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Abstract

We propose XL-DURel, a finetuned, multilin-
gual Sentence Transformer model optimized
for ordinal Word-in-Context classification. We
test several loss functions for regression and
ranking tasks managing to outperform previ-
ous models on ordinal and binary data with a
ranking objective based on angular distance in
complex space. We further show that binary
WiC can be treated as a special case of ordinal
WiC and that optimizing models for the gen-
eral ordinal task improves performance on the
more specific binary task. This paves the way
for a unified treatment of WiC modeling across
different task formulations.

1 Introduction

The Ordinal Graded Word-in-Context (OGWiC)
task asks to predict the level of semantic proxim-
ity between two word usages on an ordinal scale
(Schlechtweg et al., 2025). While it builds on
the earlier WiC (Pilehvar and Camacho-Collados,
2019) and GWiC (Armendariz et al., 2020) tasks,
it can be distinguished from these by being for-
mulated as an ordinal classification task (Sakai,
2021). This is similar to ranking in that labels
are inherently ranked, but also similar to classifi-
cation in that exact labels have to be predicted for
each test instance, instead of merely an ordering of
instances as in ranking tasks. State-of-the-art OG-
WiC models employ pre-trained Language Mod-
els like XLM-R (Conneau et al., 2019) to gener-
ate contextualized embeddings for the target word
in two different contexts and finetune these with
loss functions tailored for binary or nominal data
such as the contrastive or the cross-entropy loss
(e.g. Cassotti et al., 2023; Kuklin and Arefyev,
2025). We conjecture that these models do not
sufficiently exploit the ranking signal provided by
OGWiC training data. In this study, we aim to over-
come this limitation by employing loss functions

directly optimizing ranking or regression objec-
tives. We compare these against previous models
trained with binary classification objectives and
manage to outperform the latter on ordinal and
binary data with a ranking objective based on an-
gular distance in complex space. By improving
performance on the binary and the ordinal formula-
tion of the task through the same model, we pave
the way for a unified treatment of WiC modeling.
We publish our top-performing model, XL-DURel,
which can be employed as highly optimized, fine-
grained and multilingual contextualized embedder
for word-meaning-related tasks.1

2 Related Work

2.1 WiC Task
The challenge of capturing the dynamic semantics
of words has led to the development of various
evaluation benchmarks. One notable contribution
in this area is the Word-in-Context (WiC) task and
the corresponding dataset, introduced by Pilehvar
and Camacho-Collados (2019). The WiC task is
designed to assess context-sensitive word repre-
sentations by framing it as a binary classification
problem. In this task, each instance consists of
a target word w, and two usages (or sentences)
u1 and u2. The objective is to determine whether
the meaning of the target word remains consistent
across the two usages. If the meaning is the same,
the instance is labeled ‘TRUE’ (or ‘1’) as in pair
(1,2):

(1) The expanded window will give us time to
catch the thieves.

(2) You have a two-hour window of clear weather
to finish working on the lawn.

If the meaning differs, it is labeled ‘FALSE’ (or
‘0’) as in pair (3,4):

1https://huggingface.co/sachinn1/xl-durel
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(3) There’s a lot of trash on the bed of the river.

(4) I keep a glass of water next to my bed when I
sleep.

Performance on this task is usually evaluated with
Accuracy. The first WiC dataset by Pilehvar and
Camacho-Collados (2019) was constructed from
sense-annotated lexical resources such as WordNet
(Fellbaum, 2005), VerbNet (Schuler, 2005) and
Wiktionary2.

2.2 GWiC Task
The Graded Word Similarity in Context (GWiC)
task (Armendariz et al., 2020), introduced as part of
SemEval-2020 Task 3, aims to evaluate how well
computational models can capture graded word
similarity in different contexts such as (5) and (6):

(5) . . . These young men displayed true Rajput
chivalry. Akbar was so impressed with the
bravery of these two warriors that he com-
missioned. . .

(6) . . . By night, she’s a top-ranking woman war-
rior in the Nine-Tailed Fox clan, charged with
preserving the delicate balance between man
and fox.

In one of the subtasks, participants were tasked
with predicting the absolute similarity rating for
each word pair within each context on a scale from
0 to 10. For word pair man and warrior, the gold
similarity score is 7.88 in (5) and 3.27 in (6). The
shared task used the Harmonic Mean of Pearson
and Spearman correlations as an evaluation met-
ric. It can thus be interpreted as a mixture of a
regression and a ranking task.

2.3 OGWiC Task
The Ordinal Graded Word-in-Context (OGWiC)
task was introduced as part of the CoMeDi shared
task (Schlechtweg et al., 2025), focusing on nu-
anced and interpretable evaluation of word mean-
ing in context. It aims to address the problems of
the WiC and GWiC tasks by defining an ordinal
classification task requiring participants to exactly
reproduce the median annotated label for a word us-
age pair on a scale from 1 (unrelated) to 4 (closely
related).3 For example, the pair (7,8) receives la-
bel 4 (identical) while pair (7,9) receives the lower
label 2 (distantly related):

2https://www.wiktionary.org/
3Find more details on the scale in Appendix A.

(7) . . . the dismissal last month of the comman-
dant and two other generals of the provincial
police, reportedly for graft.

(8) We try to live with lies and corruption and
fraud and graft and violence and exploitation
and. . .

(9) The second, which is spread while warm on
strips of coarse cotton, or strong paper, and
wrapped directly about the graft, answering
at once to tie and to protect it, is composed of
equal parts of bees-wax, turpentine, and resin.

OGWiC is similar to the previous WiC and GWiC
tasks, but limits the label set in predictions and
penalizes stronger deviations from the true label.
This makes OGWiC an ordinal classification task
(Sakai, 2021), in contrast to binary classification
(WiC) or ranking (GWiC). Predictions are eval-
uated against the median labels with the ordinal
version of Krippendorff’s α (Krippendorff, 2018).

Two models excelled in the CoMeDi shared task
(Choppa et al., 2025; Kuklin and Arefyev, 2025):
XL-LEXEME (Cassotti et al., 2023) builds upon
the Sentence Transformers architecture (Reimers
and Gurevych, 2019) and employs a bi-encoder
framework within a Siamese network. Vectors are
initialized with XLM-RoBERTa (XLM-R, Con-
neau et al., 2019) and their similarity is directly
optimized using a contrastive loss function (Had-
sell et al., 2006), which minimizes the distance
between embeddings of sentences with the same
meaning (label ‘TRUE’) while maximizing the
distance between embeddings of sentences with
different meanings (label ‘FALSE’) around a pre-
selected margin. At test time, the model predicts
the similarity between two usages using the fine-
tuned base model and thresholds it to infer ordinal
labels (see Section 4.4). A similar approach is
taken by the DeepMistake model (Arefyev et al.,
2021). Vectors are initialized with XLM-R, sen-
tences concatenated and jointly encoded. Then
the target word vectors are extracted and jointly
fed into a binary classification head. The model is
finetuned using the cross-entropy loss. Similar to
XL-LEXEME, DeepMistake is trained on binary
WiC-like data. At test time, the model predicts the
probability of label ‘TRUE’ and thresholds it to
infer ordinal labels.
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Dataset Train Dev Test Cosine Binary Ordinal

CoMeDi 47,833 8,287 15,332

4 → 1.0 4 → 1
3 → 2

3
3 → 1

2 → 1
3

2 → 0
1 → 0.0 1 → 0

WiC 251,972 8,381 6,400 1 → 1.0 1 → 4
0 → 1

3
0 → 2

WiC+CoMeDi 299,805 16,668 21,732 as above as above as above

Table 1: Dataset statistics and label mappings.

3 Data

3.1 Ordinal WiC

We use the OGWiC data provided by the CoMeDi
shared task organizers (Schlechtweg et al., 2025),
available in starting kit 1.4 The data comprises
71k word usage pairs sampled from ordinal WiC
datasets across multiple languages, including Chi-
nese, English, German, Norwegian, Russian, Span-
ish and Swedish. (See Table 3 in Appendix B for
details.) The data was cleaned in various steps:
Initially, instances with fewer than two annotations
or those marked with any “Cannot decide” were
excluded. Instances with significant annotator dis-
agreement (more than one point on the scale) were
also removed. A median judgment was calculated
for each instance, retaining only integer medians
for task consistency. The data was split by lan-
guage, with 70% allocated to training, 20% to test-
ing, and 10% to development, ensuring that no
target word overlapped between these splits. (See
Table 4 in Appendix B for details.)

3.2 Binary WiC

In addition to the CoMeDi data, our study in-
corporates the datasets used for training the XL-
LEXEME model (see Section 2.3), which com-
bines three established multilingual benchmarks:
XL-WiC (Raganato et al., 2020), MCL-WiC (Martelli
et al., 2021), and AM2iCo (Liu et al., 2021). These
benchmarks are widely used for evaluating word
meaning in context.

XL-WiC is a multilingual extension of the origi-
nal WiC dataset (Pilehvar and Camacho-Collados,
2019), containing over 112k sentence pairs across
12 languages: Bulgarian, Chinese, Croatian, Dan-
ish, Dutch, Estonian, Farsi, French, German, Ital-
ian, Japanese, and Korean. Training data is avail-
able for German, French, and Italian while develop-

4https://comedinlp.github.io/

ment and test sets are provided for all 12 languages.
Most of the data was automatically extracted from
WordNet or Wiktionary sense inventories without
direct human annotation. The dataset is distributed
together with the original English WiC dataset com-
prising roughly 7K sentence pairs.

MCL-WiC (Multilingual and Cross-lingual
Word-in-Context Disambiguation) comprises
approximately 10k sentence pairs spanning five
languages: Arabic, Chinese, English, French, and
Russian. The dataset contains data for two distinct
subtasks: (i) multilingual WiC classification
within individual languages, and (ii) cross-lingual
classification comparing sentences from different
languages. The dataset is specifically designed
to evaluate model performance across both high-
and medium-resource language settings. Unlike
XL-WiC, which relies on sense inventories,
MCL-WiC is entirely human-annotated.

AM2iCo (Adversarial and Multilingual Meaning
in Context) contains roughly 196k instances
spanning 14 language pairs and 15 typologically
diverse languages, including English, German,
Russian, Japanese, Korean, Mandarin Chinese,
Arabic, Indonesian, Finnish, Turkish, Basque,
Georgian, Urdu, Bengali, and Kazakh. The dataset
supports evaluation of word meaning in context
both within individual languages and across
different languages, with a particular focus on
low-resource scenarios. AM2iCo is constructed
by automatically extracting WiC pairs from
Wikipedia, and then filtering them through human
validation and adversarial filtering.5

Cassotti et al. constructed the training set for XL-
LEXEME by merging the official training splits
from the three above-described datasets. To further

5Adversarial filtering is a strategy to make a dataset harder
and more useful by removing easy examples that models can
solve without actually understanding the task.
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augment the training data, they randomly sampled
75% of each dataset’s development data and added
it to the training pool. The remaining 25% of the
development data was reserved for hyperparameter
tuning and validation.

As part of our study, we concatenate the CoMeDi
shared task dataset and the XL-LEXEME dataset
into a unified resource. For clarity, we refer to the
XL-LEXEME dataset concatenation henceforth as
“WiC (train/dev)”. We further refer to the CoMeDi
shared task data as “CoMeDi (train/dev/test)”. Ad-
ditionally, we include the original WiC and MCL-
WiC test datasets for evaluation in our experiments.
We refer to these as “WiC (test)”. Statistics for the
final datasets are given in Table 1.6

3.3 Label Mapping

As summarized in Table 1, we apply a system-
atic label mapping procedure to align the datasets
for unified model training and evaluation. Specif-
ically, we transform binary and ordinal labels to
cosine-like labels (interval [0, 1]) if needed for the
respective loss function used for training (see Sec-
tion 4.2). Similarly, we transform ordinal labels
to binary labels if needed. As summarized in Ta-
ble 1, for ordinal-to-cosine mapping, we utilize
Min-Max-Scaling to map labels to the interval
[0, 1]. This maps the ordinal labels as follows: 1
→ 0.0, 2 → 1

3 , 3 → 2
3 , and 4 → 1.0. For binary-

to-cosine mapping, we map label 1 (same sense)
to cosine label 1.0 to align with annotation level
4 (identical) on the ordinal scale (cf. Table 2 in
Appendix A). Binary label 0 (different sense) is
mapped to cosine label 1

3 to align with level 2 (pol-
ysemy) on the ordinal scale, based on the assump-
tion that most pairs of usages, especially from the
same target word, will be semantically related, e.g.
by contiguity or similarity. For ordinal-to-binary
mapping, we group ordinal labels 1 and 2 as binary
label 0, and labels 3 and 4 as binary label 1, which
is motivated by the idea that ordinal label 2 (pol-
ysemy) is a relation between senses while ordinal
label 3 (context variance) is a variation within a
sense (see Appendix A). This mapping is needed
in some cases for evaluation. Following the same
logic as for binary-to-cosine, for binary-to-ordinal
mapping we assign binary label 1 to ordinal label
4, and binary label 0 to ordinal label 2.

6Unintentionally, we skipped 10 files in Cassotti et al.’s
training data package, i.e., AM2iCo dev ar-en/bn-en, XL-WiC
dev bg-bg/da-da/en-en/et-et/fr-fr/zh-zh, WiC dev en-en, MCL-
WiC dev en-en. In total, these are 12,512 instances.

BERT BERT

pooling pooling

u v

cosine-sim(u, v)

-1 ... 1

Sentence 1 Sentence 2

Figure 1: SBERT architecture at inference.

4 Model

We employ Sentence-BERT (SBERT, Reimers and
Gurevych, 2019), a modification of BERT designed
to generate semantically meaningful sentence em-
beddings for efficient semantic similarity com-
parison. Unlike standard BERT, which requires
joint processing of sentence pairs, SBERT uses
a siamese or triplet network architecture. Each
sentence is independently encoded by a BERT-
based model with shared weights and pooled, re-
sulting in fixed-size sentence embeddings. SBERT
is implemented using the Sentence Transformers li-
brary (Reimers and Gurevych, 2020), which offers
a flexible interface for finetuning SBERT models
with various loss functions. Most of these aim
to adjust base model parameters so that similari-
ties between sentence embeddings align with gold
similarity values. A standard choice for the opti-
mized similarity metric is the Cosine Similarity
or its inverse, the Cosine Distance (Salton and
McGill, 1983). See Figure 1 for an illustration
of the SBERT architecture.

4.1 Target Word Marking

The WiC task requires semantic disambiguation
at the token level rather than at the sentence level.
This presents a challenge for SBERT, which is pri-
marily designed for sentence-level embedding and
comparison. We adopt XL-LEXEME’s (see Sec-
tion 2.3) strategy to adapt sentence embeddings to
focus on specific target words within their contexts
by marking the target word in each usage u with
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special tokens:

u = w1, . . . , ⟨t⟩, wti , . . . , wti+k, ⟨/t⟩, . . . , wN

where ⟨t⟩ and ⟨/t⟩ denote the opening and closing
markers for the target word wt, and wi represents
individual words in the sentence. Inputs are trun-
cated to a maximum sequence length of 128 tokens.
After truncation, we additionally append the [CLS]
and the [SEP] token before and after the input se-
quence, respectively.

4.2 Loss Functions
We experiment with the following loss functions to
optimize model performance. If not stated differ-
ently, we use the cosine similarity/distance and the
loss is calculated as mean per batch.

Contrastive Loss expects two embeddings (u, v)
and a binary label y ∈ {0, 1} as inputs (Hadsell
et al., 2006). It drives the similarity between posi-
tive pairs towards 1 and that between negative pairs
to decrease to a margin. In the Sentence Transform-
ers library, the loss is defined as:

L =
1

2

(
y · d(u, v)2 + (1− y) ·max(0,m− d(u, v))2

)

where

• d(u, v) is the distance between the embed-
dings and

• m is the margin hyperparameter, which speci-
fies the minimum required distance between
dissimilar pairs.

Selecting the optimal margin for different datasets
may be challenging (Huang et al., 2024). Also,
relative distances with ordered label sets with more
than two classes cannot be encoded making the loss
ill-suited for ranking tasks.

Cosine Similarity Loss expects two embeddings
(u, v) and a continuous similarity label y ∈ [0, 1]
as inputs. It is defined as the mean squared dif-
ference between the predicted similarities between
embeddings and the ground truth label:

L = ∥cos(u, v)− y∥2
where

• ∥·∥2 is the L2 norm.

The mean squared error is a common loss function
used in regression tasks. However, according to
Huang et al. (2024), it is unsuitable for classifica-
tion tasks because noise does not follow a normal
distribution (cf. Ciampiconi et al., 2024).

CoSENT Loss expects two embeddings (u, v)
and a continuous similarity label y ∈ [0, 1] as in-
puts (Huang et al., 2024). It trains the embeddings
so that the higher the similarity label between pairs,
the higher the similarity of their embeddings:

L = log

(
1 +

∑

y(u,v)>y(k,l)

exp(λ(s(k, l)− s(u, v)))

)

where

• s(u, v) is the similarity between the embed-
dings,

• y(u, v) > y(k, l) defines the set of embedding
pairs (k, l) for which the ground truth label
y(k, l) is smaller than y(u, v) and

• λ is a hyperparameter for amplification.7

The loss is computed as sum over all pairs (u, v)
in the batch. In contrast to the contrastive loss
operating within the sentence pairs, CoSENT fo-
cuses on maintaining ranking consistency between
the learned similarity of sentence pairs within the
entire set and their similarity labels (Huang et al.,
2024). This also distinguishes it from the Cosine
Similarity Loss which operates only on individual
pairs and only implicitly optimizes ranking consis-
tency.

AnglE Loss expects two embeddings (u, v) and
a continuous similarity label y ∈ [0, 1] as inputs. It
uses the CoSENT Loss function (see above) with
a different similarity measure, i.e., the angle dif-
ference in complex space (Li and Li, 2023). The
AnglE Loss was introduced to address a key limi-
tation of the cosine function: The gradient of the
cosine function tends to approach zero as it nears
its maximum or minimum values, which can hin-
der the optimization process. According to Li and
Li, this is not the case for the angle difference in
complex space.

4.3 Optimization
During training, the parameters of the base model
are adjusted in order to minimize the respective

7The Sentence Transformers library makes two specific
implementation choices: (i) Pairs (k, l) that do not meet the
condition y(u, v) > y(k, l) are masked by subtracting a large
constant (i.e., 1012) from their score difference, making their
contribution negligible in the exponential term. (ii) For nu-
merical stability, a zero is appended to the set of all cosine
similarities in a batch where y(u, v) > y(k, l) to guarantee
numerical stability in cases where the set y(u, v) > y(k, l) is
empty.
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loss function from Section 4.2. For all experiments,
we keep the following settings constant: We use
XLM-R-large as our base model and optimize with
AdamW. We set the learning rate to 1 × 10−5, the
batch size to 32 and use no weight decay (0.0). All
other settings are kept at their default values. For
Contrastive Loss we set the margin m = 0.5, and
for the ranking losses (CoSENT, AnglE Loss) we
use the default λ = 20. We train for 10 epochs,
with a linear warm-up over 10% of the total training
steps. We evaluate at every 25% of an epoch via
Average Precision8 (Contrastive Loss) or Spearman
correlation (rest) between cosine similarities and
gold labels on dev data (see Section 5).9 The final
checkpoint is chosen by highest performance on
dev data.

The base model, XLM-R-large, contains 561M
parameters. All experiments are conducted on a
Linux-based server running Fedora 42, equipped
with NVIDIA RTX A6000 GPUs (48 GB VRAM
per GPU) and dual Intel Xeon CPUs. We utilize a
single GPU per run and estimate the computational
runtime per model run to be approximately 40–50
GPU hours.10

4.4 Thresholding
For all models, we adopt the CoMeDi shared task
baseline approach to map cosine similarities to or-
dinal labels. At test time, similarities are mapped
to ordinal labels using three thresholds θ, which
are optimized on the dev set by minimizing the
following loss function (cf. Choppa et al., 2025):

L = 1− α(y, ŷθ)

where

• y are gold labels,

• ŷθ are predicted labels according to thresholds
θ on similarity predictions ŷ and

• α is Krippendorff’s α.

Krippendorff’s α is the task evaluation metric (see
Section 5). We aim to find optimal values for θ.
This threshold optimization is performed on the dev
data and separately for each language to account

8We also tried Spearman correlation and did not observe a
considerable difference in results.

9We also experimented with using the angle difference
on dev for AnglE Loss, but did not outperform the cosine
similarity.

10GitHub Copilot was used to assist with coding during the
implementation.

for language-specific distributional differences in
similarity scores. It uses the Nelder–Mead simplex
method (Nelder and Mead, 1965). (Find induced
thresholds in Appendix C.)

4.5 Baseline Models

In our experiments, we employ a number of simple
baseline models, as described below. All models
use thresholding as explained in Section 4.4 for
mapping similarities to ordinal labels.

SBERT uses the cosine similarity on a non-
finetuned SBERT model initialized with XLM-R-
Large.

XL-LEXEME uses XLM-R-Large as base
model and was finetuned with SBERT using the
Contrastive Loss on WiC train and dev (see Sec-
tions 2.3 and 3).

XL-LEXEME CoMeDi is the XL-LEXEME re-
sult reported in the CoMeDi shared task. Notably,
it achieved the second-best performance. We use
this as a baseline in our evaluation.

DeepMistake CoMeDi is the DeepMistake re-
sult reported in the CoMeDi shared task. It
achieved the best performance. It uses XLM-
R-Large as base model and was finetuned with
the cross-entropy loss for binary classification on
MCL-WiC train and dev, the Spanish subset of XL-
WSD (Pasini et al., 2021) and a binarized version of
the Spanish DWUG dataset (Zamora-Reina et al.,
2022) (see Sections 2.3 and 3). Because Spanish
DWUG is part of our test data, we report additional
average performance without Spanish in Section 6.

5 Evaluation

Following the CoMeDi shared task, we use ordinal
Krippendorff’s α (Krippendorff, 2018) as evalu-
ation measure for ordinal classification. It penal-
izes stronger deviations from the gold label more
heavily. It has the additional advantage of con-
trolling for expected disagreement and has been
demonstrated to be superior to other measures such
as Mean Absolute Error for ordinal classification
(Sakai, 2021). We also use Spearman’s rank cor-
relation coefficient (ρ) between continuous simi-
larities and gold ordinal labels to assess the rank
alignment of model predictions. This enables us to
evaluate performance without inducing thresholds.
We further apply the nominal version of Krippen-
dorff and the Spearman correlation for binary label
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Figure 2: Model evaluation with Krippendorff’s α on binary and ordinal test data. CL = Contrastive Loss, COS =
Cosine Similarity Loss, CSENT = CoSENT Loss, AnglE = AnglE Loss, XL-LXM = XL-LEXEME, DMistake =
DeepMistake.

evaluation. During training, similarities are com-
pared to ordinal labels with Spearman correlation
and to binary labels with the Average Precision.

6 Experiments

We now test which loss functions (see Section 4.2)
and data combinations (see Section 3) improve per-
formance on the ordinal CoMeDi test data over the
baselines described in Section 4.5. We additionally
report performance on binary WiC data to under-
stand whether optimization for ordinal data hurts
the binary task. As finetuning is computationally
expensive, we perform one run for each model.11

Models are evaluated with Krippendorff’s α as de-
scribed in Section 5 based on their cosine predic-

11We selectively re-ran models and observed variation of
average performances between ±.01–.03.

tions binned to ordinal labels (see Section 4.4).12

All experiments follow the training setup described
in Section 4.3. Results are shown in Figure 2.13

Loss function First of all, we see that fine-
tuning has a strong effect on performance. For
this, compare all models against SBERT, which
is the only non-finetuned model. With a perfor-
mance of .67, AnglE Loss achieves the best result
on CoMeDi test data (‘CoMeDi-Avg’) when us-
ing both WiC and CoMeDi training data (AnglE-
WiC+CoMeDi). With performances of .64 and .62
respectively, it is followed by the CoSENT Loss
(CSENT-WiC+CoMeDi) and the Cosine Similar-

12We also experimented with using the angle difference
on test for AnglE Loss, but did not outperform the cosine
similarity.

13In Appendix D, we give an additional performance eval-
uation on the raw cosine predictions with Spearman rank
correlation.
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ity Loss (COS-WiC+CoMeDi). All these models
clearly outperform the published version of XL-
LEXEME (XL-LXM), its retrained model version
(CL-WiC) and the retrained version with additional
ordinal data (CL-WiC+CoMeDi), which have per-
formances of .58, .56 and .57, respectively. The
top model AnglE-WiC+CoMeDi outperforms the
latter ones on all languages and on average by a
large margin. The same holds for the published
XL-LEXEME result from the CoMeDi shared task
(XL-LXM-CoMeDi), which is outperformed with
.67 vs. .58. It further slightly outperforms the
shared task winning model DeepMistake (.67 vs.
.66). This is also the case if we exclude Span-
ish (‘CoMeDi-Avg-W/O-ES’), which was reported
additionally by the task organizers because Deep-
Mistake was trained on part of the test data for
Spanish. Notably, we reach this performance by
optimizing one unified model while the DeepMis-
take result was obtained by optimizing multiple
models tailored to specific languages.14 On binary
WiC (‘WiC-Avg’), top performance is reached by
the CoSENT Loss model relying on both binary
and ordinal training data (CSENT-WiC+CoMeDi)
with .68, closely followed by the AnglE Loss rely-
ing on the same data (AnglE-WiC+CoMeDi) and
XL-LEXEME with .67, respectively. Hence, on
the ordinal and the binary task ranking losses show
top performance, where the advantage to the clas-
sification loss is more pronounced for the ordinal
task. While the regression loss is not competitive
for either task, it shows a clear advantage over the
classification loss on the ordinal task. These results
are in line with the motivations given for the loss
functions in Section 4.2: AnglE and CoSENT Loss
are explicitly optimizing a ranking objective, which
exploits the inherent ordering of ordinal labels. Fur-
ther, the AnglE Loss improves optimization over
the CoSENT Loss and other cosine-based losses,
presumably because it avoids killed gradients oc-
curring with the cosine similarity.

Training data Note that training on purely ordi-
nal data yields good baseline performance across
tasks, especially with the AnglE Loss (AnglE-
CoMeDi). For binary data, this is also the case, but
there is a larger performance difference to top mod-
els on the ordinal task (e.g. AnglE-WiC). More-
over, we clearly observe that combining ordinal

14We provide the finetuned AnglE-WiC+CoMeDi model
under the name “XL-DURel” at https://huggingface.co/
sachinn1/xl-durel. Find the code for reproducing our re-
sults at https://github.com/sachinn12/XL-DURel.

and binary data improves performance on the or-
dinal task across all loss functions. Compare for
example performances of AnglE-WiC/CoMeDi vs.
AnglE-WiC+CoMeDi or CSENT-WiC/CoMeDi vs.
CSENT-WiC+CoMeDi. There is a clear average
performance improvement on the ordinal task. Sim-
ilarly for performance on the binary task, but only
for the ranking losses AnglE and CoSENT. How-
ever, for the Contrastive and the Cosine Similarity
Loss the performance drop is negligible.

Ordinality Regardless of training data, the or-
dinal training signal turns out to be beneficial for
both tasks. In order to see this, compare e.g. CL-
CoMeDi vs. AnglE-CoMeDi. The former binarizes
the data while the latter keeps the ordinal informa-
tion. The performance difference is striking with
.58 vs. .62 for the ordinal task and, interestingly,
.57 vs. .63 for the binary task. This indicates that
fine-grained semantic proximity information helps
the model to better learn binary meaning distinc-
tions, which is also supported by the fact that the
best purely ordinal model approaches the perfor-
mance of the best purely binary model on the binary
task (AnglE-CoMeDi vs. CL-WiC) despite being
trained on much less and out-of-distribution data.

7 Conclusion

We compared several loss functions for classifica-
tion, regression and ranking to finetune OGWiC
models. Our top model outperformed previous
models on ordinal and binary WiC data with a rank-
ing objective based on angular distance in complex
space. Overall, we found that using the AnglE Loss
can be recommended, both for the ordinal and the
binary WiC task. Similarly, mixing ordinal and
binary training data turned out to be beneficial for
both tasks. These results suggest that binary WiC
can be treated as a special case of ordinal WiC and
that optimizing models for the general ordinal task
improves performance on the more specific binary
task. In the future, WiC task setups should try to
unify these approaches in order to make use of the
full power of WiC training signals from multiple
types of data. Further, we should try to optimize
models more directly for ordinal classification in-
stead of ranking. Currently, our model first predicts
a dense similarity which we then discretize in an
independent step to ordinal labels through thresh-
olds. However, there are also loss functions directly
optimizing for ordinal labels, like Cumulative Link
models (Vargas et al., 2020). We would like to
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test such models for OGWiC. Moreover, similar to
Loke et al. (2025), we would like to test Large Lan-
guage Models such as Llama (Touvron et al., 2023).
These profit from massive amounts of parameters
and training data and can be directly instructed to
predict an ordinal number. Note, however, that our
current approach has certain advantages over this:
It is theoretically motivated by employing direct
ranking optimization. Also, it is small and efficient
making the model applicable to large amounts of
data.

Limitations

We tested our hypotheses using particular data,
base models and training architectures. In future
research, these should be varied to test whether
they have an influence on effects. Specifically, it
should be tested whether the AnglE Loss turns out
to be beneficial for the ordinal and binary task with
additional test data. It is also unclear why the An-
glE Loss performs better with the cosine similarity
than with the angle difference in complex space
at test time although the latter is optimized during
training.

Acknowledgments

This study is an extension of Sachin Yadav’s master
thesis (Yadav, 2025). We thank Lucas Möller for
feedback regarding the implementation. We further
thank Pierluigi Cassotti, Roksana Goworek and
Haim Dubossarsky for help on reproducing XL-
LEXEME results.

References
Anna Aksenova, Ekaterina Gavrishina, Elisei Rykov,

and Andrey Kutuzov. 2022. RuDSI: Graph-based
word sense induction dataset for Russian. In Pro-
ceedings of TextGraphs-16: Graph-based Methods
for Natural Language Processing, pages 77–88,
Gyeongju, Republic of Korea. Association for Com-
putational Linguistics.

Nikolay Arefyev, Maksim Fedoseev, Vitaly Protasov,
Daniil Homskiy, Adis Davletov, and Alexander
Panchenko. 2021. DeepMistake: Which senses are
hard to distinguish for a word-in-context model. vol-
ume 2021-June, pages 16–30.

Carlos Santos Armendariz, Matthew Purver, Senja Pol-
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x

4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated

x

Identity
Context Variance
Polysemy
Homonymy

Table 2: The DURel relatedness scale (Schlechtweg
et al., 2018) on the left and its interpretation from
Schlechtweg (2023, p. 33) on the right.

A Annotation Scale

Unlike WiC, which is designed as a binary classi-
fication task, OGWiC employs an ordinal classi-
fication approach by assigning labels on a four-
point scale. This four-point scale in Table 2,
follows the DURel annotation framework pro-
posed by Schlechtweg et al. (2018) which is based
on Blank’s concept of semantic proximity (Blank,
1997). Unlike GWiC, labels are not transformed
post-hoc and each level of the DURel scale has an
exact linguistic interpretation as presented in Ta-
ble 2, where polysemy is located between identity,
context variance, and homonymy (Schlechtweg,
2023).

According to Schlechtweg (2023, p. 22–23),
the pair (1,2) below is classified as identical as
the referents of two uses of the word arm are both
prototypical representatives of the same extensional
category corresponding to the concept ‘a human
body part’:

(1) [...] and taking a knife from her pocket, she
opened a vein in her little arm, [...]

(2) [...] and though he saw her within reach of his
arm, [...]

The use pair (1,3) is classified as context variance
as both referents still belong to the same exten-
sional category, but one is a non-prototypical repre-
sentative. Hence, there is some variation in mean-
ing, e.g. the arm of a statue loses the function of
the physical arm to be lifted:

(3) [...] when the disembodied arm of the Statue
of Liberty jets spectacularly out of the sandy
beach. [...]

The use pair (1,4) would be classified as polysemy
as the two referents of arm belong to different ex-
tensional categories, but the corresponding con-
cepts still hold a semantic relation (in this case a
similarity relation regarding physical form).

(4) It stood behind a high brick wall, its back
windows overlooking an arm of the sea [...]

Dataset LG Reference JUD VER KRI SPR

ChiWUG ZH Chen et al. (2023) 61k 1.0.0 .60 .69

DWUG EN Schlechtweg et al. (2021) 69K 3.0.0 .63 .55
DWUG Res. EN Schlechtweg et al. (2024) 7K 1.0.0 .56 .59

DWUG DE Schlechtweg et al. (2021) 63K 3.0.0 .67 .61
DWUG Res. DE Schlechtweg et al. (2024) 10K 1.0.0 .59 .7
DiscoWUG DE Kurtyigit et al. (2021) 28K 2.0.0 .59 .57
RefWUG DE Schlechtweg (2023) 4k 1.1.0 .67 .7
DURel DE Schlechtweg et al. (2018) 6k 3.0.0 .54 .59
SURel DE Hätty et al. (2019) 5k 3.0.0 .83 .84

NorDiaChange NO Kutuzov et al. (2022) 19k 1.0.0 .71 .74

RuSemShift RU Rodina and Kutuzov (2020) 8k 1.0.0 .52 .53
RuShiftEval RU Kutuzov and Pivovarova (2021) 30k 1.0.0 .56 .55
RuDSI RU Aksenova et al. (2022) 6k 1.0.0 .41 .56

DWUG ES Zamora-Reina et al. (2022) 62k 4.0.1 .53 .57

DWUG SV Schlechtweg et al. (2021) 55K 3.0.0 .67 .62
DWUG Res. SV Schlechtweg et al. (2024) 16K 1.0.0 .56 .65

Table 3: Datasets used for the CoMeDi shared task.
All are annotated on the DURel scale. Spearman and
Krippendorff values for RuShiftEval are calculated as
average across all time bins. ‘LG’ = Language; ‘JUD’ =
Number of judgments; ‘VER’ = Dataset version; ‘KRI’
= Krippendorff’s α; ‘SPR’ = Weighted mean of pairwise
Spearman correlations; ‘Res.’ = Resampled.

Language Train Dev Test

German 8,279 1,663 3,141
English 5,910 863 2,444
Swedish 5,457 871 1,245
Chinese 10,833 2,532 3,240
Spanish 4,821 621 1,497
Russian 8,029 1,126 2,285

Norwegian 4,504 611 1380

Total 47,833 8,287 15,332

Table 4: Number of data instances per language and
split for the OGWiC subtask after cleaning.

In contrast, the referents of arm in the homonymic
pair (1,5) belong to different extensional categories
and the corresponding concepts do not hold a se-
mantic relation:

(5) And those who remained at home had been
heavily taxed to pay for the arms, ammuni-
tion; fortifications, [...]

B CoMeDi Data

Table 3 shows the source datasets used for the
CoMeDi shared task. Table 4 shows the number
of data instances per language and split for the
OGWiC subtask after cleaning.
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C Thresholds

Find the thresholds for mapping cosine similarity
to ordinal labels for AnglE-WiC+CoMeDi and XL-
LEXEME in Table 5. These were induced on the
dev data as described in Section 4.4.

D Spearman Results

Figure 3 shows model performances measured with
Spearman correlation and no thresholding.
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Dataset Language AnglE-WiC+CoMeDi XL-LEXEME

CoMeDi ZH .577 .677 .793 .495 .650 .655
CoMeDi EN .325 .483 .612 .418 .607 .682
CoMeDi DE .330 .465 .600 .339 .565 .651
CoMeDi NO .210 .339 .488 .390 .414 .522
CoMeDi RU .255 .491 .615 .249 .511 .749
CoMeDi ES .297 .521 .628 .212 .455 .788
CoMeDi SV .290 .452 .564 .419 .646 .672

MCL-WiC AR .634 .741
MCL-WiC ZH .766 .814
MCL-WiC EN .668 .705
MCL-WiC FR .623 .667
MCL-WiC RU .594 .775

WiC EN .551 .752

Table 5: Thresholds for AnglE-WiC+CoMeDi and XL-LEXEME.

Figure 3: Model evaluation with Spearman’s ρ on binary and ordinal test data. CL = Contrastive Loss, COS =
Cosine Similarity Loss, CSENT = CoSENT Loss, AnglE = AnglE Loss, XL-LXM = XL-LEXEME.
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