

assessing whether molecular characteristics have 

been correctly captured, the fingerprint-rag 

approach demonstrates significant effectiveness in 

accurately describing molecular properties. 

Furthermore, for low-frequency properties, RAG 

has been shown to achieve higher accuracy than 

multimodal model SFT (Appendix C). When 

computational resources are constrained, RAG 

offers a viable alternative for generating 

descriptions based on similar molecules. Across all 

methods, molecular fingerprint representations, 

which explicitly encode structural information as 

vectors, consistently yielded the best results. 

Examples of the text generated in this experiment 

are provided in Appendix D.   

6 Conclusions 

This study explored three enhancement approaches, 

SFT, RAG, and multimodal LLMs for predicting 

molecular compound properties from SMILES 

notation. In the SFT approach, we fine-tuned a 

closed-source LLM using the Gemini API, and it 

did not outperform domain specific language 

model like ChemLLM, Meditron or nach0 in both 

MT scores and property-specific scores. The RAG-

based model exhibited property-specific scores 

comparable to those achieved by the SFT-trained 

model. Notably, both RAG and multimodal LLMs 

demonstrated higher scores when processing 

molecular fingerprints as input, rather than 

SMILES or graph representations. Specifically, a 

multimodal model with fingerprint inputs achieved 

the highest MT scores and RAG with fingerprints 

excelled in property-specific f1 score. These 

findings highlight the potential of LLMs in drug 

discovery research and suggest their promise for 

improving the efficiency of future pharmaceutical 

development. 

(a) SFT approach BLEU-2 BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L 

MolT5 (baseline) 0.048  0.036  0.310  0.427  0.325  0.402  

BioT5 (baseline) 0.047  0.035  0.292  0.407  0.310  0.386  

BioT5 plus (baseline) 0.045  0.034  0.279  0.418  0.320  0.393  

ChemLLM (baseline) 0.772  0.561  0.736  0.790  0.599  0.570  

Meditron (baseline) 0.754  0.545  0.713  0.767  0.580  0.551  

nach0 (baseline) 0.756  0.543  0.707  0.745  0.544  0.525  

Llama3 (baseline) 0.721  0.521  0.700  0.755  0.565  0.545  

Gemini SFT 0.745  0.533  0.694  0.731  0.530  0.512  
 

(b) RAG approach BLEU-2 BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L 

CLIP-rag 0.128  0.055  0.248  0.228  0.086  0.165  

MolCLR-rag 0.103  0.040  0.224  0.201  0.069  0.149  

MolT5-rag 0.240  0.127  0.393  0.364  0.177  0.236  

Fingerprint-rag 0.206  0.103  0.368  0.331  0.151  0.219  
 

(c) MM approach Projector BLEU-2 BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L 

MolCLR+Llama3  Linear 0.766  0.552  0.725  0.771  0.573  0.549  

MolCLR+Llama3  Q-Former 0.768  0.554  0.730  0.779  0.582  0.557  

MolT5+Llama3 Linear 0.727  0.525  0.714  0.770  0.575  0.555  

MolT5+Llama3 Q-Former 0.768  0.554  0.732  0.780  0.582  0.558  

Fingerprint+Llama3  Linear 0.776  0.560  0.738  0.785  0.587  0.563  

Fingerprint+Llama3 Q-Former 0.769  0.554  0.730  0.778  0.580  0.556  

Table 3: MT scores for L+M-24 dataset of (a) SFT approach, (b) RAG approach, and (c) multimodal (MM) 

approach, respectively. The best performing model for each metric is shown in bold. 
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For future research directions, we need to 

investigate multimodal models that accept 3D 

structures as input and explore modality extensions, 

examine molecular captioning that combines SFT 

and RAG, and explore fine-tuning using SELFIES 

instead of SMILES. This also includes evaluating 

the applicability of these technologies to actual 

drug discovery and other related tasks. 

Limitations 

A key limitation of this study is its exclusive 

reliance on 2D molecular representations, as 

incorporating 3D conformational data presents 

significant challenges. Generating accurate 3D 

molecular conformations becomes increasingly 

challenging and computationally intensive as 

molecules grow in size, due to the exponential 

expansion of chemical space (Reymond, 2015). 

Excluding molecules for which 3D generation 

failed and using only successfully generated 3D 

data could bias the dataset toward smaller 

molecular structures, preventing the model from 

handling the broader chemical space. Considering 

the current limitations in accuracy and cost of 3D 

generation, we focused on 2D representations to 

prioritize robustness and scalability across diverse 

and extensive chemical spaces. As a result, our 

model does not yet fully leverage the potential 

benefits that 3D information could provide. 
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A Categorized property-specific score 

Table 5 displays the categorized property-specific 

scores from L+M-24 dataset. We observed that 

biomedical properties were generally easier to 

predict. While fingerprint-based models generally 

performed best, the performance differences across 

representation methods varied more by property 

category.  

B Molecular Property Prediction 

Molecular property prediction involves predicting 

the property labels of a molecular compound using 

SMILES notation. For this task, accurate prediction 
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of the property labels of the molecular compound 

represented by SMILES is desirable. For blood-

brain barrier penetration (BBBP) task, the input 

SMILES is given as text, and if the molecular 

compound given in SMILES can penetrate the 

blood‒brain barrier, the output will be "Yes", 

otherwise, it will be "No". In this study, molecular 

property prediction solves only binary 

classification tasks, where whether the molecular 

compound exhibits a certain property is 

 Biomedical Human Interaction  

and Organoleptics 

Agriculture and 

Industry 

Light and Electricity 

  p r f1  p r f1  p r f1  p r f1 

MolT5 0.886  0.200  0.203  0.990  0.001  0.001  0.960  0.022  0.025  0.564  0.038  0.021  

BioT5 0.531  0.201  0.205  0.197  0.002  0.002  0.203  0.021  0.025  0.091  0.045  0.035  

BioT5 plus 0.701  0.204  0.210  0.596  0.002  0.004  0.799  0.021  0.025  0.095  0.049  0.036  

ChemLLM 0.614  0.276  0.276  0.455  0.064  0.068  0.829  0.061  0.064  0.178  0.079  0.065  

Llama3 0.568  0.255  0.259  0.377  0.031  0.037  0.790  0.048  0.051  0.204  0.061  0.052  

Meditron 0.868  0.255  0.258  0.413  0.045  0.044  0.914  0.056  0.058  0.592  0.058  0.036  

nach0 0.536  0.263  0.265  0.315  0.055  0.054  0.190  0.059  0.059  0.064  0.053  0.054  

Gemini 

SFT 

0.355  0.256  0.248  0.251  0.033  0.035  0.111  0.057  0.050  0.073  0.050  0.054  

CLIP-rag 0.895  0.192  0.193  0.158  0.010  0.007  0.102  0.004  0.005  0.000  0.000  0.000  

Molt5-rag 0.649  0.211  0.220  0.381  0.058  0.057  0.161  0.024  0.027  0.254  0.054  0.068  

MolCLR- 

rag 

0.651  0.219  0.232  0.380  0.071  0.065  0.170  0.029  0.031  0.252  0.118  0.129  

Fingerprint- 

rag 

0.765  0.234  0.254  0.345  0.070  0.061  0.187  0.028  0.030  0.276  0.139  0.151  

MolCLR + 

Llama3 

(Linear) 

0.578  0.277  0.280  0.315  0.062  0.066  0.200  0.055  0.059  0.134  0.097  0.096  

MolCLR + 

Llama3  

(Q-Former) 

0.565  0.272  0.273  0.427  0.056  0.060  0.234  0.061  0.062  0.113  0.085  0.080  

MolT5 + 

Llama3 

(Linear) 

0.554  0.268  0.269  0.371  0.052  0.052  0.734  0.059  0.060  0.089  0.067  0.055  

MolT5 + 

Llama3  

(Q-Former) 

0.560  0.272  0.273  0.286  0.059  0.062  0.222  0.061  0.063  0.116  0.098  0.093  

fingerprint 

+ Llama3 

(Linear) 

0.572  0.280  0.281  0.484  0.071  0.073  0.707  0.063  0.064  0.194  0.111  0.113  

fingerprint 

+ Llama3 

(Q-Former) 

0.547  0.272  0.274  0.431  0.067  0.069  0.733  0.061  0.063  0.135  0.083  0.083  

Table 5: Categorized property-specific score from L+M-24 dataset. p is precision, r is recall, f1 is macro-F1 score.  

 

 

  BBBP  Clintox  HIV  bace  

Detail of task  Binary labels of  

blood-brain barrier 

penetration 

(permeability).  

Qualitative data of drugs 

approved by the FDA 

and those that have 

failed clinical trials for 

toxicity reasons.  

Experimentally 

measured abilities to 

inhibit HIV 

replication.  
  

Quantitative (IC50) and 

qualitative (binary label) binding 

results for a set of inhibitors of 

human β-secretase 1(BACE-1).  

Number of samples  2039  1480  41127  1513  

Positive label ratio  0.765  0.936  0.035  0.458  

Task Type  Binary 

Classification  

Binary Classification  Binary Classification  Binary Classification  

Table 6: Molecule Net dataset overview. 
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represented in a binary format; it does not solve 

regression tasks. This is because, given that the 

LLMs output tokens probabilistically in the 

forward direction, numerical regression tasks are 

challenging. In contrast, classification tasks are 

easier to solve because probabilistically outputting 

tokens is equivalent to multiclass classification. 

B.1 Dataset 

For molecular property prediction, we used four 

datasets released by Molecule Net3 , a large-scale 

benchmark that organizes several public datasets 

for molecular machine-learning evaluation. All 

datasets used in this research were for binary 

classification tasks that express whether a 

compound exhibits an arbitrary property in a binary 

format, and datasets for solving regression tasks 

were not used. To preprocess the datasets, all 

samples containing SMILES that could not be 

converted to fingerprint notation via rdkit were 

removed. Table 6 shows the types of datasets used 

and their basic statistics. 

These datasets were divided into training, 

validation, and test data in a ratio of 6:2:2. The 

divided training data were used to train the 

proposed methods, and the validation data were 

used to evaluate the checkpoints with the highest 

accuracy. All the parameters used for the 

experiments were the same as those used for 

molecular captioning. 

B.2 Results 

As a baseline, we converted the SMILES into 

molecular fingerprints and performed predictions 

using linear regression (LR), XGBoost (XGB), 

 
3 https://moleculenet.org/ 

support vector machine (SVM) and Neural 

Network (NN).  

We also performed classification tasks via 

transformer encoder models, such as molbert, 

MolT5, and nach0. This is inputting SMILES 

directly as text. Furthermore, we performed 

classification based on LLMs, and by fine-tuning 

an LLM to ask for either "Yes" or "No," evaluation 

on the basis of the probability distributions of "Yes" 

or "No" outputs is possible. 

Owing to the API specifications, we did not 

conduct experiments using closed-source models 

because it is difficult to output the probability 

distributions of words. We verified a multimodal 

model by encoding with MolT5 and a multimodal 

model via fingerprints. We used the predictions 

made via fine-tuned Llama3 as the baseline for the 

LLM SFT. 

Tables 7 shows the ROC-AUC and PR-AUC 

scores for binary classification for each dataset. 

The prediction model using MolCLR has not 

achieved accuracy surpassing that of text-based 

models. As with molecular captioning, this is likely 

due to the loss of information, such as the 

representation of isomers in SMILES notation, 

when it is converted into a molecular graph.  

It can also be seen that transformer encoder-

based models, such as MolBERT, MolT5, and 

nach0 (T5 base), are more accurate than the 

Llama3-based models, including the multimodal 

model. This is apparent from the fact that 

transformer decoder models, such as Llama3, are 

designed with an emphasis on text generation and 

are not suitable for classification and that Llama3 

cannot properly tokenize molecules expressed in 

 BBBP clintox HIV bace 

 ROC PR ROC PR ROC PR ROC PR 

fingerprint + LR 0.910  0.967  0.627  0.952  0.755  0.260  0.904  0.855  

fingerprint + XGB 0.929  0.972  0.675  0.956  0.802  0.421  0.922  0.891  

fingerprint + SVM 0.897  0.964  0.631  0.957  - - 0.889  0.844  

fingerprint + NN 0.917  0.969  0.640  0.960  0.785  0.374  0.903  0.849  

MolCLR 0.894  0.958  0.766  0.980  0.773  0.077  0.816  0.752  

MoBERT 0.957  0.987  0.998  1.000  0.759  0.355  0.863  0.818  

MolT5 0.958  0.988  0.996  1.000  0.661  0.101  0.626  0.513  

nach0 0.963  0.990  0.999  1.000  0.785  0.381  0.895  0.857  

Llama3 0.812  0.929  0.822  0.984  0.746  0.205  0.720  0.688  

fingerprint + Llama3 (Linear) 0.953  0.986  0.981  0.999  0.774  0.341  0.878  0.825  

Table 7: ROC-AUC (ROC) and PR-AUC (PR) of molecule property prediction. 
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SMILES. By contrast, the Llama3 multimodal 

model, which uses fingerprints, achieved an 

accuracy similar to that of the other transformer 

encoder models. This shows that even without 

properly tokenizing the SMILES, fingerprints 

contain sufficient molecular information.  

 

C RAG vs. multimodal model SFT 

In a general-purpose LLM approach, SFT often 

requires repeated training to memorize specific 

information. In contrast, RAG can predict 

information that is not present in the training data 

with few-shot learning by externally inserting 

knowledge into the prompt. To confirm this in our 

study, we compared fingerprint-rag (our best 

performing RAG model) with fingerprint + Llama3 

(our best performing fine-tuned multimodal model). 

Figure 4 plots the frequency of property words 

within the training data against the accuracy of 

those words appearing in the generated text.  The 

left side of the figure plots words with a training 

data frequency below 100, while the right-side 

plots words with a frequency above 100.  

As shown in Figure 4, for properties with a 

limited number of samples in the training data, 

multimodal models tend to struggle with accurate 

predictions, while RAG models show higher 

accuracy. Therefore, the performance of 

multimodal models relies on high-frequency 

properties. For instance, properties with a 

frequency exceeding 10,000, such as "alcohol," 

"fatty," and "catalyst," achieved accuracy above 

99% across all models that underwent supervised 

fine-tuning, except for MolT5. 

Table 8 gives the macroF1 scores of RAGs and 

multimodal approach for each categorized property. 

All model's categorized property specific scores are 

listed in the Appendix. As indicated in Table 8, the 

performance categorized by different properties 

generally favors multimodal models. However, for 

properties related to "Light and electricity" 

category, RAG approach exhibit better 

performance. This can be attributed to the relatively 

low frequency of properties within the "Light and 

electricity" category, with the maximum frequency 

being around 500, suggesting that the supervised 

fine-tuning of multimodal models was not 

successful for these properties. The study showed 

similar trends to those seen in general-purpose 

LLMs, and it is expected that applying RAG to 

chemistry-specific LLM that have undergone SFT, 

can lead to the creation of more robust models, 

even for properties with insufficient sample data. 

D Output Text 

Figure 5 shows the text generated by each molecule 

captioning method, along with the ground truth. 

The Gemini SFT and multimodal models exhibited 

high lexical recall against the ground truth, whereas 

the fingerprint RAG, which lacks SFT, produced 

texts with larger word counts and more technical 

terms. As mentioned in the main text, the RAG 

performance is attributed to the model itself not 

having learned vocabulary or phrasing. 

 

Figure 4: Training data property count and 

generated text accuracy. Molecular fingerprint is 

used for both fingerprint-rag and fingerprint + 

Llama3. 
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Figure 5:  Output caption of models. Molecular fingerprinting is used for multimodal model. 

 

 

 Biomedical Human Interaction and Organoleptics Agriculture and Industry Light and electricity 

fingerprint-rag 0.281  0.064  0.039  0.199  

fingerprint + Llama3 

(Linear) 

0.281  0.073  0.064  0.113  

Table 8: Categorized property-specific score (macro-f1) using molecular fingerprints in RAG and multimodal 

models. 
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