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Abstract

The development of large language models
(LLMs) has resulted in significant
transformations in the field of chemistry,
with potential applications in molecular
science. Traditionally, the exploration of
methods to enhance pre-trained general-
purpose LLMs has focused on techniques
like supervised fine-tuning (SFT) and
retrieval-augmented generation (RAG), to
improve model performance and tailor
them to specific applications. General
purpose extended approaches are being
researched, but their adaptation within the
chemical domain has not progressed
significantly. This study advances the
application of LLMs in molecular science
by exploring SFT of LLMs, and developing
RAG and multimodal models,
incorporating  molecular  embeddings
derived from molecular fingerprints and
other properties.  Experimental results
show that a multimodal model with
fingerprint inputs achieved the highest MT
scores, while RAG with fingerprints
excelled in property-specific fl score. For
molecular representation based on SMILES
notation, fingerprints effectively capture
the structural information of molecular
compounds, demonstrating the
applicability of LLMs in drug discovery
research. Our code 1is available at
https://bitbucket.org/tech-kobo/ellm-mol-

cap.

1 Introduction

Large language models (LLMs) have recently
demonstrated remarkable advancements in the
field of natural language processing (NLP), mainly
owing to the scaling up of the model parameters
and training data sizes (Touvron et al., 2023;
Achiam et al., 2023; Anil et al., 2023). Progress in
LLMs has achieved state-of-the-art performance
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Figure 1: Overview of our molecular captioning task.

across diverse tasks, and also significantly
impacted the field of chemistry, with applications
rapidly emerging in areas such as drug discovery
and domain-specific information retrieval (Zheng
et al., 2024; Zhang et al., 2024; Xiao et al., 2024).
Molecular captioning is a representative task in
chemical application. In this task, a model takes
chemical structure information, such as a
simplified molecular input line entry system
(SMILES) (Weininger, 1988) or molecular graph
and generates a textual description of the
compound's properties. It enables researchers to
understand compound features more easily,
accelerating drug discovery. Generally, SMILES, a
textual data format, is used as input for this task
with LLMs (Edwards et al., 2022).

Improving the accuracy of LLMs for specialized
tasks can be classified into two strategies: model-
centric improvements and  prompt-centric
improvements. The model-centric approach
focuses on refining the LLM itself, for example
through architectural changes, continual pre-
training, or supervised fine-tuning (SFT). In
particular, SFT is a promising technique because of
its relatively low training cost compared with pre-
training. The prompt-centric approach focuses on
optimizing the input given to the model. This can

397

Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics, pages 397-410
December 20-24, 2025 ©2025 Association for Computational Linguistics


https://bitbucket.org/tech-kobo/ellm-mol-cap
https://bitbucket.org/tech-kobo/ellm-mol-cap

involve techniques like prompt engineering, in-
context learning or the use of retrieval-augmented
generation (RAG) using text embedding to retrieve
and incorporate relevant information from external
sources.

Although considerable research has validated
these approaches in general tasks (Ovadia et al.,
2024), their application to the molecular captioning
task remains relatively unexplored. A key
challenge in applying LLMs to chemistry is how to
represent and input chemical structures for them.
This critical question of optimal molecular
representation within the LLM framework remains
largely unaddressed.

In this study, we investigate the effectiveness of
various approaches for improving LLM-based
molecular captioning tasks with SMILES notation
(Figure 1). The first approach involves the SFT of
a closed-source LLM, using SMILES text as the
input and the corresponding descriptive text as the
ground truth to create a specialized LLM for
describing molecular compounds. Closed-source
LLMs, which often possess larger model
parameters, are hypothesized to achieve more
precise inference than fine-tuning open-source
LLMs. The second approach employs RAG to
leverage the similarity of SMILES strings to
retrieve the related compound data. This is
intended to allow the LLM to describe molecular
compounds that may not have been sufficiently
learned or have complex properties not present in
the training data. In addition to conventional text
embedding-based retrieval for RAG, we
incorporate fingerprint-based retrieval using the
Tanimoto coefficient (Bajusz et al., 2015) as a
similar metric to retrieve structurally similar
compounds. The third approach uses multimodal-
LLMs with molecular compound embeddings. In
multimodal models, the way to embed new modal
data is crucial. Here, we compare different types of
embeddings: molecular fingerprint, graph neural
network embedding, and language model
embedding.

Experimental results on a benchmark dataset of
molecular compounds show that, among molecular
embeddings, the use of molecular fingerprints for
RAG and the incorporation of molecular
fingerprints as an integrated input for multimodal-
LLM vyielded the highest accuracy in each
approach. Specifically, the latter multimodal model
demonstrated the highest performance in this study.
This suggests that molecular fingerprints capture
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molecular property information better than the
other two embedding methods, and it is more
effective to use a general model with structural
information (multimodal) than to improve
unimodal model training methods. These findings
suggest the potential to support the analysis of
molecular compounds and improve the efficiency
of drug discovery research.

2 Related Works

2.1 Representation of molecules

There are three types of molecular representation
methods that can be converted from SMILES:
SMILES itself, Graph, and molecular fingerprint
(Table 1). SMILES is a simple notation that
represents molecular structures as a single string. It
uses element symbols for atoms and symbols for
bonds, making it easy to use in machine learning.
SMILES embeddings are typically obtained using
language models. For SMILES embedding,
molecular language models that extend
transformer-based models (Vaswani et al., 2017)
like TS (Raffel et al., 2020) or BERT (Devlin et al.,
2019) for chemistry, such as molbert or Mol TS5, are
used (Edwards et al., 2022; Fabian et al., 2020;
Chithrananda et al., 2020; Ahmad et al., 2022).

Graphs are variable-length data structures
capable of representing three-dimensional (3D)
structural information. With advancements in deep
learning, graph neural network (GNN)-based
models (Zhou et al., 2020; Scarselli et al., 2008) are
commonly used to generate graph embeddings like
MolCLR (Wang et al., 2022).

Molecular fingerprints are vectors, typically
binary, that are calculated from SMILES strings
using algorithms (Rogers & Hahn, 2010). These
vectors store information about the presence or
absence of structural features in a compound. Their
fixed-length nature allows them to be readily input
into general-purpose machine learning models.

From the perspective of chemical structure
validity, self-referencing embedded strings
(SELFIES) (Krenn et al., 2020) is sometimes used
as input for machine learning instead of SMILES.
Because LLMs are trained on data crawled from
the Web, using the more conventional SMILES as
input yields higher accuracy (Guo et al., 2023).
Therefore, in this study, we adopt SMILES as the
input format for our model.
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Table 1: Three types of molecular representation. The right column represents the conversion methods from
SMILES to their respective representation and the creation of embedding vectors employed in this study.

2.2 Molecule-text multimodality

nachO (Livne et al., 2024), a T5-based model
trained to acquire molecular chemistry knowledge,
enables multimodal reasoning by distinguishing
between SMILES and natural language text tokens.
Furthermore, research has been conducted on
models that perform contrastive learning after
encoding chemical structures and text to solve
downstream tasks such as property prediction (Su
et al., 2022; Liu et al., 2023; Luo et al., 2023) , and
on models that have been extended to include
images as input (Liu et al., 2024). As an extension
of LLMs, models that perform multimodal
reasoning by adding molecular graphs as inputs to
accurately capture the structural information of
molecular compounds are also being developed
(Liu et al., 2023; Cao et al., 2023). Conversely,
multimodal models using molecular fingerprints,
as well as comparative studies of these, have not
been conducted.

3 Problem Settings

This study assumes two tasks using SMILES
notations of molecular compounds. The first is the
molecular captioning task, which involves
explaining the properties of a molecular compound
from its SMILES notation. For this task, it is
desirable to appropriately describe the properties of
the molecular compounds represented by the
SMILES. The second task is the molecular
property prediction, and its experimental results are
presented in detail in the Appendix as part of
additional validation.

We assumed that only SMILES is given as the
data for molecular compounds, and cases in which
molecular structure information is provided as data
are not assumed. The molecular embedding models
used are detailed in Table 1. RDKit was used for
the transformation from SMILES to graph and

molecular fingerprints. Extended-Connectivity
Fingerprints 4 (ECFP4) was adopted as the
algorithm for the transformation to molecular
fingerprints. Furthermore, molt5-large was used for
SMILES embeddings, and MolCLR was used for
graph embeddings.

4 Proposed Methods

We propose three approaches for predicting the
properties of molecular compounds based on their
SMILES text (Figure 2).

4.1  First Approach: SFT

In our first approach, we perform SFT on a closed-
source LLM to specialize in generating descriptive
text from SMILES notation. Although open-source
LLMs offer greater parameter customization
flexibility, they typically have fewer parameters
than their closed-source counterparts. Because
models with larger parameter counts generally
demonstrate superior text generation capabilities,
we selected a closed-source LLM for this task,
using molecular SMILES strings as inputs and
corresponding descriptive texts as outputs for the
training process.

4.2 Second Approach: RAG

In the second approach, which uses RAG, a dataset
of pairs of training molecule SMILES texts and
their corresponding descriptive texts is stored in a
database in advance. The molecule that was most
similar to the input molecule was retrieved from the
database. To prevent data leakage during the search,
the SMILES stored in the database are not used in
the test data. In this study, we performed similarity
searches for similar molecular compounds via
following retrievers:

- Similarity between molecular fingerprints and

molecular captions via CLIP
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Figure 2: Details of our three approaches. Embeddings are created using three patterns: SMILES + MolTS5,

Graph + MolCLR, and Molecular fingerprint.

Dataset name L+M-24 ChEBI-20

train valid test train valid test
Number of samples 101491 | 25373 | 33696 23760 5941 3297
Average SMILES sequence length 108.5 105.4 105.4 77.2 76.6 74.4
Average number of caption text words | 30.3 30.4 29.5 433 43.7 43.9

Table 2: Dataset overview.

- Cosine similarity of embeddings of SMILES
by MolT5
- The cosine similarity of GNN embeddings for
graph-represented molecules.
- Tanimoto coefficient of molecular fingerprints
The Tanimoto coefficient is most suitable for
similarity comparison of molecules converted to
fingerprints (Bajusz et al., 2015). In this study, we
provided the top five SMILES and caption pairs
obtained through a similarity search of LLM and
instructed it to generate an appropriate caption for
the input SMILES.

4.3

The third approach involves a multimodal-LLM
using molecular fingerprints. This is an extension
of the SFT method to the multimodal domain,
where the LLM is given a molecular compound's
SMILES text and fingerprint, enabling it to obtain
structural information from SMILES and describe
its properties. We implemented a multimodal LLM
that processes instruction text and integrated inputs
of SMILES, graph representations, or molecular
fingerprints. The input SMILES undergoes a two-

Third Approach: Multimodal

thttps://huggingface.co/datasets/lan
guage-plus-molecules/LPM-24 train

step branching process. First, it is converted into a
molecular embedding by an encoder model. This
embedding is then transformed via a projector into
a vector with the same dimensionality as the LLM
input and fed into the LLM. The other step involves
embedding the SMILES string directly into the
prompt as text. Finally, these inputs are integrated,
and the LLM generates text. By including graph
embeddings or fingerprints as inputs, the LLM is
able to generate text while having captured the
structural information of the molecular compounds.

5 Experiments and Results

5.1 Dataset

We used the L+M-24 dataset' and ChEBI-20
dataset? (Table 2). L+M-24 is an open dataset
containing SMILES notation text of molecular
compounds and text describing their properties.
There are 3502 property names. The property can
be divided into four categories: Biomedical
(=2032), Light and Electricity (=58), Human
interaction and Organoleptic (=787), and
Agriculture and Industry (=625). This is the most

https://huggingface.co/datasets/liu
pf/ChEBI-20-MM
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common dataset containing pairs of SMILES
notations of molecular compounds and text
describing their properties in English. ChEBI-20 is
a dataset containing pairs of molecular structural
information and captions that describe them in
natural language text. Whereas L+M-24 focuses on
captioning, which explains physical properties,
ChEBI-20 focuses on captioning the molecular
structure itself. For each dataset, we split the non-
test data into training and validation sets with an
8:2 ratio.

5.2 LLMs

For SFT approach, we utilized the custom tuning
feature of Vertex Al Studio in a Google Cloud
environment and used the gemini-2.5-flash model
of the closed-source LLM. Also, we used molt5-
large (Edwards et al., 2022), biot5-base (Pei et al.,
2023), biot5-plus-base-chebi20 (Pei et al., 2024),
Meta-Llama-3-8B  (Grattafiori et al.,, 2024),
meditron-7b (Chen et al., 2023), nachO base
(Livne et al., 2024) and ChemLLM-7B-Chat
(Zhang et al., 2024) as the SFTs of the open-source
LLMs. In addition, during the training of the LLM
parameters, we used Lora to achieve lightweight
fine-tuning. The computational environment for
these experiments was an NVIDIA A100 40GB

computer connected to Google Cloud Workstations.

For RAG approach, because large context
window is required, we used the same Gemini-2.5-
flash. This enables the simultaneous input of
multiple SMILES and their caption pairs that are
similar to the input molecule's SMILES into the
LLM. In the RAG using CLIP, we used a distilbert-
base-uncased text encoder for captions to perform
lightweight and high-speed training. It is necessary
to unify the dimensionality of these embeddings,
we added projectors both text encoder and
molecular fingerprint with 256 output dimensions
for CLIP training.

For multimodal approach, from the perspective of
high instruction-following ability and trainable
parameters, Meta-Llama-3-8B (Grattafiori et al.,
2024) was used as the base model for the
multimodal model. The training settings and
computational environment for the training were
the same as those for the SFT conducted with open-
source LLMs. The Projector wuses linear
transformation and Q-Former which was adopted
in MolCA and 3D-MoLM (Liu etal., 2023, Lietal.,
2024). The Mol Encoder (MolT5, MolCLR) and Q-
Former Projector are pre-trained first. Then, the
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Mol Encoder, Projector, and LLM are trained
simultaneously second. As the dimensionality of
the hidden layer embeddings of Meta-Llama-3-8B
is 4096, the projector from the Mol Encoder to the
LLM has an output dimension of 4096.

5.3 Evaluation Metrics

Following the paper that created the L+M-24
dataset (Edwards et al., 2024), we used two types
of evaluation metrics. First, we used property-
specific scores that calculate whether the generated
text includes property-specific words of molecular
compounds. Property-specific scores are calculated
by matching tokenized names within the generated
captions, specifically using macro-F1, precision,
and recall. Second, we employed machine
translation (MT) evaluation metrics, which are
common in NLP tasks like machine translation and
text summarization. For the MT evaluation metrics,
we performed evaluations using natural language
generation metrics such as BLEU-2/4 (Papineni et
al., 2002), METEOR (Banerjee & Lavie, 2005),
and ROUGE-1/2/L (Lin, 2004).

Comparing MT evaluation metrics and property-
specific scores, MT evaluation metrics are
influenced by how grammatically similar they are
to the ground-truth text. Therefore, the score may
be high even if the characteristics of the molecular
compound are not properly expressed. Property-
specific scores are more appropriate evaluation
metrics for assessing whether the characteristics of
molecular compounds have been correctly
captured. It was only used with L+M-24 dataset
because this metric is used to determine properties
(Figure 3).

5.4 Results

We evaluated the performance of our three
proposed approaches compared with domain-
specific baselines. Figure 3 compares models using
overall property-scores on the y-axis and models
on the x-axis. Table 3 and Table 4 delineate the
model characteristics and MT evaluation metrics
for each model, using the L+M-24 dataset and the
ChEBI-20 dataset respectively. We compared
against MolCLR, in Figure 3, represents a non-
LLM, GNN-based predictive model which
leverages the three-dimensional structure of
molecules. It does not generate captions but
predicts the presence of property-related words to
calculate property-specific scores. Among the
baselines, ChemLLM achieved the highest
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Figure 3: Overall property-specific score for molecular captioning using LLMs on L+M-24 dataset.
Evaluation Metrics: macro-F1 score (fl), precision, recall. The model used for verification is the same as the

one shown in Table 3.

performance in both MT scores and property-
specific fl score. Furthermore, categorized
property-specific score is shown in Appendix A.

Our proposed closed-source LLM, Gemini
(Team Gemini et al., 2023), fine-tuned through
SFT (Gemini SFT), did not outperform domain
specific language model like ChemLLM, Meditron
or nach0 in both MT scores and property-specific
scores. The underperformance is likely due to
Gemini's lack of specialization in chemical text
generation and its inability to effectively
distinguish SMILES strings from regular alphabet
sequences during tokenization. This suggests that
for domain-specific tasks with LLMs, a domain-
specific training approach is more vital than model
parameter size.

Conversely, the RAG approach, which does not
involve SFT, yielded lower scores, failing to fully
grasp the characteristics of captioning. Upon
examining generated texts, we observed significant
variations in grammar and phrasing compared to
the ground truth, as well as instances of overly
lengthy text. This is likely due to the LLM not
having learned the structure of ground truth texts.
This issue might be mitigated by adjusting the
system prompt to encourage outputs that follow the
ground truth text structure. For example, captions
in the L+M-24 dataset often begin with "The
Molecule is," a pattern not always captured by
RAG-generated text. When comparing the
property specific score, the molecular fingerprint
Tanimoto  coefficient-based = RAG  model
(fingerprint-rag) had the highest f1 score among the
entire approaches. From the high recall as well, we
can see that it most accurately explains the
properties of the molecules that should be
explained. This suggests that this approach is the

most appropriate when we want to generate
captions without missing any molecular properties.

Multimodal LLM captioning consistently
achieved the highest prediction accuracy overall in
MT score across all three approaches. When
comparing Llama3 or MolCLR-only models with
their Multimodal counterparts, we can confirm an
improvement in accuracy. This suggests that, since
the information content of SMILES sequences and
molecular graphs is equivalent, Llama3 and
MolCLR are likely capturing different features of
molecules. Moreover, the multimodal model using
fingerprint embeddings achieved the highest scores
overall, with linear transformation proving to be
more suitable as a projector than Q-Former. It's
possible that a simpler projection was less prone to
overfitting than the more complex Q-Former
because molecular fingerprint information is
relatively easy to capture. It has higher
performance than the combination of Graph
encoder and Q-Former Projector adopted in
MolCA (Liu et al., 2023).

The superior performance of models that
incorporate molecular structure information, either
via multimodal methods or molecular fingerprints
in RAG, suggests that accurately representing
chemical structure is paramount for LLMs. Our
results show that correctly encoding chemical
structure allows general-purpose LLMs like
Llama3 to outperform domain-specific unimodal
models in tasks such as molecular captioning. The
strong performance of models using molecular
fingerprints in both RAG and multimodal settings
underscores that text encoder-based
representations like those in Mol T5 and nachO may
not always fully capture crucial molecular features
like the presence of atoms, bonds, and rings. If
MOoICLR or MolT5 cannot produce embeddings
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(a) SFT approach BLEU-2 | BLEU-4 | METEOR | ROUGE-1 | ROUGE-2 | ROUGE-L
MolTS5 (baseline) 0.048 0.036 0.310 0.427 0.325 0.402
BioT5 (baseline) 0.047 0.035 0.292 0.407 0.310 0.386
BioT5 plus (baseline) 0.045 0.034 0.279 0.418 0.320 0.393
ChemLLM (baseline) 0.772 0.561 0.736 0.790 0.599 0.570
Meditron (baseline) 0.754 0.545 0.713 0.767 0.580 0.551
nachO (baseline) 0.756 0.543 0.707 0.745 0.544 0.525
Llama3 (baseline) 0.721 0.521 0.700 0.755 0.565 0.545
Gemini SFT 0.745 0.533 0.694 0.731 0.530 0.512
(b) RAG approach BLEU-2 | BLEU-4 | METEOR | ROUGE-1 | ROUGE-2 | ROUGE-L
CLIP-rag 0.128 0.055 0.248 0.228 0.086 0.165
MolCLR-rag 0.103 0.040 0.224 0.201 0.069 0.149
MolT5-rag 0.240 0.127 0.393 0.364 0.177 0.236
Fingerprint-rag 0.206 0.103 0.368 0.331 0.151 0.219
(¢) MM approach | Projector | BLEU-2 | BLEU-4 | METEOR | ROUGE-1 | ROUGE-2 | ROUGE-L
MolCLR+Llama3 Linear 0.766 0.552 0.725 0.771 0.573 0.549
MolCLR+Llama3 Q-Former 0.768 0.554 0.730 0.779 0.582 0.557
MolT5+Llama3 Linear 0.727 0.525 0.714 0.770 0.575 0.555
MolT5+Llama3 Q-Former 0.768 0.554 0.732 0.780 0.582 0.558
Fingerprint+Llama3 | Linear 0.776 0.560 0.738 0.785 0.587 0.563
Fingerprint+Llama3 | Q-Former 0.769 0.554 0.730 0.778 0.580 0.556

Table 3: MT scores for L+M-24 dataset of (a) SFT approach, (b) RAG approach, and (c) multimodal (MM)
approach, respectively. The best performing model for each metric is shown in bold.

that adequately capture these structural aspects, the
prediction accuracy may suffer. In contrast,
molecular fingerprints explicitly represent the local
characteristics of molecules, enabling models to
easily discern meaningful features.

Based on these findings, the most effective
approach depends on the evaluation criteria. While
the multimodal model with SFT
(Fingerprint+Llama3) achieved the highest scores
on some MT evaluation metrics (BLEU-2,
METEOR), the fingerprint-rag model achieved the
highest property-specific fl score. Given that
property-specific scores are more appropriate for
assessing whether molecular characteristics have
been correctly captured, the fingerprint-rag
approach demonstrates significant effectiveness in
accurately describing molecular properties.
Furthermore, for low-frequency properties, RAG
has been shown to achieve higher accuracy than
multimodal model SFT (Appendix C). When
computational resources are constrained, RAG
offers a wviable alternative for generating
descriptions based on similar molecules. Across all
methods, molecular fingerprint representations,
which explicitly encode structural information as
vectors, consistently yielded the best results.
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Examples of the text generated in this experiment
are provided in Appendix D.

6 Conclusions

This study explored three enhancement approaches,
SFT, RAG, and multimodal LLMs for predicting
molecular compound properties from SMILES
notation. In the SFT approach, we fine-tuned a
closed-source LLM using the Gemini API, and it
did not outperform domain specific language
model like ChemLLM, Meditron or nach0 in both
MT scores and property-specific scores. The RAG-
based model exhibited property-specific scores
comparable to those achieved by the SFT-trained
model. Notably, both RAG and multimodal LLMs
demonstrated higher scores when processing
molecular fingerprints as input, rather than
SMILES or graph representations. Specifically, a
multimodal model with fingerprint inputs achieved
the highest MT scores and RAG with fingerprints
excelled in property-specific fl score. These
findings highlight the potential of LLMs in drug
discovery research and suggest their promise for
improving the efficiency of future pharmaceutical
development.



(a) SFT approach BLEU-2 | BLEU-4 | METEOR | ROUGE-1 | ROUGE-2 | ROUGE-L
MolT?5 (baseline) 0.134 0.057 0.185 0.296 0.119 0.234
BioT5 (baseline) 0.230 0.142 0.287 0.344 0.161 0.267
BioT5 plus (baseline) 0.223 0.136 0.249 0.333 0.178 0.280
ChemLLM (baseline) 0.401 0.292 0.452 0.515 0.332 0.448
Meditron (baseline) 0.359 0.244 0.397 0.478 0.289 0.416
nachO (baseline) 0.381 0.271 0.418 0.501 0.313 0.432
Llama3 (baseline) 0.312 0.193 0.360 0.439 0.238 0.369
Gemini SFT 0.283 0.171 0.363 0.425 0.216 0.345
(b) RAG approach BLEU-2 | BLEU-4 | METEOR | ROUGE-1 | ROUGE-2 | ROUGE-L
CLIP-rag 0.136 0.045 0.188 0.267 0.076 0.188
MolCLR-rag 0.189 0.098 0.250 0.324 0.122 0.230
MolT5-rag 0.175 0.084 0.232 0.310 0.111 0.221
fingerprint-rag 0.222 0.129 0.287 0.358 0.152 0.258
(¢) MM approach | Projector | BLEU-2 | BLEU-4 | METEOR | ROUGE-1 | ROUGE-2 | ROUGE-L
MolCLR+Llama3 Linear 0.324 0.210 0.369 0.453 0.261 0.389
MolCLR+Llama3 Q-Former 0.397 0.283 0.440 0.511 0.324 0.443
MolT5+Llama3 Linear 0.400 0.285 0.437 0.510 0.323 0.443
MolT5+Llama3 Q-Former 0.404 0.287 0.438 0.513 0.322 0.443
fingerprint+Llama3 | Linear 0.421 0.307 0.458 0.528 0.342 0.459
fingerprint+Llama3 | Q-Former 0.410 0.294 0.451 0.520 0.331 0.450

Table 4: MT scores for ChEBI-20 dataset of (a) SFT approach, (b) RAG approach, and (c) multimodal (MM)
approach, respectively. The best performing model for each metric is shown in bold.

For future research directions, we need to
investigate multimodal models that accept 3D
structures as input and explore modality extensions,
examine molecular captioning that combines SFT
and RAG, and explore fine-tuning using SELFIES
instead of SMILES. This also includes evaluating
the applicability of these technologies to actual
drug discovery and other related tasks.

Limitations

A key limitation of this study is its exclusive
reliance on 2D molecular representations, as
incorporating 3D conformational data presents
significant challenges. Generating accurate 3D
molecular conformations becomes increasingly
challenging and computationally intensive as
molecules grow in size, due to the exponential
expansion of chemical space (Reymond, 2015).
Excluding molecules for which 3D generation
failed and using only successfully generated 3D
data could bias the dataset toward smaller
molecular structures, preventing the model from
handling the broader chemical space. Considering
the current limitations in accuracy and cost of 3D
generation, we focused on 2D representations to
prioritize robustness and scalability across diverse
and extensive chemical spaces. As a result, our

model does not yet fully leverage the potential
benefits that 3D information could provide.
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A Categorized property-specific score

Table 5 displays the categorized property-specific
scores from L+M-24 dataset. We observed that
biomedical properties were generally easier to
predict. While fingerprint-based models generally
performed best, the performance differences across
representation methods varied more by property
category.

B Molecular Property Prediction

Molecular property prediction involves predicting
the property labels of a molecular compound using
SMILES notation. For this task, accurate prediction
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Biomedical Human Interaction Agriculture and Light and Electricity
and Organoleptics Industry
p r fl P r fl P r fl P r fl

MolT5 0.886 | 0.200 | 0.203 | 0.990 | 0.001 | 0.001 | 0.960 | 0.022 | 0.025 | 0.564 | 0.038 | 0.021
BioT5 0.531 | 0.201 | 0.205 | 0.197 | 0.002 | 0.002 | 0.203 | 0.021 | 0.025 | 0.091 | 0.045 | 0.035
BioTS plus | 0.701 | 0.204 | 0.210 | 0.596 | 0.002 | 0.004 | 0.799 | 0.021 | 0.025 | 0.095 | 0.049 | 0.036
ChemLLM | 0.614 | 0.276 | 0.276 | 0.455 | 0.064 | 0.068 | 0.829 | 0.061 | 0.064 | 0.178 | 0.079 | 0.065
Llama3 0.568 | 0.255 | 0.259 | 0.377 | 0.031 | 0.037 | 0.790 | 0.048 | 0.051 | 0.204 | 0.061 | 0.052
Meditron 0.868 | 0.255 | 0.258 | 0.413 | 0.045 | 0.044 | 0.914 | 0.056 | 0.058 | 0.592 | 0.058 | 0.036
nachQ 0.536 | 0.263 | 0.265 | 0.315 | 0.055 | 0.054 | 0.190 | 0.059 | 0.059 | 0.064 | 0.053 | 0.054
Gemini 0.355 | 0.256 | 0.248 | 0.251 | 0.033 | 0.035 | 0.111 | 0.057 | 0.050 | 0.073 | 0.050 | 0.054
SFT
CLIP-rag 0.895 | 0.192 | 0.193 | 0.158 | 0.010 | 0.007 | 0.102 | 0.004 | 0.005 | 0.000 | 0.000 | 0.000
Molt5-rag | 0.649 | 0.211 | 0.220 | 0.381 | 0.058 | 0.057 | 0.161 | 0.024 | 0.027 | 0.254 | 0.054 | 0.068
MolCLR- 0.651 | 0.219 | 0.232 | 0.380 | 0.071 | 0.065 | 0.170 | 0.029 | 0.031 | 0.252 | 0.118 | 0.129
rag
Fingerprint- | 0.765 | 0.234 | 0.254 | 0.345 | 0.070 | 0.061 | 0.187 | 0.028 | 0.030 | 0.276 | 0.139 | 0.151
rag
MoICLR + | 0.578 | 0.277 | 0.280 | 0.315 | 0.062 | 0.066 | 0.200 | 0.055 | 0.059 | 0.134 | 0.097 | 0.096
Llama3
(Linear)
MoICLR + | 0.565 | 0.272 | 0.273 | 0.427 | 0.056 | 0.060 | 0.234 | 0.061 | 0.062 | 0.113 | 0.085 | 0.080
Llama3
(Q-Former)
MolT5 + | 0.554 | 0.268 | 0.269 | 0.371 | 0.052 | 0.052 | 0.734 | 0.059 | 0.060 | 0.089 | 0.067 | 0.055
Llama3
(Linear)
MolT5 + | 0.560 | 0.272 | 0.273 | 0.286 | 0.059 | 0.062 | 0.222 | 0.061 | 0.063 | 0.116 | 0.098 | 0.093
Llama3
(Q-Former)
fingerprint | 0.572 | 0.280 | 0.281 | 0.484 | 0.071 | 0.073 | 0.707 | 0.063 | 0.064 | 0.194 | 0.111 | 0.113
+ Llama3
(Linear)
fingerprint | 0.547 | 0.272 | 0.274 | 0.431 | 0.067 | 0.069 | 0.733 | 0.061 | 0.063 | 0.135 | 0.083 | 0.083
+ Llama3
(Q-Former)

Table 5: Categorized property-specific score from L+M-24 dataset. p is precision, r is recall, f1 is macro-F1 score.

BBBP Clintox HIV bace

Detail of task Binary labels of Qualitative data of drugs | Experimentally Quantitative (IC50) and
blood-brain  barrier | approved by the FDA | measured abilities to | qualitative (binary label) binding
penetration and those that have | inhibit HIV | results for a set of inhibitors of
(permeability). failed clinical trials for | replication. human B-secretase 1(BACE-1).

toxicity reasons.

Number of samples 2039 1480 41127 1513

Positive label ratio 0.765 0.936 0.035 0.458

Task Type Binary Binary Classification Binary Classification Binary Classification
Classification

Table 6: Molecule Net dataset overview.

of the property labels of the molecular compound
represented by SMILES is desirable. For blood-
brain barrier penetration (BBBP) task, the input
SMILES is given as text, and if the molecular
compound given in SMILES can penetrate the

blood-brain barrier, the output will be "Yes",
otherwise, it will be "No". In this study, molecular
property  prediction solves only  binary
classification tasks, where whether the molecular
compound exhibits a certain property is
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BBBP clintox HIV bace
ROC PR ROC PR ROC PR ROC PR
fingerprint + LR 0910 | 0967 | 0.627 | 0952 | 0.755| 0.260 | 0.904 | 0.855
fingerprint + XGB 0929 | 0972 | 0.675| 0956 | 0802 | 0421 | 0922 | 0.891
fingerprint + SVM 0.897 | 0.964 | 0.631 0.957 - -] 0.889 | 0.844
fingerprint + NN 0917 | 0969 | 0.640 | 0960 | 0.785 | 0.374| 0903 | 0.849
MolICLR 0894 | 0958 | 0.766 | 0980 | 0.773 | 0.077 | 0.816 | 0.752
MoBERT 0957 | 0987 | 0998 | 1.000| 0.759 | 0.355| 0.863 | 0.818
MolT5 0958 | 0988 | 099 | 1.000 | 0.661 0.101 0.626 | 0.513
nachQ 0963 | 0.990 | 0999 | 1.000| 0.785 | 0.381 0.895 | 0.857
Llama3 0812 | 0929 | 0.822| 0984 | 0.746 | 0.205| 0.720 | 0.688
fingerprint + Llama3 (Linear) 0.953 0.986 0.981 0.999 0.774 0.341 0.878 0.825

Table 7: ROC-AUC (ROC) and PR-AUC (PR) of molecule property prediction.

represented in a binary format; it does not solve
regression tasks. This is because, given that the
LLMs output tokens probabilistically in the
forward direction, numerical regression tasks are
challenging. In contrast, classification tasks are
easier to solve because probabilistically outputting
tokens is equivalent to multiclass classification.

B.1 Dataset

For molecular property prediction, we used four
datasets released by Molecule Net®, a large-scale
benchmark that organizes several public datasets
for molecular machine-learning evaluation. All
datasets used in this research were for binary
classification tasks that express whether a
compound exhibits an arbitrary property in a binary
format, and datasets for solving regression tasks
were not used. To preprocess the datasets, all
samples containing SMILES that could not be
converted to fingerprint notation via rdkit were
removed. Table 6 shows the types of datasets used
and their basic statistics.

These datasets were divided into training,
validation, and test data in a ratio of 6:2:2. The
divided training data were used to train the
proposed methods, and the validation data were
used to evaluate the checkpoints with the highest
accuracy. All the parameters used for the
experiments were the same as those used for
molecular captioning.

B.2 Results

As a baseline, we converted the SMILES into
molecular fingerprints and performed predictions
using linear regression (LR), XGBoost (XGB),

3https://moleculenet.org/

support vector machine (SVM) and Neural
Network (NN).

We also performed classification tasks via
transformer encoder models, such as molbert,
MolT5, and nachO. This is inputting SMILES
directly as text. Furthermore, we performed
classification based on LLMs, and by fine-tuning
an LLM to ask for either "Yes" or "No," evaluation
on the basis of the probability distributions of "Yes"
or "No" outputs is possible.

Owing to the API specifications, we did not
conduct experiments using closed-source models
because it is difficult to output the probability
distributions of words. We verified a multimodal
model by encoding with MoIT5 and a multimodal
model via fingerprints. We used the predictions
made via fine-tuned Llama3 as the baseline for the
LLM SFT.

Tables 7 shows the ROC-AUC and PR-AUC
scores for binary classification for each dataset.
The prediction model using MolCLR has not
achieved accuracy surpassing that of text-based
models. As with molecular captioning, this is likely
due to the loss of information, such as the
representation of isomers in SMILES notation,
when it is converted into a molecular graph.

It can also be seen that transformer encoder-
based models, such as MolBERT, MolT5, and
nachO (TS5 base), are more accurate than the
Llama3-based models, including the multimodal
model. This is apparent from the fact that
transformer decoder models, such as Llama3, are
designed with an emphasis on text generation and
are not suitable for classification and that Llama3
cannot properly tokenize molecules expressed in
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SMILES. By contrast, the Llama3 multimodal
model, which uses fingerprints, achieved an
accuracy similar to that of the other transformer
encoder models. This shows that even without
properly tokenizing the SMILES, fingerprints
contain sufficient molecular information.

C RAG vs. multimodal model SFT

In a general-purpose LLM approach, SFT often
requires repeated training to memorize specific
information. In contrast, RAG can predict
information that is not present in the training data
with few-shot learning by externally inserting
knowledge into the prompt. To confirm this in our
study, we compared fingerprint-rag (our best
performing RAG model) with fingerprint + Llama3
(our best performing fine-tuned multimodal model).
Figure 4 plots the frequency of property words
within the training data against the accuracy of
those words appearing in the generated text. The
left side of the figure plots words with a training
data frequency below 100, while the right-side
plots words with a frequency above 100.

As shown in Figure 4, for properties with a
limited number of samples in the training data,
multimodal models tend to struggle with accurate
predictions, while RAG models show higher
accuracy. Therefore, the performance of
multimodal models relies on high-frequency
properties. For instance, properties with a
frequency exceeding 10,000, such as "alcohol,"
"fatty," and "catalyst," achieved accuracy above
99% across all models that underwent supervised
fine-tuning, except for MolT5.

Table 8 gives the macroF1 scores of RAGs and
multimodal approach for each categorized property.
All model's categorized property specific scores are
listed in the Appendix. As indicated in Table 8, the
performance categorized by different properties
generally favors multimodal models. However, for
properties related to "Light and electricity”
category, RAG approach exhibit better
performance. This can be attributed to the relatively
low frequency of properties within the "Light and
electricity" category, with the maximum frequency
being around 500, suggesting that the supervised
fine-tuning of multimodal models was not
successful for these properties. The study showed
similar trends to those seen in general-purpose
LLMs, and it is expected that applying RAG to
chemistry-specific LLM that have undergone SFT,

Frequency at or below 100 Frequency at or above 100
v

+ fingerprint rag
08 . « fingerprint + Llama3 | gg

accuracy

o= 3 =
2
R
ot
.

6 20 40 60 80 100 o 5000 10000 15000 20000
Word Frequencies in Training Data

Figure 4: Training data property count and
generated text accuracy. Molecular fingerprint is
used for both fingerprint-rag and fingerprint +
Llama3.

can lead to the creation of more robust models,
even for properties with insufficient sample data.

D Output Text

Figure 5 shows the text generated by each molecule
captioning method, along with the ground truth.
The Gemini SFT and multimodal models exhibited
high lexical recall against the ground truth, whereas
the fingerprint RAG, which lacks SFT, produced
texts with larger word counts and more technical
terms. As mentioned in the main text, the RAG
performance is attributed to the model itself not
having learned vocabulary or phrasing.
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Biomedical | Human Interaction and Organoleptics | Agriculture and Industry Light and electricity
fingerprint-rag 0.281 0.064 0.039 0.199
fingerprint + Llama3 | 0.281 0.073 0.064 0.113
(Linear)

Table 8: Categorized property-specific score (macro-f1) using molecular fingerprints in RAG and multimodal

models.
Molecule Ground Truth Gemini SFT Fingerprint-rag Multimodal Model
0 Wh_eu hee_lled to decom]_)o_sxtlon it When heated to decomposition The molecule possesses a The molecule is an energy
emits acrid smoke and irritating - . - pleasant and characteristic source, energy storage,
N\ it emits acrid smoke and . -
o fumes. The molecule has both a o aroma, and its structure emulsifier, surfactant, nutrient,
irritating vapors. . . o
Bitter and unpleasant taste and a suggests it may function as a membrane stabilizer.
COclece(C(C)=0)cel Pleasant odor. nutrient or energy source.
P The molecule is a flavoring agent, ~ The molecule is a nutrient. The molecule is an antioxidant, a The molecule is a nutrient.
., savory, meaty, and sulfur. nutrient, and potentially functions
HO as an emulsifier, surfactant, and
J/ . membrane stabilizer.
/
COclec(C(=0)CO)cc(O
C)clo
N The molecule is an anti-cancer. The molecule is a cancer This is a complex orga.u_nic molecule  The molecule is a anti-
b N treatment. containing a tetrazole ring an inflammatory.
\.}\/\L aldehyde group a carboxylic acid

and a benzyloxycarbonyl (Cbz)
protected amine. It is a biologically

COC(C=0O)nlnnc(CC active compound.
C(NC(=0)OCc2cceec
2)C(=0)0)nl

Figure 5: Output caption of models. Molecular fingerprinting is used for multimodal model.
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