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Abstract

Large language models (LLMs) have trans-
formed machine translation, yet they have a
high subword fertility issue for low-resource
languages, which leads to slow inference speed
and increased costs. While vocabulary ex-
pansion via continual pre-training is a com-
mon solution, it often degrades translation qual-
ity and requires large target-language corpora,
which are unavailable for truly low-resource
languages. To address this, we investigate to-
kenization efficiency through an information-
theoretic lens, building on the established hy-
pothesis that word length correlates with in-
formation content. From this perspective, we
characterize tokenization inefficiency as hav-
ing high fertility for low-information (highly
predictable) words. Guided by this principle,
we introduce a novel fine-tuning strategy that
systematically identifies informationally redun-
dant words—those with high fertility but low
information content—for targeted vocabulary
expansion and model fine-tuning. Experiments
fine-tuning BLOOM and LLaMA-3 in English-
Manipuri and other two language pairs show
that our proposed method significantly reduces
fertility by 50% and accelerates inference by
more than 2 times, without compromising and
often exceeding the translation quality of stan-
dard LLM baselines, providing a theoretically
grounded solution for efficient LLM-based MT.

1 Introduction

Large language models (LLMs) have demonstrated
strong performance in machine translation(MT)
tasks (Kocmi et al., 2024). These models, such
as ChatGPT (OpenAI, 2023), LLaMA (Touvron
et al., 2023b), and BLOOM (Scao et al., 2022),
are trained with a vast amount of multilingual data
available on the internet, and hence acquire transla-
tion capabilities. Despite their widespread success,
current machine translation approaches use multi-
lingual LLMs trained on data from high-resource
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Figure 1: Comparison of Fertility and Inference Speed
(in ratio) in BLOOM on WMT 2023 Manipuri and En-
glish data. Manipuri exhibits significantly higher fer-
tility, resulting in a 2.7 times slower inference speed
compared to English.

languages (Vilar et al., 2023), posing challenges
for low-resource and unseen languages (Zhu et al.,
2024b).

A primary issue of such LLMs is that the data-
driven based LLM tokenizers segment words which
are not present in the tokenizer vocabulary (Sen-
nrich et al., 2016). Being trained in high-resource
languages, these tokenizers have limited coverage
of vocabularies for low-resource and unseen lan-
guages, which leads to fragmentation of almost
all words exhibiting high fertility. Higher fertility
results in lengthy sequences which leads to slow
inference speed as well as higher API costs due to
the increased number of generated tokens (Petrov
et al., 2023; Ahia et al., 2023). Figure 1 shows one
such observation in the BLOOM model: Manipuri
has much higher fertility, and inference speed is 2.7
times slower than English.

A common strategy to reduce subword fertility
is vocabulary expansion and continued pretrain-
ing on target language data. However, this ap-
proach has often yielded counterproductive results
(degradation in translation quality). Recent studies
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- LLaMAX (Lu et al., 2024), TOWER (Alves et al.,
2024), Sarvam-M (AI, 2025) reported degraded
translation performance in continued pretraining of
LLaMA-2 (Touvron et al., 2023c) and Mistral 3.1
model (Mistral AI Team, 2025) with vocabulary
expansion. Furthermore, continual pre-training it-
self presupposes having access to large corpora in
the target language, which are unavailable for truly
low-resource languages like Manipuri. Now the
problem is in the absence of a large corpus in the
target language, how to improve the tokenization
efficiency of an LLM for a low-resource language
without compromising the translation quality or
the need for a large target dataset?

To address this issue of existing LLM tokenizer
segmenting almost all words in low-resource or
unseen languages, we propose a systematic ap-
proach to identify inefficiently tokenized words
and improve efficiency through targeted vocabu-
lary expansion. Our approach is grounded in an
established information-theoretic hypothesis: word
length correlates with its information content (Pi-
antadosi et al., 2011). From this perspective, a
word’s tokenization is inefficient if it has low infor-
mation content (i.e., highly predictable) yet is still
overfragmented into multiple subword tokens.

Building on this principle, we propose a targeted
vocabulary expansion strategy that identifies these
informationally redundant words—those with high
fertility but low information content. To do this, we
first measure information content of words using
an n-gram KenLM model (Heafield, 2011) trained
on the target language corpus. By systematically
adding only those informationally redundant words
to the model’s vocabulary and then fine-tuning, we
reduce sequence lengths and accelerate inference
speed while preserving translation quality.

We validate our approach by fine-tuning
BLOOM and LLaMA-3 models on truly low-
resource English-Manipuri translation on WMT
23 and the BIBLE dataset. Our method is com-
pared against two strong baselines: a standard
fine-tuning approach without vocabulary modifica-
tion and a BPE tokenizer-based baseline where the
3,000 most frequent target BPE tokens are added to
the vocabulary. Our proposed approach sharply re-
duces fertility by 50% and accelerates inference by
more than 2 times while matching—and often sur-
passing—the translation quality of standard LLM
baselines. This framework is also validated on
additional translation tasks of WMT 23 English-
Assamese and WAT 21 English-Marathi.

Our work makes the following contributions:

• (Theory) We provide an information-theoretic
framework for quantifying a word’s tokeniza-
tion inefficiency, linking subword fertility to
information content.

• (Framework) We introduce a fine-tuning
strategy for targeted vocabulary expansion
that is guided by information content.

• (Experiment) Extensive experiments on mul-
tiple languages and models demonstrate that
our proposed strategy matches and often out-
performs baselines in terms of all evaluation
metrics.

2 Related Works

Machine Translation with Multilingual LLMs.
Large language models (LLMs) have greatly im-
proved machine translation (MT), with various
methods enhancing their performance. One ap-
proach uses in-context learning, where giving par-
allel sentences as examples guides translation; stud-
ies (Agrawal et al., 2023; Zhu et al., 2024a; Cui
et al., 2024a) show that semantically related ex-
amples improve performance, especially with lim-
ited resources or data. Another approach involves
finetuning with translation instructions: Xu et al.
(2024) pretrained on monolingual data, then fine-
tuned on small parallel datasets for strong results,
while Guo et al. (2024) showed the continued im-
portance of parallel data in continual pretraining.
Vocabulary Expansion in LLMs. Existing Large
Language Models (Team, 2023; Touvron et al.,
2023a) are trained with English-centric data which
limits their effectiveness in low-resource languages.
While building new models from scratch with
diverse multilingual data is one solution (Wei
et al., 2023), it is often computationally pro-
hibitive. To overcome this, continual pre-training
has emerged as a far more efficient and cost-
effective paradigm (Zhao et al., 2024; Cui et al.,
2024b; Faysse et al., 2024; Alves et al., 2024). This
approach adapts an existing model by continuing
its training on new, language-specific data. A cru-
cial component of this process is vocabulary ex-
pansion (Gupta et al., 2023; Alves et al., 2024; Xie
et al., 2023).

Vocabulary expansion addresses the fundamen-
tal challenge of tokenizer over-segmentation in
non-English languages, which otherwise increases
inference costs. Several studies (Downey et al.,
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Figure 2: Setting: Alice knows both the context c and
the word w, while Bob knows only the context c. Alice
wishes to transmit w to Bob using an optimal code of
length − log2 P (w | c) bits.

2023; Liu et al., 2023; Kajiura et al., 2023; Balde
et al., 2024; Wang et al., 2020; Hong et al., 2021)
highlight performance improvements in tasks be-
yond machine translation. These include named
entity recognition (NER) and part-of-speech (POS)
tagging in multilingual environments, text classi-
fication in biomedical, computer science, news,
and review areas, and abstractive summarization
in medical settings. These studies report increases
in F1 scores for NER, improvements in POS ac-
curacy, and better ROUGE scores through meth-
ods like script-based embedding alignment, con-
trastive regularization, and adaptive BPE tokeniza-
tion. However, despite these successes, recent find-
ings also reveal a notable challenge in machine
translation. Studies such as LLaMAX (Lu et al.,
2024), TOWER (Alves et al., 2024), and Sarvam-
M (AI, 2025) have reported degraded translation
performance when applying continual pre-training
with vocabulary expansion to models like LLaMA-
2 (Touvron et al., 2023c) and Mistral 3.1 (Mistral
AI Team, 2025).

3 Information Content of a Word and its
Tokenization Efficiency

The information content of a word quantifies how
many bits are needed, on average, to convey that
word given its context. By framing word prediction
as a communication problem—where Alice knows
both the context c and the word w, while Bob only
knows the context c—we derive the optimal code
length for a word instance and the expected infor-
mation carried by a word type across all contexts.

Alice and Bob agree on a probabilistic language
model P . Alice knows both context c and word w,
and wishes to efficiently transmit w to Bob (who
already knows c). According to Shannon’s source-
coding theorem (Shannon, 1948), the optimal code
length for this word is given by its information

content:
− log2 P (w | c) (1)

For a word type w appearing across multiple con-
texts, we estimate expected information content
I(w) from a corpus by averaging over the N ob-
served occurrences of w. If ci denotes the context
of the i-th token of w, then:

I(w) = E(w,c)[− log2 P (w | c)] (2)

≈ 1

N

N∑

i=1

− log2 P (w | ci) (3)

To compute the information content, we use a
KenLM trigram language model interpolated with
unigram model (Heafield, 2011) to estimate the
conditional probabilities P(w| c).

Zipf (1935) proposed that languages minimize
utterance length, implying a word’s length should
be inversely proportional to its frequency. Com-
plementing this, Piantadosi et al. (2011), building
on the Uniform Information Density hypothesis
(Jaeger and Levy, 2006), argued that word lengths
optimize communication by keeping information
rates near a theoretical channel capacity. Under
this channel capacity hypothesis (formalized in Pi-
mentel et al. (2023)), Piantadosi et al. proposed
that a word’s length should be proportional to its
expected information content:

|w| ∝ I(w) (4)

We adopt the same Piantadosi et al.’s established
hypothesis to analyze subword tokenization in large
language models. In this setting, the encoding cost
of a word is no longer its character length but its
subword fertility.

ϕ(w) ∝ I(w). (5)

From this perspective, we characterize tokenization
inefficiency as having high subword fertility for
low-information (highly predictable) words. This
characterization serves as a normative principle for
evaluating and improving tokenizer efficiency, par-
ticularly for low-resource languages where existing
tokenizers may underperform.

4 Vocabulary Expansion

4.1 Vocabulary Selection using Information
Content

Our vocabulary selection strategy, as shown in fig-
ure 3, leverages the theoretical framework estab-
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Figure 3: Our Fine-Tuning Workflow: We systematically identify informationally redundant words (those with
high subword fertility but low information content), extend the LLM’s vocabulary to include them as single tokens,
and then fine-tune the model for improved tokenization efficiency without compromising translation quality.

lished in the previous section 3 to identify can-
didate words for vocabulary expansion. We de-
fine the information efficiency of a word w as
the ratio between its expected information con-
tent and subword fertility: η(w) = I(w)

ϕ(w) . Words
with low information efficiency represent cases
where the tokenizer over-segments words relative
to their informativeness, violating the proportion-
ality principle ϕ(w) ∝ I(w). We systematically
identify these inefficient words by first computing
I(w) = 1

N

∑N
i=1− log2 P (w | ci) for each word

w in our corpus, then filtering for words where
ϕ(w) ≥ ϕmin (eg. ϕmin = 3) and having low
information efficiency η(w).

The vocabulary augmentation process proceeds
by selecting the top-k words with the lowest infor-
mation efficiency scores, ensuring that these rep-
resent genuine cases of over-segmentation rather
than naturally complex words. Formally, our candi-
date set is defined as Vaug = {w : ϕ(w) ≥ ϕmin},
ranked by ascending η(w) values. This selection
criterion ensures that we prioritize words where the
tokenizer’s segmentation is most misaligned with
the word’s information content, thereby maximiz-
ing the potential efficiency gains from vocabulary
expansion. Finally, we extend the LLM tokenizer
and embedding matrix with these new tokens and
fine-tune the LLM on the target corpus.

4.2 Embedding Initialization

The core challenge lies in extending the LLM’s vo-
cabulary to include these words while maintaining
compatibility with its existing embedding space.
When adding a new word wn+1 /∈ V to the origi-
nal vocabulary V = {w1, . . . , wn}, we initialize its
embedding en+1 by leveraging the model’s existing
subword decomposition. First, wn+1 is segmented
into constituent subwords s1, s2, . . . , sk ∈ V us-
ing the LLM’s tokenizer. The word’s embedding
is then computed as the average of its subword

embeddings:

en+1 =
1

k

k∑

j=1

esj ,

where esj denotes the embedding of the j-
th subword. This initialization anchors the new
word’s representation within the semantic and syn-
tactic neighborhood of its subcomponents, en-
suring smooth integration into the LLM’s pre-
trained embedding space. The updated model
pθ′(wi | w1:i−1), with parameters θ′ = θ ∪
{en+1}, retains the original partition function Z =∑n

j=1 exp(h
⊤
i−1ej) while incorporating the new

word:

pθ′(wi | w1:i−1) =
exp(h⊤i−1ewi)

Z + exp(h⊤i−1en+1)
.

To analyze the stability of this expansion, we
examine the logit contribution of en+1. The dot
product h⊤i−1en+1 simplifies to the average of the
subword contributions:

h⊤i−1en+1 =
1

k

k∑

j=1

h⊤i−1esj .

By Jensen’s inequality, the exponential term sat-
isfies:

exp
(
h⊤i−1en+1

)
≤ 1

k

k∑

j=1

exp
(
h⊤i−1esj

)
,

which guarantees that the new word’s contribu-
tion to the partition function remains bounded by
the contributions of its subwords. This ensures
minimal divergence from the original probability
distribution, helping maintain stability in the prob-
ability distribution of the post-expansion language
model.
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5 Experimental Setup

Language Family Script #Speakers

Manipuri Tibeto-Burman Bengali 3 million
Assamese Indo-Aryan Bengali 24 million
Marathi Indo-Aryan Devnagiri 99 million

Table 1: An overview of the focus languages, their
families, scripts, and approximate number of speakers.

5.1 Focus Languages and Linguistic
Properties

Our experiments focus on three Indian languages
chosen to represent different levels of data avail-
ability: Manipuri (very low-resource), Assamese
(low-resource), and Marathi (high-resource). This
choice allows us to evaluate our methods across
varying resource conditions.

These languages belong to two distinct families:
Manipuri is a Tibeto-Burman language, while As-
samese and Marathi are part of the Indo-Aryan
family. Linguistically, all three are morphologi-
cally rich, agglutinative languages with a canoni-
cal Subject-Object-Verb (SOV) word order. While
Manipuri and Assamese use the Bengali script,
Marathi is written in the Devanagari script. A sum-
mary of these characteristics, including the approx-
imate number of speakers for each language, is
provided in Table 1.

5.2 Datasets and Corpora

The parallel corpora for our experiments are com-
piled from multiple established sources. For the
English-Manipuri and English-Assamese transla-
tion tasks, we use data from the WMT 2023
Low-Resource Indic Language Translation shared
task (Pal et al., 2023). For the English-Marathi pair,
we use the PMI dataset from WAT 2021 (Nakazawa
et al., 2021).

To assess English-Manipuri translation on differ-
ent domains, we also use additional parallel corpus
extracted from biblical text (BIBLE)1. To evaluate
in BIBLE data, we sample 1000 sentences from the
corpus. Such corpora are common in low-resource
NLP, as the consistent verse-level alignment across
many languages provides a valuable source of par-
allel sentences. The detailed statistics for our train-
ing corpora, including sentence and token counts

1The Manipuri BIBLE corpus is available at https://
live.bible.is/bible/MNIBIV

Data Sentences Tokens
ENGLISH XX

Manipuri(WMT) 21,687 390730 330319
Manipuri(BIBLE) 30,102 758482 588110
Assamese 50000 969623 825063
Marathi 28974 529821 423015

Table 2: Statistics of the parallel training corpora used
in our experiments. Token counts are provided for both
English and the target language.

for each language pair and source, are presented in
Table 2.

5.3 Settings

Large Language Models. In this study, we
mainly focus on multilingual, decoder-only LLMs
that were not explicitly pre-trained on paral-
lel corpora. For our experiments, we select
BLOOM (Scao et al., 2022) and LLaMA-3 (et al.,
2024). BLOOM covers two of our three target
languages, omitting Manipuri, whereas LLaMA-3
does not natively support any of them. In our work,
we use 1.07 billion model for BLOOM, and 1.24
billion LLaMA 3.2 model.

Baselines. We also compare our approach with
state-of-the-art models that support Manipuri
language, such as No Language Left Behind
(NLLB) (Costa-Jussà et al., 2022). Furthermore,
we also evaluated with BPE-Tok, a BPE tokenizer-
based baseline where the 3,000 most frequent tar-
get BPE tokens are added to the vocabulary (Ya-
maguchi et al., 2024; Lu et al., 2024). For a fair
comparison, BPE-Tok also uses the exact same
embedding initialization strategy as described in
section 4.2. While we experimented with 1,000,
2,000, and 3,000 BPE tokens, we report results for
the 3,000 BPE tokens as it is our approach’s opti-
mal point and yields an average subword fertility
comparable to our approach’s optimal point.

Training Details. Due to constraints on our com-
putational resources, we run with a reduced context
length of 1024. LLMs are fine-tuned on translation
dataset for 5 epochs on a single NVIDIA A100
GPU. We fine-tune the models using HuggingFace
transformer tool (Wolf et al., 2020) with the default
learning rate (5e-5). All other hyperparameters
are kept at their default values as provided by the
library.
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BLOOM WMT 2023 BIBLE
FERTILITY BLEU CHRF++ TER FERTILITY BLEU CHRF++ TER

0 2.91 27.71 54.96 64.09 3.15 28.76 58.76 57.95
+N

ew
To

ke
n 100 2.59 28.43 55.43 62.93 2.46 28.90 59.30 57.67

500 2.22 28.58 56.00 62.66 2.07 28.77 59.41 57.81
1000 1.97 28.73 55.61 62.78 1.95 28.98 59.61 58.16
2000 1.75 28.92 55.97 62.45 1.69 29.10 59.69 57.93
3000 1.62 29.52 56.38 61.53 1.59 29.43 59.80 56.85
4000 1.54 27.60 55.93 63.94 1.52 29.09 59.29 57.45

NLLB 2.62 27.26 54.55 63.28 2.69 26.34 57.88 60.24
BPE-Tok 1.63 24.64 54.21 66.38 1.67 25.89 57.5 61.11

Table 3: BLOOM Result: Fine-tuning BLOOM for English-to-Manipuri translation with an expanded vocabulary
shows quality peaks at approx. 3,000 new tokens. Beyond this, performance drops despite a reduction in fertility,
highlighting a trade-off between targeted augmentation and over-expansion.
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Figure 4: LLaMA-3 Result: Impact of vocabulary ex-
pansion on translation performance across Manipuri,
Marathi, and Assamese. BLEU scores follow an in-
verted U-shaped curve, indicating an optimal, language-
specific threshold of added tokens.

5.4 Evaluation Metrics.

Translation Performance. To evaluate quantita-
tive results, three standard evaluation metrics are
used: BLEU (bilingual evaluation understudy) (Pa-
pineni et al., 2002), which measures n-gram over-
lap with a brevity penalty for translation quality;
chrF++ (Popović, 2017), a character n-gram F-
score metric robust for various languages; and TER
(translation error rate) (Snover et al., 2006), which
calculates the minimum edits needed to align a
hypothesis with the reference.

Inference Speedup. To measure the increase in
inference speed of the proposed method, we mea-
sure inference speedup (in ratio) as the number of
times the proposed method is faster in generating
tokens than the baseline model.

LLaMA-3 Inference Speedup
ASSAMESE MANIPURI MARATHI

0 1.0 1.0 1.0
+N

ew
To

ke
n 500 1.45 1.65 1.49

1000 1.72 2.00 2.37
2000 2.07 2.43 2.08
3000 2.35 2.76 2.07

Table 4: LLaMA-3 inference speedup (in ratio) from
vocabulary expansion across languages. Speedup values
are relative to the baseline model (with no vocabulary
expansion).

6 Result and Discussion

6.1 Main Result

Table 3 shows the impact of gradually expand-
ing the BLOOM vocabulary with 100 to 4,000
Manipuri-specific words, followed by full fine-
tuning of the model. We consider four key metrics
in our evaluation, which include BLEU, chrF++,
and TER to assess translation quality, and average
subword fertility to measure tokenization efficiency
on two test sets: WMT-23 En→Mni benchmark
and BIBLE data. Our analysis reveals three promi-
nent trends.

Fertility decreases almost linearly with vocab-
ulary expansion. Starting from baseline values
of 2.91 for WMT and 3.15 for the Bible, average
subword fertility decreases steadily, halving to 1.54
for WMT and 1.52 for the Bible as 4,000 tokens
are added. This linear reduction validates our ap-
proach, which suggests that adding word units for
informationally redundant words effectively com-
presses sequences and accelerates inference speed.
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Translation quality improves up to an optimal
point. Translation quality improves steadily up to
an optimum threshold of about 3,000 added tokens,
yielding peak scores across both datasets relative
to the baseline (with 0 new tokens): for WMT-
23, improvements of +1.81 BLEU (from 27.71 to
29.52), +1.42 chrF++ (from 54.96 to 56.38), and
–2.56 TER (from 64.09 to 61.53); for the Bible cor-
pus, improvements of +0.67 BLEU (from 28.76 to
29.43), +1.04 chrF++ (from 58.76 to 59.80), and
–1.10 TER (from 57.95 to 56.85). These are accom-
panied by a 44% reduction in fertility, suggesting
that more efficient tokenisation directly benefits
generation quality.

Over-expansion hurts. A clear point of dimin-
ishing returns is observed when expanding the vo-
cabulary from 3,000 to 4,000 tokens. Expanding
the vocabulary from 3,000 to 4,000 tokens fur-
ther lowers fertility, but translation quality drops
drastically on WMT (–1.92 BLEU, +2.41 TER,
wiping out all previous gains) and modestly on
BIBLE. This U-shaped curve highlights an optimal
threshold for vocabulary augmentation; beyond this
point, it is likely that adding new units introduces
data sparsity that outweighs the benefits of more
compact sequences, thereby destabilizing the fine-
tuning process.

Takeaway. Our findings demonstrate that a tar-
geted vocabulary expansion reduces the sequence
length by nearly 50% with only 3,000 carefully
selected tokens for Manipuri with the BLOOM
model. However, indiscriminate expansion beyond
language-specific optimal points reverses the trend,
highlighting the importance of the information-
guided vocabulary selection strategy at the core
of our proposed framework. We also found lower
performance of baseline BPE-Tokization, which is
likely due to the way the newly trained BPE sub-
word tokens disrupt the existing tokenization of
high-information subwords in the pretrained LLM
tokenizer, thereby disrupting the representations
that the pretrained LLM has already learned. Our
method avoids this by design by disrupting the ex-
isting tokenization of only low-information words.

6.2 Cross-lingual and Model Validation.
To validate the generalizability of our framework,
we expand our analysis to include two additional In-
dic languages, Assamese and Marathi, and conduct
parallel experiments with the LLaMA-3 model. As
shown in Figure 4, the results on the LLaMA-3

model align with our primary observations from
BLOOM and Manipuri, but reveal subtle differ-
ences across languages. For Manipuri, Marathi,
and Assamese, the BLEU score follows an inverted
U-shaped curve, with performance peaking before
declining as more tokens are added. Specifically,
the optimal performance is achieved with 2,000
new tokens for Manipuri, 1,000 for Marathi, and
2,000 for Assamese. This trend confirms that tar-
geted vocabulary expansion is beneficial up to a
language-specific threshold.

6.3 Inference Speedup

Our approach to targeted vocabulary expansion in
the LLaMA-3 model significantly increases the
inference speed without compromising and often
outperforming baseline translation quality. This is
achieved by shortening input sequences by replac-
ing informationally redundant multi-token words
with single tokens, leading to faster inference speed.
The table 4 shows the inference speedup ratios (rel-
ative to the baseline) across Assamese, Manipuri,
and Marathi languages, based on the number of
new tokens added.

As the data show, all three languages experi-
ence consistent improvements over the baseline.
Manipuri sees the highest gain, accelerating up
to 2.76 times faster with 3,000 new tokens. As-
samese follows closely, reaching a maximum of
2.35x speedup at the same token count. Marathi,
however, peaks earlier at 2.37x with just 1,000 to-
kens, after which the speedup slightly decreases.
This variation suggests that the optimal number of
tokens for maximizing inference speed is language-
dependent, indicating a trade-off where adding too
many new tokens could introduce complexities that
offset the benefits gained from shorter sequences.

6.4 Ablation Studies and Analyses

We perform multiple ablations to evaluate the im-
pact of the key design choices made in the develop-
ment of our models.

Effect of Information Theoretic Vocabulary Ex-
pansion. Our information-theoretic vocabulary
expansion prioritizes informationally redundant
words—those with high fertility but low informa-
tion content. To use information-theoretic vocab-
ulary expansion, it should be ensured that it can
outperform the random vocabulary expansion as
well as the vocabulary expansion that prioritizes
informationally non-redundant words—those with

2400



WMT 2023 En-Mni
BLEU CHRF++ TER

Redundant 29.52 56.38 61.53
Random 27.09 54.23 64.49
Non-redundant 27.17 54.14 64.43

Table 5: Vocabulary expansion prioritizing redundant
words outperforms random and non-redundant strategies
on WMT 2023 En-Mni translation metrics.

INITIALIZATION WMT 2023 En-Mni
BLEU CHRF++ TER

Average Init 29.52 56.38 61.53
Random Init 26.19 53.03 66.19

Table 6: Average embedding initialization outperforms
random initialization for English-to-Manipuri transla-
tion across all metrics.

high fertility and high information content. To ver-
ify this, we compare three models: (i) information-
ally redundant words - those with high fertility but
low information content, (ii) random - vocabulary
selections are done randomly, (iii) non-redundant:
vocabulary expansion that prioritizes those with
high fertility and high information content.

As shown in Table 5, vocabulary expansion of
3000 words with informationally non-redundant
words only reduces fertility of LLMs without de-
grading the translation performance. On the other
hand, vocabulary expansion with randomly chosen
tokens and informationally non-redundant words
hurts the translation performance, although it re-
duces the fertility.

Random Initialization disrupts translation qual-
ity. As shown in Table 6, random initializa-
tion of new words reduces the BLEU score to
26.19 for English-to-Manipuri translation, signif-
icantly underperforming the BLOOM with aver-
aging initialization (29.52 BLEU). The standard
approach, which uses averaging-based initializa-
tion of subword embeddings, maintains coherence
in the pretrained embedding space. In contrast, ran-
dom initialization introduces noise by disrupting
the model’s token distribution. This underscores
the importance of structured initialization methods
when extending LLM vocabularies, particularly for
low-resource languages.

Correlation between Subword Fertility and In-
formation Content To validate our core hypoth-
esis that an efficient tokenizer should exhibit a
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Figure 5: Correlation between Fertility and Information
Content in BLOOM and Extended BLOOM on WMT
2023 Manipuri data and BIBLE data - Side by side
comparison.

strong correlation between subword fertility and
information content, we evaluate this correlation
after vocabulary expansion. Figure 5 compares the
Pearson and Spearman correlations for the orig-
inal tokenizer (BLOOM) with the extended ver-
sion (Extended BLOOM) across the WMT-23 and
BIBLE Manipuri datasets. Our method signifi-
cantly strengthens this relationship. For the WMT
dataset, Spearman’s correlation rises from 0.11 to
0.40, and Pearson’s from 0.08 to 0.28. Similarly,
on the BIBLE dataset, Spearman’s increases from
0.20 to 0.47, and Pearson’s from 0.18 to 0.43.

By selectively adding informationally redundant
words (high fertility, low information) as single to-
kens, our method ensures that longer, multi-token
segmentations are now more likely to be reserved
for words that are genuinely information-rich. This
improved alignment provides strong evidence that
the gains in translation quality and fertility reduc-
tion are direct consequences of a more theoretically
sound and efficient tokenization scheme.

7 Conclusion

This paper introduces a theoretically grounded
approach to address the high subword fertil-
ity problem, particularly for low-resource lan-
guages. By systematically identifying and expand-
ing the vocabulary with informationally redundant
words—those with high fertility but low informa-
tion content—we significantly reduce subword fer-
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tility by 50% and accelerated inference by over
two times. Crucially, our method achieves these
efficiency gains without compromising translation
quality, and often, by exceeding the performance
of standard LLM baseline (without vocabulary
expansion) across various languages and models
(BLOOM and LLaMA-3).

Our findings highlights the importance of an
information-theoretic lens for optimizing tokeniza-
tion efficiency. The observed U-shaped curve in
translation quality relative to vocabulary expansion
highlights an optimal threshold, beyond which in-
discriminate vocabulary expansion can negate ben-
efits. This work provides a valuable framework for
developing more efficient LLM-based MT systems
for low-resource languages.

8 Limitations

Our study faced several limitations. From a com-
putational perspective, due to resource constraints,
we were constrained to using smaller versions of
the models - specifically the 1.24 billion param-
eter LLaMA-3 model and 1.07 billion parameter
BLOOM model, with a reduced context length of
1024. This may have limited the models’ capac-
ity to learn. Additionally, in our work, we focus
on three Indian languages that have relatively high
subword fertility due to their agglutinative and mor-
phologically rich nature. Evaluation of languages
of other families (e.g., templatic like Arabic or lo-
gographic Chinese) can be conducted in the future.
Furthermore, U-shaped translation performance on
vocabulary expansion implies careful tuning of "k"
new tokens per language; we plan to further study
on automated selection of this hyperparameter.
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