
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 2368–2379

December 20-24, 2025 ©2025 Association for Computational Linguistics

High-Quality Complex Text-to-SQL Data Generation through
Chain-of-Verification

Zhang Yuchen1,2, Gao Yuze1,2, Chen Bin1, Li Wenfeng1, Sun Shuo1, Su Jian1

1Institute for Infocomm Research @ A*STAR, Singapore
2 CNRS@CREATE LTD, Singapore

{zhangyuc,gaoy1,bchen,liwf,suns1,su_jian}@a-star.edu.sg

Abstract

Can today’s Text-to-SQL (T2S) benchmarks
still stretch modern LLMs? We argue no. Spi-
der1.0 and BIRD, painstakingly hand-built, re-
main small, costly, and skewed toward middle
complex SQL. Meanwhile, LLM-generated cor-
pora are inexpensive but often superficial and
fragile suffering from shallow nesting, seman-
tic drift, template fatigue, and insufficient qual-
ity check. We address this gap with a Chain-
of-Verifications (CoVe) framework that turns
a handful of expert-labelled seeds into a large,
reliably checked dataset at a fraction of the
usual cost. The resulting corpus, AIGT2S, de-
livers: (1) 18k Question–SQL pairs across 113
databases, 41–77% larger than current English
sets; (2) 55% queries in the Ultra band of our
four-level difficulty taxonomy; (3) 87.5% inter-
annotator agreement; (4) ≥80% labour and
≥98% monetary savings versus earlier efforts.
Baselines including GPT-4o, Llama3, RESD-
SQL, and MAC-SQL, achieve at most 56% ex-
ecution accuracy, indicating substantial room
for improvement.

1 Introduction

Can a T2S benchmark be both large and accurate
without consuming thousands of annotator-hours?
Unfortunately, we didn’t observe that in our survey.

Manual benchmarks: expensive yet limited in
terms of complexity.

LLMs have transformed data generation, yet T2S
evaluation still leans on Spider1.0 (Yu et al., 2019)
and BIRD (Li et al., 2023b). Earlier benchmarks,
from single-table WikiSQL (Zhong et al., 2017) to
multi-table Spider1.0, DuSQL (Wang et al., 2020),
and BIRD-SQL, and domain-specific sets Squall
(Zhao et al., 2022), KaggleDBQA (Lee et al., 2021),
Yelp & IMDB (Yaghmazadeh et al., 2017) share the
same limitations: heavy annotation cost, modest
scale, and constrained structural diversity across
schemas.

LLM-generated data: cost-effective but su-
perficial and fragile. LLMs streamline synthe-
sis, but current attempts remain at surface-level.
Borisov et al. (2023) show data diversity hinges
on prompt design, while Gretel-SQL (Meyer et al.,
2024) achieves volume but forgoes quality check-
ing. Cross-table joins and realistic schema inter-
play are largely missing.

In practice, they show limited structural variety,
Question–SQL misalignment, repetitive template-
based patterns, poor schema utilisation, and mini-
mal human validation. These shortcomings obscure
an accurate assessment of model performance and
increase data leakage risk, ultimately undermining
the benchmark’s credibility.

Three barriers to better benchmarks: Cre-
ating a robust, complex T2S set is hard because
1) real-world schemas are often private, 2) anno-
tation requires expertise across natural language,
SQL, and database semantics, which is costly to
source, and 3) crowdsourcing does not scale well
as complexity rises.

Reasoning with self-validation: promising yet
under-used. Chain-of-Thought(COT) prompting
(Wei et al., 2022) and logic-aware variants (Zhao
et al., 2024; Dhuliawala et al., 2024) reduce hal-
lucination via step-wise self-explanation, but are
rarely integrated into dataset construction. Most
T2S synthesis still trades scale for rigor (or vice
versa) and lacks pipelines that pair multi-schema
SQL generation with systematic validation.

Our Proposed Solution ‘CoT + CoVe’: We
present a multi-turn prompting pipeline that cou-
ples CoT generation with a CoVe filter. A manual
annotated “gold” seed set familiarizes the LLM
with high-quality examples, after which auto critics
assess validity of structure, semantics, and schema.
These procedures reduce annotation hours by more
than 80%.

Introducing Our AIGT2S: Our pipeline yields
18k instances spanning 113 synthetic, schema-

2368

Figure 1: An example of text-to-SQL data instance from AIGT2S

rich databases (over 2.3k tables and 16k columns).
Comparing to Spider1.0 and BIRD, AIGT2S is
41–77% larger, contains more than twice the per-
centage of Ultra-complex queries. Yet it was cre-
ated for less than US$1.5k and 60 person-hours,
only a few percent of traditional curation costs. It
records an inter-annotator agreement of 87.5% be-
tween AI and human expert, the highest reported
for synthetic T2S benchmark to date. Figure 1
shows an AIGT2S example, additional examples
can be found in the Appendix A.

Baselines: We benchmark 5 models selected to
span the main T2S paradigms: 1) GPT-4o (OpenAI,
2024): a frontier general-purpose LLM, 2) Llama-
3-8B (AI@Meta, 2024): open LLMs with light
supervision, fine-tuned in zero/one-shot regimes,
3) RESDSQL (Li et al., 2023a): a schema-/syntax-
aware decoder; 4) MAC-SQL (Wang et al., 2025): a
multi-agent planner–refiner framework. In contrast
to their strong Spider results, no model exceeds
56% execution accuracy on AIGT2S, highlighting
performance remains far from saturation.

Summary of Contributions: 1) Scalable Data
Synthesis Framework: we designed a CoT +
CoVe framework that reduces annotation cost and
timeby over 80% while preserving high annota-
tion quality at 87.5% inter-annotator agreement. 2)
AIGT2S Benchmark: We release a substantial
Question–SQL corpus, it doubles the proportion
of Ultra-complex queries relative to Spider1.0 and
BIRD.

3)Open-source Full-suite Toolkit: All prompts,
verification scripts, complexity-analysis, and evalu-
ation toolkit will be released upon acceptance.

Collectively, these contributions provide a more

challenging and transparent testbed for advancing
compositional generalization and robustness in T2S
modeling.

2 Data Generation and Chain of
Verification (CoVe) Pipeline

In this section, we present our 3-stage framework
to generate and validate high-complexity T2S data.

Stage I: Large-Scale Synthesis with GPT-3.5
Figure 2 illustrates the workflow and detailed

prompt of our large-scale data creation process
using GPT-3.5 Turbo, which balance of cost-
effectiveness and the ability to meet the high stan-
dard generation requirement for T2S query and
database schema/content.

Topic Generation: We prompt GPT-3.5 itera-
tively "List unrelated real-world domains ..." until
163 distinct topics remain after de-duplication and
synonym removal. Additional example topics are
provided in the Appendix B

Schema & sample data: For each topic the
model is asked to design a >=15 tables relational
schema, including keys, types, and realistic col-
umn names, then populate it with SQLite formatted
rows. This produces privacy-safe yet structurally
rich databases.

Drafting Question–SQL pairs: Given the
schema context, GPT-3.5 emits batches of 5 “hard”
instances, and repeat 200 times per database to
maximise linguistic and structural diversity (nested
queries, multi-way joins, set operations).

Comprehensive post-processing and
lightweight sanitisation: A regex-centric

2369

Figure 2: GPT-3.5 Turbo driven Data Generation Workflow

pipeline is executed as the final step to eliminate
residual inconsistencies or hallucinations. It
1) unifies case or symbol variant identifiers, 2)
normalises primitive types and value formats
across the five canonical SQL value types, 3) strips
some DML statements (UPDATE/DELETE/IN-
SERT) to keep the corpus purely query-oriented,
4) detects and repairs alias mis-bindings and
orphaned columns via the SQL_metadata(Brencz,
2019) parser, and 5) drops any pair whose SQL
references schema elements absent from the
accompanying database. All rules and illustrative
corrections are documented in Appendices C & D.

Stage II: Expert Analysis for CoVe Design and
Annotation Quality

Two senior annotators independently label 2k ran-
domly sampled pairs (1k dev / 1k test). After 4
calibration rounds their inter-annotator agreement
reaches 93%. These gold labels serve two roles:
1) a quality yard-stick and 2) seed material for de-
signing automated checks in Stage III. Total human
time: 60 hours.

Stage III: CoVe: turning “good” into “gold”

After bulk synthesis we enlist a stronger model,
GPT-4-32K to "interrogate" every candidate pair.
As shown in Figure 3, the model reasons step-by-
step, acts as an automated reviewer, and is itself
calibrated on a 2k example mini-gold set. Quality is
measured by agreement score: the fraction of cases
where model and humans concur on the SQL’s
correctness.

Baseline: Before CoVe checking(Stage I), the

35k raw pairs sit at 62.1% agreement, fall below
benchmark-ready.

Round 1 Semantic fidelity check: The initial
verification round, we posed the prompt: ’Based
on the Database Schema content {#Schema} and
User Question {#Question}, does my SQL match
the user query?".

Pairs flagged “no” are purged. Agreement on the
dev split leaps to 84.8%, a +22.7 pt improvement.

Round 2 Structural integrity check: Based
on the challenges identified during the annotation
phase (Stage II), we designed the prompt of second
verification round with: "Is there any redundancy
or unnecessary complexity(see Appendix E)? Does
the query correctly align with the provided schema?
Are the condition functions used correctly? Please
re-evaluate the SQL query, is it correct or not? "

Only queries receiving an unequivocal “yes” sur-
vive. Agreement rises further to 87.5%, 25.4%
agreement improvement over stage I result. This
agreement is 2.2% higher DuSQL’s, which involve
lots of manual validation.

Final dataset curation: The 2-stage filtering
process distilled the corpus to 18,081 high-quality
Question–SQL pairs covering 113 databases, gen-
erated for under USD 1.5k in API fees and ap-
proximately 60 hours of expert annotation. Empiri-
cal evidence from CoVe indicates that inserting a
lightweight, LLM-mediated critique step bridges
nearly the entire quality gap to full human review,
yet still scales effortlessly to tens of thousands of
high-complexity T2S instances.

2370

Figure 3: Chain of Verification Workflow

3 Complexity Analysis

Does AIGT2S merely add volume, or does it
stretch models in genuinely new ways?

We measure hardness across three dimensions:
surface length, structural richness, and schema
breadth, and benchmark all figures against Spi-
der and BIRD, two de-facto “hard” English T2S
datasets.

Surface Length: Average query length rises
from 35 (Spider) and 41.6 (BIRD) to 61 tokens in
AIGT2S, nearly doubling lexical load.

Structural richness: Four metrics capture in-
ternal query complexity: Joins: 83% of AIGT2S
queries contain multi-way joins (Spider 60%,
BIRD 76.5%). Group and Having: 43% con-
tain a GROUP BY and HAVING block (Spider 8%,
BIRD 1.5%). Nested Subqueries: 16% embed at
least one subquery (Spider 13%, BIRD 9%). SQL
Component Count: rises from 5.0 (Spider) / 5.39
(BIRD) to 10.2, reflecting heavier use of set oper-
ations, arithmetic expressions, and window-style
aggregates(full catalogue in Appendix F).

Schema breadth: Questions in AIGT2S ref-
erence an average of 3.3 tables (Spider 1.6, BIRD
2.0), drawn from databases averaging 20 tables /
139 columns (Spider 5 / 27, BIRD 7.5 / 51). This
expansion forces models to perform cross-entity
reasoning over substantially larger schemas, a criti-
cal bottleneck for execution-accurate decoding.

Difficulty grades: We propose a new 4-level
classification for SQL query difficulty based on
SQL structural complexity and compositional cri-
teria, as in Figure 4: Basic, Advanced, Expert, and
Ultra. This scheme more clearly reflects the struc-
tural and logical complexity of queries, including
highly intricate ones involving nested structures,

set operations, and conditional logic. Applying this
refined hardness taxonomy yields: Ultra: 55%, Ex-
pert: 24%, Advanced: 21%, Basic: 0%, versus
BIRD (25 / 23 / 52 / 0) and Spider (20 / 21 / 37.5 /
21.5).

Figure 4: Comparison of difficulty levels between
AIGT2S, Spider and BIRD.

Figure 4 shows how AIGT2S rebalances to-
ward the upper tail, with over half of its queries
falling into Ultra, doubling Spider’s and BIRD’s
share. Roughly two-thirds of AIGT2S queries em-
ploy constructs unseen by prior difficulty toolk-
its, e.g., percentile aggregates or multi-level alias
chaining. Over 5,000 cases store sub-query re-
sults as aliases subsequently reused across JOIN /
HAVING / WHERE, introducing long-range depen-
dency tracking. For more detailed criteria please
refer to Appendix G.

AIGT2S is not only larger but decisively deeper:
it couples longer queries with denser logic and
broader schemas, offering a benchmark that better
mirrors production-grade SQL workloads.

2371

4 Experimental Protocol & Key Findings

Data Split: The corpus is partitioned into 16k
CoVe-verified training pairs and two 1k expert sets
for validation and test. The dev split guides hyper-
parameter search and drives GPT-4 verification; the
test split remains unseen until final scoring.
Evaluation Metric: Exact-match scoring collapses
under heavy nesting and alias re-ordering. We
therefore use Execution Accuracy (EA): a predic-
tion is correct only if both gold and candidate SQL
return the identical, non-null result on a populated
database. See Appendices H and I for the database
synthesis procedure that guarantees non-null, de-
duplicated answers.
Benchmarked System: We apply two light su-
pervision regimes, zero-shot and one-shot fine-
tuning, to the LLM baselines: GPT-4o and Llama-
3-8B (including its fine-tuned variant); while the
structure-aware decoder RESDSQL and the multi-
agent planner–refiner framework MAC-SQL are
evaluated under their canonical training/inference
setting. Prompts and hyperparameters appear in
Appendix J.

Model Exec. Acc.

Finetuned Llama3 8BZero-Shot 53.8%
Finetuned Llama3 8BOne-Shot 56.0%

Vanilla Llama3 8BZero-Shot 27.7%
Vanilla Llama3 8BOne-Shot 27.0%

GPT-4oZero-Shot 47.1%
GPT-4oOne-Shot 53.2%

RESDSQL-baseSpider Checkpoint 3.9%
RESDSQL-baseTrained on AIGT2S 11.2%
RESDSQL-largeTrained on AIGT2S 12.8%

MAC-SQL + GPT 4oZero-Shot 54.7%

Table 1: Execution accuracy of various SOTA models
on the AIGT2S benchmark

Table 1 lists the performance of each model,1)
A compact 8B model(Finetuned Llama), when
lightly fine-tuned on AIGT2S, outperforms GPT-
4o; 2) RESDSQL’s syntax-first decoding struggles
on multi-table, alias-heavy queries; and 3) MAC-
SQL’s planner–refiner strategy (selector → decom-
poser → refiner) remains useful for large-schema,
multi-step questions, as reported in prior work;
this motivates a next step: coupling a multi-agent
planner/refiner with our fine-tuned Llama-3-8B on

AIGT2S. 4) Overall, performance remains far from
saturation, leaving ample scope for improvement.

5 Conclusion

We present a scalable CoT + CoVe pipeline that
transforms GPT-3.5 generations into high-quality,
deeply verified T2S examples. The resulting
AIGT2S dataset is significantly larger, more com-
plex, and more rigorously validated than previ-
ous English benchmarks. Our experiments show
that even strong LLMs like GPT-4o and fine-tuned
Llama3 struggle, which highlights that challenging
data is more important than model size when true
SQL reasoning is required.

Limitation

Despite the gains delivered by the CoT + CoVe
pipeline, three limitations remain:

Incomplete domain coverage. While AIGT2S
spans deep joins and advanced analytics, it still
under-represents domain-specific operators and
business conventions that appear in production
SQL. Extending the dataset to multi-turn, dialogue-
style interactions should help surface these long-
tail patterns.

Dependence on proprietary LLMs. The ver-
ification stage currently relies on GPT-4, con-
straining transparency and portability. Ongoing
work explores retrieval-augmented curricula and
curriculum-based fine-tuning for open-source mod-
els so that comparable quality can be achieved with-
out closed tools.

Residual human arbitration. Edge cases in
CoVe still require expert review, introducing cost
and potential bias. Future research will integrate
self-consistency critics and static program analy-
ses to push this last mile of validation toward full
automation.

Addressing these issues will further increase the
robustness, generalisability, and reproducibility of
large-scale, high-complexity T2S benchmarks.

Acknowledgments

This research is partially supported by the pro-
gramme DesCartes funded by the National Re-
search Foundation, Prime Minister’s Office, Singa-
pore under its Campus for Research Excellence and
Technological Enterprise (CREATE) programme.

2372

References
AI@Meta. 2024. Llama 3 model card. Accessed: 2024-

09-16.

Vadim Borisov, Kathrin Sessler, Tobias Leemann, Mar-
tin Pawelczyk, and Gjergji Kasneci. 2023. Language
models are realistic tabular data generators. In The
Eleventh International Conference on Learning Rep-
resentations.

Maciej Brencz. 2019. sql-metadata. https://github.
com/macbre/sql-metadata. Version 2.12.0, ac-
cessed 2025-07-29.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. 2024. Chain-of-verification reduces
hallucination in large language models. In Findings
of the Association for Computational Linguistics ACL
2024, pages 3563–3578, Bangkok, Thailand and vir-
tual meeting. Association for Computational Linguis-
tics.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. KaggleDBQA: Realistic evalu-
ation of text-to-SQL parsers. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2261–2273, Online. As-
sociation for Computational Linguistics.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. Decoupling the skeleton parsing and schema
linking for text-to-sql.

Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guo-
liang Li, Kevin Chang, Fei Huang, Reynold Cheng,
and Yongbin Li. 2023b. Can LLM already serve as
a database interface? a BIg bench for large-scale
database grounded text-to-SQLs. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Yev Meyer, Marjan Emadi, Dhruv Nathawani, Lipika
Ramaswamy, Kendrick Boyd, Maarten Van Seg-
broeck, Matthew Grossman, Piotr Mlocek, and Drew
Newberry. 2024. Synthetic-Text-To-SQL: A syn-
thetic dataset for training language models to gener-
ate sql queries from natural language prompts.

OpenAI. 2024. Gpt-4o system card. Accessed: 2024-
09-16.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, LinZheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2025. Mac-sql: A
multi-agent collaborative framework for text-to-sql.
Preprint, arXiv:2312.11242.

Lijie Wang, Ao Zhang, Kun Wu, Ke Sun, Zhenghua
Li, Hua Wu, Min Zhang, and Haifeng Wang. 2020.

DuSQL: A large-scale and pragmatic Chinese text-to-
SQL dataset. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 6923–6935, Online. Association
for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and
Thomas Dillig. 2017. Sqlizer: query synthesis
from natural language. Proc. ACM Program. Lang.,
1(OOPSLA).

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2019. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-sql task. Preprint, arXiv:1809.08887.

Chen Zhao, Yu Su, Adam Pauls, and Emmanouil An-
tonios Platanios. 2022. Bridging the generalization
gap in text-to-SQL parsing with schema expansion.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5568–5578, Dublin, Ireland.
Association for Computational Linguistics.

Xufeng Zhao, Mengdi Li, Wenhao Lu, Cornelius We-
ber, Jae Hee Lee, Kun Chu, and Stefan Wermter.
2024. Enhancing zero-shot chain-of-thought reason-
ing in large language models through logic. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 6144–
6166, Torino, Italia. ELRA and ICCL.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

A Example Appendix

We randomly enumerate 3 samples from different
hardness and unparsable situation.

Advanced
"Advanced" queries either satisfy no more than two
rules involving multiple aggregations, selections, or
conditions, using no more than one keyword from
[WHERE, GROUP BY, ORDER BY, LIMIT, JOIN,
OR, LIKE, HAVING], and no keywords from
[EXCEPT, UNION, INTERSECT, NESTED]; or
they contain exactly two keywords from [WHERE,
GROUP BY, ORDER BY, LIMIT, JOIN, OR,
LIKE, HAVING] with fewer than two instances
of multiple aggregations, selections, or conditions,

2373

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://openreview.net/forum?id=cEygmQNOeI
https://openreview.net/forum?id=cEygmQNOeI
https://github.com/macbre/sql-metadata
https://github.com/macbre/sql-metadata
https://aclanthology.org/2024.findings-acl.212
https://aclanthology.org/2024.findings-acl.212
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2021.acl-long.176
https://api.semanticscholar.org/CorpusID:256826818
https://api.semanticscholar.org/CorpusID:256826818
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://huggingface.co/datasets/gretelai/synthetic_text_to_sql
https://huggingface.co/datasets/gretelai/synthetic_text_to_sql
https://huggingface.co/datasets/gretelai/synthetic_text_to_sql
https://openai.com/index/gpt-4o-system-card/
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://doi.org/10.18653/v1/2020.emnlp-main.562
https://doi.org/10.18653/v1/2020.emnlp-main.562
https://doi.org/10.1145/3133887
https://doi.org/10.1145/3133887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://doi.org/10.18653/v1/2022.acl-long.381
https://doi.org/10.18653/v1/2022.acl-long.381
https://aclanthology.org/2024.lrec-main.543
https://aclanthology.org/2024.lrec-main.543
https://openreview.net/forum?id=Syx6bz-Ab
https://openreview.net/forum?id=Syx6bz-Ab

and no keywords from [EXCEPT, UNION, INTER-
SECT, NESTED].

1. Database: surgery.json
Text: Find all the patients who have under-
gone a surgery with a surgery cost greater
than $10,000 and display their first and last
name along with the surgery type and surgery
cost.
Involved Tables: [’Patient’, ’Surgery’]

SELECT p.‘Patient First Name ‘, p.‘
Patient Last Name ‘, s.‘Surgery
Type ‘, s.‘Surgery Cost ‘

FROM Patient p
INNER JOIN Surgery s ON p.‘Patient

ID ‘ = s.‘Patient ID‘
WHERE s.‘Surgery Cost ‘ > 10000;

2. Database: electronic_music.json
Text: Find the tracks that have been favorited
by more than three users.
Involved Tables: [’Tracks’,’UserFavorites’]

SELECT Tracks.track_title
FROM Tracks JOIN UserFavorites ON

Tracks.track_id = UserFavorites.
track_id

GROUP BY Tracks.track_id
HAVING COUNT(DISTINCT UserFavorites.

user_id) > 3;

3. Database: big_data.json
Text: Find the number of sales made by each
salesperson in the month of June.
Involved Tables: [’sales’]

SELECT salesperson_id , COUNT (*) AS
number_of_sales

FROM sales
WHERE date >= ’20230601 ’ AND date <

’20230701 ’
GROUP BY salesperson_id;

Expert

Queries are classified as "Expert" if they satisfy
more than two rules involving multiple aggrega-
tions, selections, or conditions with no more than
two keywords in [WHERE, GROUP BY, ORDER
BY, LIMIT, JOIN, OR, LIKE, HAVING] and no
keywords in [EXCEPT, UNION, INTERSECT,
NESTED]. Alternatively, "Expert" queries can con-
tain more than two but less than or equal to three
keywords from [WHERE, GROUP BY, ORDER

BY, LIMIT, JOIN, OR, LIKE, HAVING] while sat-
isfying fewer than two rules involving multiple ag-
gregations, selections, or conditions. Queries that
only contain one keyword from [WHERE, GROUP
BY, ORDER BY, LIMIT, JOIN, OR, LIKE, HAV-
ING], no rules from [multiple aggregations, selec-
tions, conditions] but exactly one keyword from
[EXCEPT, UNION, INTERSECT, NESTED] also
fall into the "Expert" category.

1. Database: leadership.json
Text: Find all users who have a note with the
word "campaign" in the title or text.
Involved Tables: [’Users’, ’Notes’]

SELECT DISTINCT Users.username
FROM Users JOIN Notes ON Users.

user_id = Notes.user_id
WHERE Notes.note_title LIKE ’%

campaign%’ OR Notes.note_text
LIKE ’%campaign%’;

2. Database: cooking.json
Text: Retrieve the recipes that have a cooking
time greater than the average cooking time of
all recipes.
Involved Tables: [’Recipes’]

SELECT r.recipe_id , r.title
FROM Recipes r
WHERE r.cooking_time >

(SELECT AVG(cooking_time)
FROM Recipes);

3. Database: sports_psychology.json
Text: Get a list of all athletes who have a goal
related to "Endurance" or "Strength".
Involved Tables: [’athletes’, ’goals’, ’ath-
lete_goals’]

SELECT athletes.name , goals.
goal_name

FROM athletes INNER JOIN
athlete_goals ON athletes.
athlete_id = athlete_goals.
athlete_id

INNER JOIN goals ON athlete_goals.
goal_id = goals.goal_id

WHERE goals.goal_name = ’Endurance ’
OR goals.goal_name = ’Strength ’;

Ultra
These queries involve more than three keywords
from [WHERE, GROUP BY, ORDER BY, LIMIT,
JOIN, OR, LIKE, HAVING], contain more than

2374

one keyword from [EXCEPT, UNION, INTER-
SECT, NESTED], or satisfy at least three condi-
tions involving multiple aggregations, selections,
or conditions. The use of aliases or straightfor-
ward mathematical operations doesn’t contribute
to complexity determination.

1. Database: food_and_drink.json
Text: Retrieve the name and total revenue
generated by each customer who has placed
at least one order in the past month, sorted in
descending order by total revenue.
Involved Tables: [’Customers’, ’Or-
der_Items’, ’Menu_Items’, ’Orders’]

SELECT Customers.Customer_name , SUM(
Order_Items.Quantity *
Menu_Items.Price) AS
Total_revenue

FROM Customers JOIN Orders ON
Customers.Customer_ID = Orders.
Customer_ID

JOIN Order_Items ON Orders.Order_ID
= Order_Items.Order_ID

JOIN Menu_Items ON Order_Items.
Menu_Item_ID = Menu_Items.
Menu_Item_ID

WHERE Orders.Order_placed >= DATE(’
now’, ’-1 month’)

GROUP BY Customers.Customer_ID
ORDER BY Total_revenue DESC;",

2. Database: movies.json
Text: Retrieve the names of reviewers who
have given the highest rating to all movies
they reviewed.
Involved Tables: [’Reviewer’, ’Review’]

SELECT rev.name
FROM Reviewer rev
WHERE NOT EXISTS

(SELECT r.rating
FROM Review r
WHERE r.reviewer_id = rev.

reviewer_id
AND r.rating <

(SELECT MAX(rating)
FROM Review
WHERE reviewer_id = rev.

reviewer_id));",

3. Database: western_films.json
Text: Show the titles and release dates of
all Western movies that were released in the
1960s and have an average rating of at least
8.0, sorted by release date in ascending order.
Involved Tables: [’Movie’, ’Review’,

’MovieGenre’, ’Genre’]

SELECT Movie.title , Movie.
release_date

FROM Movie JOIN Review ON Movie.
movie_id = Review.movie_id

JOIN MovieGenre ON Movie.movie_id =
MovieGenre.movie_id

JOIN Genre ON MovieGenre.genre_id =
Genre.genre_id

WHERE Genre.name = ’Western ’ AND
strftime(’%Y’, Movie.
release_date) BETWEEN ’1960’ AND
’1969’

GROUP BY Movie.movie_id
HAVING AVG(Review.rating) >= 8.0
ORDER BY Movie.release_date ASC;",

Manipulative SQL Queries

These SQL queries primarily interact directly with
the data in a table, performing actions such as re-
moving records (DELETE), adding new records
(INSERT), or altering existing records (UPDATE).
AIGT2S contains a great number of these queries
while they can not be parsed on Spider’s script.

1. Database: food_and_drink.json

Text: Delete all orders that were placed before
January 1st, 2023.

Involved Tables: [’Orders’]

DELETE FROM Orders
WHERE Date_ordered < ’2023 -01 -01’;

2. Database: accounting.json

Text: Add a new product to the Products table
with a specific name, price, and supplier.

Involved Tables: [’Products’]

INSERT INTO Products (ProductName ,
Price , SupplierID)

VALUES (’New Product ’, 25.99 , 4);

3. Database: gardening.json

Text: Update the title of page with ID 1 to
Äbout Our Company.̈

Involved Tables: [’Pages’]

UPDATE Pages SET title = ’About Our
Company ’

WHERE page_id = 1;

2375

B Example of Topics Appendix

Table 2 refer to a sample of 45 diverse topics used
in our dataset. The full dataset covers a wide range
of domains, including science, arts, medicine, tech-
nology, everyday life and etc.

Accounting Cooking
Action films Cooking shows
Acupuncture Copywriting
Advertising Corporate social responsibility
Agriculture Cosmetics making
Anthropology Counseling
Archaeology Country music
Astronomy Craft beer brewing
Athletic training Cybersecurity
Food and drink Food and drink books
Forensic psychology Forensic science
Game design Game shows
Gardening Genetics
Geology Makeup artistry
Marine biology Marketing books
Martial arts Medicine
Meditation Mobile app design
Mobile app development Movies
Sculpting Search Engine Optimization
Shipping and logistics Smart lighting
Smart transportation Snowboarding
Soapstone carving Sociology
Sports medicine

Table 2: Sample topics covered in the dataset.

C Post-Processing Appendix

A comprehensive post-process pipeline is em-
ployed as the last step to eliminate the inconsisten-
cies or hallucinations, we used the following steps
to address certain issues in the generated pairs:

Schema Error Correction:We developed so-
phisticated regular expressions to extract the re-
quired content related to the schema in the SQL
queries. Based on the extracted contents, we ad-
dressed 2 schema errors.

First, duplicated tables and columns are merged.
Such duplications resulted from inconsistencies in
capitalization or the use of special characters like
‘_’ and ‘/’ during generation (such as: "order_id"
vs "Order_Id").

Second, we applied keyword-based verification
to correct the columns with incorrect data types
and standardized the data format across the dataset.
The verified and standardized data types include
text, float, int, datetime, and Boolean(such as: all
Boolean values are standardized to the correct for-
mat "True" and "False" instead of 1 and 0).

Schema Adjustment: As we prompt GPT3.5 to
generate T2S instances over 200 times per database,

GPT3.5 often loses track of the context and halluci-
nates, deviating from the database schema. To ad-
dress the inconsistencies between the SQL queries
and database schema:

First, columns that appeared fewer than 5 times
across the generated T2S pairs were identified as
rarely used and distantly related to the database
schema. These columns, along with their associ-
ated data pairs, were removed to improve coher-
ence(such as: "Security_Clearance_Level" column
in "Employee" table).

Second, to address columns "hallucinated" from
extensive iterations, we identified frequently occur-
ring columns that were not originally part of the
schema. These columns were verified for relevance,
and if deemed relevant, they were incorporated into
the corresponding database schema(such as: "Dis-
count_Code" column in "CustomerOrders" table).

SQL Reserved Word Validation: The refine-
ment step addresses 2 types of issues to improve
accuracy further and refocus our data generation
scope.

First, we removed all instances involving UP-
DATE, DELETE, or INSERT operations. As the
generation focuses on database queries, database
entry creation, deletion, and update are irrelevant.

Second, we correct the column aliasing errors oc-
curring during the generation. Column aliases are
commonly used in SQL to simplify column names
for readability. However, in the data generated, we
encountered issues like column name confusion
or incorrect use of aliases, particularly in nested
queries. These errors (e.g. Appendix D) could
lead to incorrect SQL parsing. We corrected these
problematic instances using the ’SQL_metadata’ 1

library to ensure syntax correctness.
After these extensive post-processing steps, a

total of 34,792 instances with higher quality were
retained, representing a diverse and challenging set
of T2S pairs ready for further analysis and annota-
tion.

D Column Aliasing Errors Appendix

For example, in nested queries, the outer query
references a column name that does not exist in the
inner query or incorrectly references an alias.

Error: The outer query attempts to reference a
non-existent column “b.Age”.

SELECT a.Name , b.Department
FROM (

1https://github.com/macbre/sql-metadata

2376

https://github.com/macbre/sql-metadata

SELECT Name , Age FROM Users
) AS a,
(

SELECT Name , Department FROM
Employees

) AS b
WHERE a.Age > b.Age;

Correct: Ensure that the outer query references
the correct column name.

SELECT a.Name , b.Department
FROM (

SELECT Name , Age FROM Users
) AS a,
(

SELECT Name , Department , Age FROM
Employees

) AS b
WHERE a.Age > b.Age;

E Redundancy and Unnecessary
Complexity Criteria Appendix

When generating SQL queries, checking for redun-
dancy or unnecessary complexity ensures that the
generated queries are concise and efficient. Redun-
dancy and complexity can manifest in the following
ways:

1. Redundant conditions or operations

For example, repeated conditions or multiple oper-
ations on the same column, which lead to unneces-
sary duplication in the query.

2. Unnecessary subqueries

In some cases, subqueries can be simplified or re-
placed with regular queries, reducing nesting com-
plexity.

3. Unnecessary sorting operations

If the result set does not require sorting, using OR-
DER BY should be avoided to reduce computa-
tional overhead.

4. Unnecessary joins

If some table joins are not required, removing them
can reduce the complexity of the query.

F SQL Component Catalogue Appendix

Standard clauses: SELECT, WHERE, GROUP
BY, ORDER BY, HAVING, LIMIT, JOIN, INTER-
SECT, EXCEPT, UNION, NOT IN, OR, AND,
EXISTS, LIKE, nested queries.

Sorting: ASC, DESC
Join Variants: INNER, LEFT, RIGHT

Feature Spider AIGT2S

Order By 29.1% 22.5%↓
Group By 31.8% 42.5%↑
Having 7.6% 15.4%↑
Join 60.3% 83.5%↑
Nested 13.2% 15.7%↑
Involved tables 1.55 3.34↑
Average Tokens 35.4 61.3↑
Average Components 5.0 10.2↑

Table 3: Comparison of SQL feature distributions in
Spider and AIGT2S datasets.

Arithmetic & Basic Aggregates: +, −, ×,
÷, COUNT, SUM, AVG, MAX, MIN, MONTH,
ROUND

Date/Time: DATE, YEAR, TIME, DATE_SUB,
CURDATE, DATEADD, GETDATE, DATE-
TIME, DATEDIFF, STRFTIME, TIMESTAM-
PDIFF, TIME_FORMAT, JULIANDAY

String: LENGTH, REPLACE, CONCAT, CO-
ALESCE, SUBSTR, INSTR, CHAR_LENGTH,
TRIM

Advanced Aggregates: GROUP_CONCAT,
PERCENTILE_CONT, STDEV

Conditional: CASE . . . WHEN . . . THEN . . .
ELSE . . . END

Miscellaneous: CAST, WITHIN GROUP,
CORR

G Hardness Criteria Appendix

We categorize the difficulty of SQL queries based
on the presence and complexity of specific SQL
components.

1. Definition of SQL Components

• SQL Components 1 (Basic Clauses)

WHERE, GROUP BY, ORDER BY, LIMIT, JOIN,
OR, AND, LIKE, HAVING, BETWEEN, ASC,
DESC

• SQL Components 2 (Aggregation and
Functions)

DATE, COUNT, AVG, SUM, MIN, DISTINCT,
STRFTIME, DATETIME, SUBSTR, ABS,
FLOAT, YEAR, CAST, ROUND, JULIANDAY,
TIME, MONTH, DATEDIFF, TIMESTAMPDIFF,
GETDATE, DATEADD, CONCAT, COALESCE,
INTEGER, INT, LENGTH

2377

• SQL Components 3 (Nested Queries and Set
Operations)
EXCEPT, UNION, INTERSECT, NESTED, SE-
LECT(multi)

• SQL Components 4 (Conditional Expressions)
CASE, WHEN, THEN, ELSE

2. Hardness Classification

• Basic
The query contains only keywords from SQL Com-
ponents 1, and each keyword appears at most once.

• Advanced
The query satisfies one of the following conditions:

① Contains up to three keywords from SQL
Components 3, does not include any keywords
from SQL Components 4, and includes fewer than
two keywords from SQL Components 2.

② Contains exactly one keyword from SQL
Components 3, does not include any keywords
from SQL Components 4, includes fewer than three
keywords from SQL Components 2, and each key-
word from SQL Components 1 appears at most
once.

• Ultra
The query satisfies one of the following conditions:

① Contains at least one keyword from SQL Com-
ponents 4.

② Does not contain any keywords from SQL
Components 4, but contains more than seven key-
words from SQL Components 1, 2, or 3.

• Expert

Any query that does not fall into the Easy, Medium,
or Ultar Hard categories.

H Synthetic Database Appendix

We have developed a more robust evaluation pro-
cess with sophisticated database content generation
capability to address these issues. This database
generation process begins by parsing both the de-
velopment and test datasets to extract the involved
values in the dev and test cases. These values are
then mapped to the appropriate positions in the
database using column aliases. Afterward, the DB
synthesis creates 1,000 rows of new data by in-
serting unique, valid values guided by the extracted
values and schema types, filling any missing data to
ensure that every test query yields a valid, non-null

result. Furthermore, we provide each query’s result
is unique, avoiding inflating final performance.

We only consider a test-case correct if both the
gold-standard SQL and the predicted SQL return
the identical non-null value. Partially matched re-
turned lists are counted as wrong cases.

I Impact of Missing Database Entries and
Null Values on Performance Evaluation
Appendix

Datasets such as Spider and DuSQL, which lack
extensive database entries, often return null val-
ues due to missing or incomplete data. These null
values can inflate performance estimates in the fol-
lowing ways:

1. Incomplete Query Execution

When the required data for a query is missing, the
database may return null values or no results. This
means that although the model generates an SQL
query, it may not retrieve valid data. During evalu-
ation, these queries might be considered “correct”
simply because they did not result in errors, even
though no meaningful data was retrieved. As a re-
sult, queries returning null values are erroneously
counted as successful, inflating performance.

2. Tolerance for Null Handling

Some SQL engines or models may automatically
skip over errors or incomplete data when null val-
ues are encountered. In such cases, the model
might treat a null value as a valid output. This
could lead to incorrect assumptions that the model
has successfully processed the query, when in fact
the result is simply a null value that doesn’t con-
tribute useful information.

3. Evaluation Metric Bias

When null values are frequent, evaluation metrics
(e.g., accuracy, execution success rate) may be over-
estimated. Even if the generated SQL did not re-
trieve meaningful results, as long as it didn’t pro-
duce errors, it might be considered a correct query.
This can lead to misleading performance estimates.

J LLM Fine-tuning Appendix

We fine-tune Meta-Llama-3.1-8B-Instruct as our
base model without using any (Q)LoRA adapters.
The fine-tuning process is carried out with the torch-
tune toolkit, utilizing Fully Sharded Data Parallel

2378

(FSDP) training. Modifications to certain compo-
nents of the toolkit were made to suit our specific
needs, and these adjustments will be released along-
side our code.

The fine-tuning takes place on a GPU server
equipped with 8 NVIDIA A6000 GPUs (48 GB
each). Training is conducted over six epochs with
a batch size of 3. We use the AdamW optimizer
with a learning rate of 2e-5 and compute the loss
using CrossEntropyLoss. To optimize performance,
we employ BF16 precision for mixed-precision
training.

2379

