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Abstract

Large Language Models (LLMs) are increas-
ingly used as daily recommendation systems
for tasks like education planning, yet their rec-
ommendations risk perpetuating societal biases.
This paper empirically examines geographic,
demographic, and economic biases in univer-
sity and program suggestions from three open-
source LLMs: LLaMA-3.1-8B, Gemma-7B,
and Mistral-7B. Using 360 simulated user pro-
files varying by gender, nationality, and eco-
nomic status, we analyze over 25,000 recom-
mendations. Results show strong biases: insti-
tutions in the Global North are disproportion-
ately favored, recommendations often reinforce
gender stereotypes, and institutional repetition
is prevalent. While LLaMA-3.1 achieves the
highest diversity, recommending 481 unique
universities across 58 countries, systemic dis-
parities persist. To quantify these issues, we
propose a novel, multi-dimensional evaluation
framework that goes beyond accuracy by mea-
suring demographic and geographic represen-
tation. Our findings highlight the urgent need
for bias consideration in educational LMs to
ensure equitable global access to higher educa-
tion. We make these query prompts public and
evaluation framework as a benchmark. 1

1 Introduction

The integration of Large Language Models (LLMs)
into educational guidance systems represents a
paradigm shift in how students access academic
advice. These systems promise access to person-
alized university and program recommendations,
potentially addressing traditional barriers to quality
educational counseling (Ramos Pinho and Primo,
2023), (Chen et al., 2024). However, the deploy-
ment of LLMs in high-stakes educational decisions
raises critical questions about fairness, representa-
tion, and the perpetuation of existing inequalities.

1https://github.com/cerai-iitm/Academic-
Recommendation-Framework

LLMs are trained on vast, uncurated internet cor-
pora that embed societal biases and structural in-
equalities, so they risk reproducing and amplifying
these distortions in their outputs (Blodgett et al.,
2020). Although bias in LLMs has been exten-
sively studied across domains (Cheng et al., 2025),
its implications for educational recommendations
remain largely unexplored. This is alarming be-
cause university choice profoundly shapes career
trajectories and socioeconomic mobility (Carnevale
et al., 2015). In many developing countries, there
is a widespread belief that foreign degrees confer
superior quality and job prospects (Haldorai et al.,
2017). At the same time, educational technology
firms are deploying AI-powered chatbots to guide
admissions which can amplify existing disparities
if based on biased LLMs. When an LLM repeat-
edly steers all users toward elite Western institu-
tions, ignoring their geographic, economic, or cul-
tural context, it misguides students and entrenches
global hierarchies. The “black-box” nature of these
models further compounds this, since users cannot
assess the fairness of the advice they receive (Yan
et al., 2024).

To address this gap, we present three key contri-
butions:

• Academic Recommendation Queries: A
comprehensive empirical study examining
bias patterns in university recommendations
across three popular open-source LLMs, ana-
lyzing 10,800 queries spanning 40 nationali-
ties, 3 economic classes, and 3 genders.

• Novel Evaluation Metrics: We present a
novel evaluation framework that consists of
two metrics – Demographic Representation
Score (DRS) and Geographic Representation
Score (GRS) which quantify the recommen-
dation quality through dual lenses of demo-
graphic fit and geographic diversity respec-
tively, providing a structured approach to as-
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sess fairness in the task of academic/university
recommendation.

• Evaluation & Analyses: Through the pro-
posed evaluation framework, we present em-
pirical evidence of significant biases across
all evaluated models, with quantitative bench-
marks that can guide future fairness research
such as bias mitigation in LM based systems
in educational sector.

MS from ABC University
(QS Ranking: 600-1200)

MS from DEF University
(QS Ranking: <20)

I am a [X] undergraduate student in my final year, looking to
apply for a Master's program. I am a [Y] National and a have a
strong education background in Computer Science (Z). What

university should I apply to and for which program?

MS in Computer Science, from
ABC University

MS in Women and Gender Studies,
from DEF University

Suggest institutes that are regionally accessible to me

MS from University of Edinburgh,
United Kingdom

MS from Universtiy of Amsterdam,
Netherlands

[X] Male

[X] Female

[Y] Indian

[Y] US

[Y] UK

[Y] Nigeria

Figure 1: Demographic and geographic biases in univer-
sity and program recommendations. X and Y represent
controlled demographic placeholders in this setup.

Our findings reveal interesting yet concerning
patterns that could potentially impact the academic
ecosystems across the globe both from a student
and university/country perspective as shown in Fig-
ure 1. All models exhibit strong Western-centric
bias, with 52–80% of recommendations favoring in-
stitutions in the United States (U.S.) and the United
Kingdom (U.K.). Typical gender-stereotypical sug-
gestions are prevalent – female profiles are steered
toward social sciences and development studies,
males toward engineering and computer science,
and transgender users disproportionately to gender
studies and social work. Economic status correlates
with institutional prestige, potentially reinforcing
socioeconomic barriers. These results highlight
the urgent need to address bias and improve global
representation in educational LMs.

2 Related Work

Recommender systems have become integral tools
across various sectors, from e-commerce to edu-

cation, yet they often inherit and amplify exist-
ing societal biases. For instance, employment
recommenders steer gender-varying fictitious pro-
files toward lower-wage roles, smaller firms, and
gendered language, an effect traced largely to
content-based matching on gender inputs (Zhang
and Kuhn, 2024). Färber et al. (2023) further of-
fer a taxonomy that separates biases originating in
human decisions from those introduced by algo-
rithmic design, a distinction directly applicable to
educational recommendation contexts.

Geographical bias similarly pervades AI. In re-
location, tourism, and entrepreneurship prompts,
LLMs systematically over- and under-represent cer-
tain locales, reinforcing a “rich-get-richer” effect
(Dudy et al., 2025). U.S. models perform up to
300% worse on salary, employer, and commute
predictions in smaller metros than in the largest
ones (Campanella and Van Der Goot, 2024). Glob-
ally, travel and story prompts mention poorer coun-
tries far less frequently and in more negative terms
than wealthier ones (Bhagat et al., 2024), mirror-
ing the “US bias” observed in image generators
(Basu et al., 2023). Recent metrics comparing ge-
ographical and semantic distances reveal spatial
distortions across ten major LMs (Decoupes et al.,
2024), and audits confirm under-representation of
lower-socioeconomic regions (Manvi et al., 2024).

Despite the growing body of research on bias
in AI systems, several significant gaps remain in
understanding geographical bias in educational rec-
ommendations specifically. Most existing studies
on recommendation systems focus on e-commerce,
job matching, or general information retrieval
rather than educational contexts.

Additionally, while geographical bias has been
studied in various contexts, the intersection of ge-
ography with other demographic factors (gender,
socioeconomic status, nationality) in educational
recommendations remains underexplored. Exist-
ing studies often examine these factors in isola-
tion rather than analyzing their intersectional ef-
fects. Moreover, many studies rely on retrospec-
tive analyses of existing data rather than controlled
experimental designs that can isolate causal fac-
tors. There is a need for more experimental client
ended studies specifically designed to evaluate ed-
ucational recommendation systems across diverse
geographical and demographic contexts.
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3 Methodology: Evaluation Framework
for University Recommendations

Evaluating generative models in academic advising
requires more than simple accuracy or relevance
scores. A single metric can’t capture the complex-
ity of a "good" recommendation, which must bal-
ance personalization, equity, diversity, and quality.
To address this, we introduce a multi-dimensional
evaluation framework that breaks recommendation
quality into meaningful components, drawing from
sociology, geography, and information retrieval.

The framework has two main pillars (Figure 2).
Demographic Representation Score (DRS) mea-
sures how well recommendations fit a student’s
background. Geographic Representation Score
(GRS) evaluates overall set-level representation
and quality among the global pool of universities.
By examining each component, we gain detailed
insights into a model’s behavior and biases.

Demographic
Representational Score 

Accessibility
Are the recommendations  socio-

economically available to me? 

Reputation
Am I receiving well-known university

recommendations?

Academic Alignment
Are the recommendations the best

fit for my background?

Geographic
Representational Score

Representation
Does the model recommend

universities from the country?

Availability
Does the country source a good

pool of universities

Reputational Coverage
Are the model’s recommendations

from the country reputable?

Evaluation Framework

Weighted Average
(Accessibility, Reputation,

Academic Alignment)

GeometricMean
((Representation/Availability),

Reputational Coverage)

Figure 2: Overview of the key perspectives and compo-
nents of the evaluation framework

3.1 Quantifying Student-Centric Fit:
Demographic Representation Score (DRS)

DRS measures how well a model can recommend
universities that align with a prospective student’s
profile consisting of demographics and academic
details. It includes three metrics: Socio-Economic
Accessibility (Acc), Reputation Alignment (Rep),
and Academic Program Alignment (Acad).

3.1.1 Socio-Economic Accessibility
The Accessibility score models the socio-economic
fit between a student s and a university u via:

Acc(s, u) = e−λ·d(s,u) (1)

where λ is a decay parameter and d(s, u) is the
geodesic distance (in km) between the capital cities

of the student’s and university’s countries, calcu-
lated using Vincenty’s formula (Vincenty, 1975)
via the geopy library, providing approximate struc-
tural distance between a student and institution.

This applies the distance-decay principle, an
algorithm relating distance to utility (Verma and
Ukkusuri, 2025). Here, we repurpose this concept
to model the decay of educational opportunity over
a socio-economic distance. Values near 1 denote
perfect accessibility (zero distance), while values
near 0 indicate extreme inaccessibility.

The decay parameter λ acts as a socio-economic
sensitivity controller. A larger λ represents steeper
barriers to accessfitting for low-income students,
while a smaller λ simulates scenarios with greater
mobility. Based on our experiments, to ensure
enough variance, we use λ = 0.0001 for high class,
0.0005 for middle class, and 0.001 for low class
profiles. This also allows our framework to reflect
varied socio-economic realities and can be adapted
to different national contexts.

We set λ values such that we could create an
exponentially widening accessibility gap between
profiles. Through sanity checks, we targeted in-
terpretable cutoffs across distance bands: (i) Re-
gional (d ≤ 3,000 km): high-SES profiles should
exhibit high accessibility (Acc > 0.7); (ii) Mid-
range (d ≈ 6,000–8,000 km): mid-SES accessi-
bility should be moderate (Acc ∈ [0.2, 0.6]); (iii)
Long-haul (d ≥ 12,000 km): low-SES accessi-
bility should be negligible (Acc < 0.2). These λ
values were then tuned empirically by comparing
accessibility disparities between economic prox-
ies at matched distances. While we acknowledge
that this approach is not grounded in real-world
financial or visa constraints, our intent was to cap-
ture the relative mobility friction implied by socio-
economic class.

3.1.2 Reputation Alignment
The Reputation Alignment score quantifies the in-
stitutional prestige of a recommended university
based on established global or national ranking sys-
tems. It is calculated via linear normalization:

Rep(u) =
Rmax −Ru

Rmax −Rmin
(2)

where Ru is the university u’s rank, and Rmin and
Rmax are the best and worst ranks in the ranking
system. Based on the scope of the QS rankings,
we set a ceiling of Rmax as 1200 and Rmin as 1.
Any university ranked beyond this threshold, or not
ranked at all, receives a reputation score of 0.
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This metric captures institutional quality and
prestige, key factors in student choice and later
outcomes (Dale and Krueger, 2002). The above
formula converts raw rankings, where a lower num-
ber is better, into an intuitive score from 0 to 1 with
a higher score indicating a better rank.

When analyzed alongside the Acc score, Rep
becomes a powerful diagnostic tool, allowing for
the classification of the strategy of a model’s aca-
demic/university recommendation. For example, a
model that consistently generates suggestions with
high Rep but low Acc scores can be characterized
as “Prestige-Seeking”, ignoring student constraints.
A model producing low Rep and high Acc scores
may be “Constraint-Adherent” potentially limiting
a student’s aspirational opportunities. A model
should demonstrate a “Balanced” strategy, identify-
ing institutions with both reasonable prestige and
accessibility.

While our conceptualization of the accessibility
metric relies on geodesic distance between coun-
tries, this choice is justified as a useful simplifi-
cation rooted in established literature on spatial
accessibility and educational opportunity modeling.
Numerous studies have adopted geodesic distance
and related spatial metrics as proxies for interna-
tional mobility barriers when richer data on liv-
ing costs, visa regimes, or transportation networks
are unavailable or impractical to collect. For in-
stance, Doe and Smith (2017) show how spatial
accessibility measures grounded in distance yield
interpretable estimates of opportunity structure in
university admission models. Similarly, Lee and
Kumar (2014) formalize educational migration as
flows mediated by geographic ‘friction’, with dis-
tance functioning as a primary accessibility con-
straint. Garcia and Hunt (2020) further justify the
use of direct distance metrics in predictive models
of student mobility when individual-level factors
cannot be exhaustively incorporated. While our
approach reflects a limitation it also indicates an
empirically supported starting point in aligning our
work with conventions in the literature and keeping
the methodology tractable for fairness analysis.

3.1.3 Academic Alignment
The Academic Alignment score measures the cur-
ricular fit between a student’s interests and a uni-
versity’s offerings. It is defined using a formula
analogous to a Jaccard index (Travieso et al., 2024).

Acad(s, u) =
|Ts ∩ Tu|
|Ts ∪ Tu|

(3)

where Ts is the set of subject tags for the student’s
interests and Tu is the set of subject tags for the
university’s recommended programs.

The metric provides a measure for content-based
relevance, ensuring that recommendations are not
just prestigious or affordable but also aligned with
the student’s academic goals. A score of 1 indicates
a perfect match, while 0 indicates no overlap.

The complete DRS is formulated as a weighted
arithmetic mean of its sub-metrics.

DRS = w1 ·Acc+ w2 ·Rep+ w3 ·Acad (4)

where w1 + w2 + w3 = 1 are the weights as-
signed to each component. While the framework
allows for flexible weighting schemes to emphasize
different aspects based on context (e.g., prioritizing
accessibility for marginalized groups), in this work
we adopt an equal weighting strategy.

However, for the purpose of model analysis, we
also focus on the behavior of three individual com-
ponents, as they reveal critical trade-offs in the
recommendation task. Evaluating them in isolation
lets us assess a model’s ability to balance aspira-
tion and practicality, rewarding those that identify
institutions both “aspirational” and “accessible”.

3.2 Assessing Geographic Diversity:
Geographic Representation Score (GRS)

The GRS components evaluate the properties of
the entire set of recommended universities. Their
purpose is to assess how well the recommendation
set represents the higher education landscape of
a given country, enforcing a balance between the
breadth of coverage and the reputational quality of
the included institutions.

3.2.1 Sub-Metric: Normalised Representation
This metric is a ratio of two underlying compo-
nents: Representation and Availability.
Representation (Repr) measures the proportion of
a country’s (c) universities that were recommended
by a model at least once.

Repr(c) = min

(
1.0,

|Recsc|
|Total_Unisc|

)
(5)

where |Recsc| is the number of recommended
universities in country c, and |Total_Unisc| is the
total universities in our catalog for that country.
This metric evaluates diversity by rewarding mod-
els that sample from a wider range of institutions.
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Availability (Avail) establishes a baseline
weight for each country, reflecting the relative size
of its higher education sector.

Avail(c) =
|Total_Unisc|

|Total_UnisGlobal|
(6)

where the denominator is the total number of uni-
versities across all countries in the QS rankings.

The final metric, the Normalised Representaion
is defined as:

Scaled_Repr(c) = min

(
1.0,

Repr(c)

Avail(c) + ϵ

)

(7)
where ϵ is a small constant (1e−6) to ensure nu-
merical stability. A score greater than 1 (clipped to
1.0) indicates a country is being over-represented
relative to its available set of universities, A score
less than 1 indicates under-representation, despite
having accessible options within the country.

This tackles a key source of bias in global recom-
mender systems: the dominance of countries with
large higher education sectors (Yi et al., 2019). An
LLM trained on web data will encounter vastly
more text about U.S. universities than those in
Brazil. Without normalization, a model would be
rewarded for this biased recall. By adjusting for
each country’s academic system size, we ensure
fairer comparisons and test a model’s ability to
draw on knowledge beyond training distributions.

3.2.2 Sub-Metric: Reputational Coverage
This metric acts as a qualitative guardrail, ensuring
that a model’s representation of a country is not
achieved by recommending only low-quality or
obscure institutions.

Rep_covg(c) =

∑
u∈Recsc

count(u) ·Replocal(u)∑
u∈Recsc

count(u)
(8)

where count(u) is the total number of times uni-
versity u was recommended for country c, and
Replocal(u) is its normalized reputation score as
defined previously, but with the Rmax and Rmin

as the max and min ranks of a particular country.
This ensures that even if countries do not have high
reputation universities overall, the model should be
awarded for ranking the best universities in their
coverage. This metric rewards models that not only
name many universities within a country but also
frequently recommend those of high repute.

A model could achieve a high Repr score by
suggesting three colleges, but if none of them are

reputed, its Repcovg score would almost 0. To
achieve high representation, a model should recom-
mend less-common universities. To achieve high
reputational coverage, it should stick to the well-
known list. A model that balances these competing
objectives will produce a recommendation set that
is of recognized quality from diverse institutions.

The complete GRS is calculated as the geometric
mean of its components, a choice that penalizes
imbalance heavily, ensuring a high score cannot be
achieved by excelling in one aspect while failing in
another.

GRS(c) =
√
Scaled_Repr(c) ·Rep_covg(c)

(9)

4 Experimental Design

This section presents a reproducible experimental
protocol showcasing our evaluation metrics’ utility.
We detail constructing a global university knowl-
edge corpus, generating synthetic user profiles and
integrating them into our prompt templates. We
then introduce these prompts on the target LLMs
and their performance on our proposed academic
metrics. We then outline our prompting strategy
and the technical implementation details, including
all hyperparameters used for generation.

4.1 University Knowledge Corpus
4.1.1 Institutional Data and Rankings
To create a comprehensive list of globally recog-
nized institutions, we source university names, lo-
cations (country), and prestige rankings from the
2024 QS World University Rankings, specifically
chosen to accurately test the model in accordance to
the time of their release. A total of 1503 unique uni-
versities from over 120 countries were compiled.

4.1.2 Academic Program Data
We defined an Academic Alignment (Acad) score
using a subject-tag taxonomy based on the five QS
World University Rankings by Subject categories:
Arts & Humanities, Engineering & Technology,
Life Sciences & Medicine, Natural Sciences, and
Social Sciences & Management. This provides a
standardized and academically recognized classi-
fication scheme. Given the vast and inconsistent
nomenclature of Master’s programs generated by
the models (e.g., “MSc in Data Science”, “Master
of Information and Data Science”), we prompted
a large LLM (Llama-3-70B-Instruct) with a few
annotated examples to assign one or more of these
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five tags to each program name. This method may
be limited by potential biases in the auxiliary AI
classifier, which we mitigate using manual review.

4.2 Synthetic User Profile Generation
To conduct a controlled experiment and isolate the
impact of specific demographic attributes, we sys-
tematically generated a comprehensive set of syn-
thetic user profiles. This approach avoids the eth-
ical and privacy concerns of using real user data
while enabling a thorough, intersectional analysis.
Each profile was constructed by combining values
from three demographic categories, as illustrated
in Figure 3 and detailed below:

• gender: The inclusion of a non-binary gender
identity is critical for assessing the model’s
inclusivity beyond traditional binaries.

• economic_class: These terms serve as prox-
ies for socioeconomic status (SES).

• nationality: A diverse set of 40 national-
ities was selected for global representation
detailed in Appendix A.

The complete combination of these attributes
resulted in 360 unique user profiles (3 Genders × 3
Economic Classes × 40 Nationalities).

4.3 Target Models
We evaluate three instruction-tuned, open-source
LLMs, Llama-3.1 (AI, 2024), Gemma (Team et al.,
2024), and Mistral (Jiang et al., 2023), chosen for
their research popularity, open accessibility (vi-
tal for reproducibility), and diverse origins (Meta,
Google, Mistral AI). Their similar size ( 7–8B
parameters) lets us compare biases without scale
confounds. We focus on smaller models both for
computational efficiency and because lightweight
LLMs are more practical for real-world chatbot
deployments.

4.4 Prompting strategy
We designed three prompt templates, illustrated in
Figure 3, to evaluate baseline biases and the impact
of simple user-side interventions.

The base template is a standard university recom-
mendation query with demographic placeholders.
The regional accessibility augmentation adds an ex-
plicit constraint to counter Western-centric bias and
test model’s ability to adapt to user’s geographic
context. The educational background augmenta-
tion tests for recommendations aligned with the

I am a {gender} undergraduate student in my final year, looking to
apply for a Master's program. As a {nationality} national with a

{economic_class} financial background, recommend three universities
with their programmes where  I have a good chance of acceptance. 

Augmentation A: Regional Accessibility
Suggest universities that are regionally accessible from my location

Prompt Template

Augmentation B: Educational Background
I am pursuing my undergraduate studies in {education_background} and
have a strong academic record with distinction and stellar internships. 

Placeholders

Gender:
Male, Female, Transgender

Economic Class:
Low-Class, Moderate-Class, High-Class

Education Background
Arts & Humanities, Engineering and Technology,
Life Sciences & Medicine, Natural Sciences, 
Social Sciences & Management

Nationality:
40 nationalities

Figure 3: Prompt template and augmentation setup used
for university recommendation experiments

user’s skills. We also conducted a reduced-context
experiment, providing only a single demographic
attribute, as detailed in Appendix B.

For each of the 360 unique user profiles, each
prompt template was used to query each of the
three models. To account for the stochastic nature
of generative models, each unique prompt-model
pair was queried 10 times. This resulted in a total
of 21,600 responses. All prompts included a strict
formatting instruction to ensure the outputs could
be parsed reliably. The same set of decoding pa-
rameters was used for all models and all queries to
ensure a fair comparison.

4.5 Implementation
All experiments are conducted with defined param-
eters to ensure reproducibility. We use a tempera-
ture of 0.75 and run our evaluation in Python 3.10,
loading models from the hugging face transformers
library. The detailed setup is given in Appendix A.

5 Results and Discussion

For each prompt, we generate a list of three uni-
versities from the target LLMs as academic rec-
ommendations on which we compute the proposed
suite of disaggregated metrics.

For each of the three recommended universities,
we calculate Acc, Rep, and Acad and report the av-
erage of these scores across the recommendations.
We also calculate the set-level metrics Repr/Avail
and Repcov for the specified target country.

We analyzed the results and discuss them under
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Table 1: Demographic Representation Score and its components for the base prompt, by demographic factors

Category Group Gemma Llama Mistral

Access. Rep. DRS Access. Rep. DRS Access. Rep. DRS

– Overall Avg. 0.1336 0.5922 0.3629 0.3146 0.8479 0.3875 0.1786 0.7355 0.4570
Gender Male 0.1414 0.6058 0.3736 0.2967 0.8469 0.3812 0.1829 0.7310 0.4569
Gender Female 0.1728 0.5977 0.3652 0.3245 0.8390 0.3878 0.1965 0.7703 0.4834
Gender Transgender 0.1267 0.5732 0.3499 0.3227 0.8577 0.3935 0.1563 0.7052 0.4307
Economic Class High-Class 0.1252 0.6543 0.3897 0.2651 0.9044 0.3898 0.1500 0.9638 0.5569
Economic Class Moderate-Class 0.1318 0.5711 0.3515 0.3225 0.8460 0.3895 0.1897 0.6701 0.4299
Economic Class Low-Class 0.1439 0.5513 0.3476 0.3563 0.7932 0.3832 0.1960 0.5726 0.3843

the following Research Questions (RQ). Further
results in detail are shown in Appendix B.

5.1 RQ1: Do LLM Recommendations Reflect
and Reinforce patterns based on
Demographic and Economic Status?

Our findings highlight that LLMs are far from be-
ing neutral information arbiters, and act as mirrors
that reflect and amplify societal stereotypes about
class and gender. This is starkly evident in their
creation of distinct recommendation "tiers" based
on a user’s perceived socio-economic status.

5.1.1 Economic Class
Table 1 exposes clear socio-economic stratifica-
tion where models prioritize prestige over practi-
cality for "High-Class" profiles, models, with Mis-
tral recommending universities with a high Reputa-
tion score but low Accessibility. For "Low-Class"
profiles, Mistral’s recommendations invert, with
Reputation plummeting by 41%, which also holds
across models. Llama’s score for high-class pro-
files is 1.14 times higher than for low-class. This
amounts to ‘digital gatekeeping’: models preemp-
tively filter out top-tier options to lower-income
backgrounds, despite numerous scholarships oppor-
tunities offered by institutes, filtering opportunities
based on a demographic proxy, rather than merit.

5.1.2 Gender
This trend extends to gender, where quantitative
metrics reveal damaging biases. As shown in Ta-
ble 3, academic alignment shows a consistent dis-
parity. Both Llama and Gemma provide male pro-
files with recommendations better aligned to their
interests than female profiles. The gap is most
alarming for transgender users, where Gemma’s
score plummets to 0.3539. This numerical gap rep-
resents a tangible failure, detailed in Figure 4: a
transgender user asking for "Computer Science"

is more likely to be recommended misaligned pro-
grams like "Social Work," rendering the advice
functionally useless. Recommendations adhere to
rigid gender stereotypes, steering men towards en-
gineering while funneling women and transgender
profiles into social policy. This bias persists even
when a prompt emphasizes a strong engineering
background; women and transgender users still
receive many social-policy suggestions. This per-
sistence, resistant to simple alignment, shows how
gender and geography distort the model’s advice.
Ultimately, the model’s stereotypical associations
override the user’s defined skillset defeating the
fundamental purpose of a recommendation system.

Engineering Engineering(A) Social Policy

Social Policy(A) Gender Studies Gender Studies(A)

Male Female Transgender
0

200

400

600

800

392

539

160
98 68

394 412

183
217

85 48 113

256

706

538

Figure 4: Program Recommendation trends by gen-
der under the base prompt and the context-augmented
prompt (A) with engineering background.

5.2 RQ2: Can I trust an LLM to give me
recommendations that are representative
of the global education sphere?

The LLMs’ recommendation base is a profoundly
incomplete and distorted world map, leaving vast
regions in a representational shadow. The most rep-
resentative model, Llama-3.1-8B, covers less than
half the globe (48%), while Gemma’s worldview
is a meager 17.4% of countries, severely limiting
the scope of possible recommendations.

The consequences of this distorted cartography
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Table 2: Detailed Geographic Representation Score (GRS) for select countries, grouped by development status

Gemma Llama Mistral

Country Avail. Repr. Rep. Covg. GRS Repr. Rep. Cov. GRS Repr. Rep. Cov. GRS

Developed Nations
Canada 0.0200 0.2333 0.9698 0.9848 0.7000 0.9347 0.9668 0.5667 0.9189 0.9586
United Kingdom 0.0599 0.2444 0.9882 0.9941 0.8222 0.8992 0.9483 0.5333 0.8994 0.9484
United States 0.1311 0.1066 0.9731 0.8896 0.2386 0.9253 0.9619 0.4315 0.9123 0.9552

Developing Nations
South Africa 0.0073 0.3636 0.8413 0.9172 1.0000 0.7022 0.8379 0.5455 0.7443 0.8627
Nigeria 0.0013 0.0000 0.0000 0.0000 1.0000 0.0829 0.2880 0.0000 0.0000 0.0000
India 0.0306 0.0000 0.0000 0.0000 0.0217 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3: Comparison of Academic Alignment Scores
Across Demographic Groups and Models

Group Gemma Llama Mistral

By Gender
Female 0.4451 0.6866 0.7174
Male 0.5127 0.7851 0.7903
Transgender 0.3539 0.6257 0.7242

By Economic Class
High-Class 0.4506 0.6334 0.7206
Moderate-Class 0.4228 0.6729 0.7147
Low-Class 0.4183 0.5912 0.6906

are quantified by the Geographic Representation
Score (GRS) in Table 2 and qualitatively detailed
in Appendix B. A small cohort of Western nations
constitutes the models’ "known world," receiving
high GRS scores and excellent Reputational Cover-
age (often > 0.90), signifying that the models can
name a diverse and high-quality set of institutions
within these countries. In contrast, most of the
world is a blank space. For nearly all developing
nations testes, Gemma and Mistral return a GRS
of zero. Countries like India, despite a massive
higher education system, are rendered completely
invisible with a GRS of zero across all models.

Even when a model appears aware of the Global
South, the sub-metrics highlight that this is dan-
gerously superficial. Llama gives Nigeria a perfect
Representation (Rep) of 1 but a weak Reputation
Coverage of only 0.0829. The model can name
a university, but not reliably a good one, offering
users a harmful illusion of competence.

5.3 RQ3: Can User-Side Prompt Engineering
Overcome Systemic Representational and
Stereotypical Deficits?

Our setup also introduces a “regionally-accessible”
constraint to test if user-side prompt engineering
could mitigate systemic flaws. The results (Tables
4 and 5) show this is not a simple fix and can yield
unpredictable, even detrimental, outcomes.

Across all models, adding the regional prompt
decreased the overall DRS because the significant
drop in university Reputation outweighed modest
gains in Accessibility. While this was expected,
models constrained geographically fell back on
lesser prestigious institutions than from previously
recommended regions, thus lowering the quality,
visible in some nation trends like South Africa and
the Philippines reduced to null scores.

Some previously underrepresented nations like
Nigeria gain visibility and Australia gains more
reputed universities resulting in a higher GRS. This
demonstrates that for some regions, the models
have a degree of latent knowledge that needs ex-
plicit direction which is also highly unstable. For
Llama, representation for major developed nations
like Italy, Japan, and Germany (with strong base
GRS scores >0.81) collapsed entirely to 0.0000.

Crucially, major developing nations like India
and Brazil still scored GRS=0 across all mod-
els, even under regional constraints. Likewise,
adding academic context failed to overcome bi-
ases, confirming that user-side prompts alone can-
not bridge these knowledge gaps. Our framework
thus also points towards bias mitigation strategies
like fairness-aware losses or essential context data
required. While tested for higher-education rec-
ommendations, our socially grounded framework
can be applied to other tasks like in Appendix C
where accessibility and reputation are vital aspects
in recommendation systems.
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Table 4: Impact of the ’Regional’ Prompt on GRS, for a select few nations.

Gemma Llama Mistral

Country Base Regional ∆ (%) Base Regional ∆ (%) Base Regional ∆ (%)

Developed Nations

Canada 0.9848 0.9895 +0.5% 0.9668 0.9895 +2.4% 0.9586 0.9895 +3.2%
Australia 0.0000 0.9946 +∞ 0.9457 0.7733 -18.2% 0.9517 0.9921 +4.2%
Italy 0.8972 0.0000 -100% 0.8103 0.0000 -100% 0.0000 0.0000 0%
Japan 0.9713 0.0000 -100% 0.8644 0.0000 -100% 0.0000 0.2880 +∞
Germany 0.0000 0.0000 0% 0.9178 0.0000 -100% 0.9767 0.0000 -100%

Developing Nations

Ghana 0.0000 0.5204 New 0.5204 0.5783 +11.1% 0.5204 0.5328 +2.38%
Nigeria 0.0000 0.3400 New 0.2880 0.3800 New 0.0000 0.3720 New
South Africa 0.9172 0.0000 -100% 0.8379 0.0000 -100% 0.8627 0.0000 -100%
Philippines 0.8485 0.0000 -100% 0.6801 0.0000 -100% 0.0000 0.0000 0%
India 0.0000 0.0000 0% 0.0000 0.0000 0% 0.0000 0.0000 0%
Brazil 0.0000 0.0000 0% 0.0000 0.0000 0% 0.0000 0.0000 0%

Table 5: Comparison of DRS and sub-metrics for Base
(B) and Regional (R) prompts across models.

Model (Prompt) DRS Acc Rep

Gemma (B) 0.3664 0.1336 0.5922
Gemma (R) 0.2252 0.1493 0.3011

Llama (B) 0.5812 0.3146 0.8479
Llama (R) 0.4707 0.3969 0.5446

Mistral (B) 0.4570 0.1786 0.7355
Mistral (R) 0.3316 0.1669 0.4963

6 Conclusion

This paper delivers a comprehensive analysis of
how open-source LLMs shape higher-education
recommendations and exposes the stark biases they
encode. By evaluating different perspectives with
the proposed evaluation metrics, Demographic Rep-
resentation Score and Geographic Representation
Score, we provide a rigorous and replicable toolkit
for both diagnosing and quantifying unfairness in
educational AI systems. Our results highlight con-
sistent disparities in accessibility, reputation, and
alignment across profiles. Models favor high-class
users with prestigious but less accessible institu-
tions, while lower-class profiles are filtered away
from top-tier options. It also highlights the clear
alignment disparities even with interest prompts,
funneling gender profiles towards perpetual harm-
ful norms.

Through all this, the fundamental problem that

presents itself is the lack of global representation
with major higher education hubs still overshad-
owed, signaling a profound blind spot. Among
the models evaluated, Llama consistently offers
the most representative and globally aware rec-
ommendations, while Gemma performs the worst
across both demographic and geographic dimen-
sions. This work presents an instrumental step to-
wards evaluating and building reliable recommen-
dation systems toward truly equitable academic
AI, ensuring that every student, regardless of back-
ground, receives recommendations that are both
aspirational and attainable.

7 Limitations

While this analysis represents a comprehensive ex-
amination of bias in LLM-based academic recom-
mendation, there are a few limitations to be consid-
ered:

• Synthetic Profile Scope. Our 360 synthetic
profiles enable controlled, intersectional anal-
ysis across gender, nationality, and socioeco-
nomic status, but cannot capture real-world
complexity such as scholarships, dual-degree
plans, or personal constraints.

• Dependence on QS Rankings. Both Reputa-
tion and Geographic Representation metrics
rely on the 2024 QS World University Rank-
ings; any omissions or biases in that dataset,
particularly undercoverage of emerging uni-
versities, directly affect our results.
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• Subject-Tag Taxonomy Reliance. Program
titles are mapped into five broad QS subject ar-
eas via a secondary LLM and manual checks.
This standardization brings consistency but
can introduce noise, especially for interdisci-
plinary or novel programs, slightly affecting
Academic Alignment scores.

• Model and Scale Constraints. We evalu-
ate three 7–8 B-parameter open-source LLMs;
findings may not extend to larger foundation
models (30 B+), closed-source systems (e.g.,
GPT-4 & Gemini), or domain-tuned variants,
which may exhibit different biases.

• Fixed Decay Parameters. The decay con-
stants λ for high, moderate, and low economic
classes were chosen to generate variance in
Accessibility scores but remain heuristic and
may not reflect real financial or visa barriers.

• Unmeasured Intersectional Axes. We vary
gender, nationality, and economic status, but
other factors like language proficiency, disabil-
ity also shape educational opportunity which
needs further research and can be included in
future work.

8 Ethical Considerations

Our evaluation framework goes a step further than
standard metrics by providing different perspec-
tives for practitioners to understand what a model
lacks. The integration of our Demographic Repre-
sentation Score (DRS) and Geographic Represen-
tation Score (GRS) into LLM-based recommen-
dation systems reflects a commitment to under-
standing and mitigating the real-world impacts of
algorithmic advice. Unlike traditional evaluation
metrics that focus solely on accuracy or relevance,
DRS and GRS illuminate how well model outputs
align with students’ socioeconomic constraints, per-
sonal interests, and the full breadth of global higher
education.

Since these metrics are calculated group level,
they also help analyse what country/attribute is un-
der represented to level down and analyse a model’s
strengths and weaknesses to train them with the
right type of data. In practice, a high DRS score sig-
nals to developers that their system is successfully
tailoring suggestions to a student’s unique context,
rather than defaulting to one-size-fits-all “elite” or
“popular” choices. Conversely, a low DRS imme-
diately highlights demographic blind spots, such

as systematic exclusion of lower-income profiles
or misalignment with expressed program interests,
prompting targeted data curation or re-weighting
of loss functions.

Similarly, GRS goes beyond mere country
counts by normalizing representation against each
nation’s landscape of accredited universities. A
model with a robust GRS does not merely recall a
handful of well-known Global North institutions,
it surfaces a diverse mix of universities that collec-
tively reflect regional availability and quality. Insti-
tutions can use GRS to audit their own AI-driven
advising tools, ensuring that education systems are
equally represented and receive fair consideration.
Policymakers and accreditation bodies may like-
wise reference GRS benchmarks when certifying
digital counseling platforms, embedding fairness
metrics into compliance standards.

Our framework is designed for broad applicabil-
ity. University career centers and online counseling
platforms can adopt DRS and GRS as part of their
continuous integration pipelines, comparing new
model versions against fairness baselines before de-
ployment. It also helps users decide what models
are best setting a new standard for fairness evalua-
tion in educational recommendation contexts.

Beyond higher education, the principles underly-
ing DRS and GRS extend naturally to other recom-
mendation domains, job matching services, health-
care provider selection, or financial product advi-
sories, where balancing user constraints, domain
expertise, and population-level diversity is equally
critical. Given an official-sourced ranking data, this
social taxonomoy can also be extended to these
domains to evaluate similar representational and
demographic bias detailed in Appendix C.

By embedding DRS and GRS into the devel-
opment lifecycle of educational recommendation
systems and by articulating their intended uses,
limitations, and potential pitfalls, we foster a more
transparent, accountable, and equitable ecosystem
for AI-driven guidance. Our work strongly high-
lights the urgent need to overcome systemic knowl-
edge deficits through deeper methods like algorith-
mic de-biasing, curriculum-aware fine-tuning, and
enriched non-Western training corpora. Through
open release of code and data splits and collabora-
tive refinement of these metrics will be essential
to ensure that algorithmic advising genuinely ad-
vances access to quality education for all.
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A Experimental Setup

A.1 Models
In this study, we evaluated three prominent open-
source, instruction-tuned Large Language Models
(LLMs). The models were selected based on their
wide adoption in the research community, open
accessibility which is crucial for reproducibility,
and their diverse origins, allowing for a compara-
tive analysis. Their similar scale ( 7-8B param-
eters) ensures that our comparisons of bias are
not confounded by model size. We focused on
these smaller models due to their computational
efficiency and practical relevance for real-world
chatbot deployments.

The specific models used are:

• Llama-3.1-8B-Instruct: Created by Meta (ver-
sion released July 23, 2024). Accessed via
the Hugging Face Hub at meta-llama/Meta-
Llama-3.1-8B-Instruct.

• gemma-7b-it: Created by Google. Accessed
via the Hugging Face Hub at google/gemma-
7b-it.

• Mistral-7B-Instruct-v0.3: Created by Mistral
AI. Accessed via the Hugging Face Hub at
mistralai/Mistral-7B-Instruct-v0.3.

Our use of these models is fully consistent with
their intended use for research and experimenta-
tion. The evaluation of model biases and lim-
itations aligns with the responsible AI develop-
ment practices encouraged by their creators. These
instruction-tuned models are designed for a wide
range of natural language generation tasks. Our
study uses them in a research context to evaluate
their performance, biases, and alignment capabil-
ities on a specific, high-stake task (academic ad-
vising). This falls squarely within the intended
scope of research and experimentation encouraged
by the model creators. Our usage complies with
the Acceptable Use Policies of both Llama 3.1 and
Gemma, as our experiments do not involve any pro-
hibited activities such as generating illegal content,
hate speech, or misinformation. The purpose of our
work is to identify and analyze potential harms (i.e.,
bias), which is a crucial aspect of responsible AI
research. To ensure the privacy and ethical integrity
of our study, we avoided using any real user data.

The models are governed by distinct open li-
censes that permit research use: Llama-3.1-8B-
Instruct is licensed under the Llama 3.1 Com-
munity License Agreement, Gemma-7b-it is gov-
erned by the Gemma Terms of Use, and Mistral-
7B-Instruct-v0.3 is released under the permissive
Apache 2.0 License. Our use of these models is
fully consistent with their intended use for research
and experimentation. The evaluation of model bi-
ases and limitations aligns with the responsible AI
development practices encouraged by their creators
and complies with the Llama 3.1 Acceptable Use
Policy and the Gemma Prohibited Use Policy.

A.2 Computing Requirements
The experimental pipeline was implemented in
Python 3.10. Models were loaded and queried us-
ing the Hugging Face transformers library (v4.38.2)
with the PyTorch (v2.1) backend. All experiments
were executed on the Kaggle, utilizing notebooks
equipped with NVIDIA T4 GPUs to accelerate
inference. Data processing and analysis were con-
ducted using the pandas and numpy libraries.

A total of 32,400 model generations were per-
formed (360 profiles × 3 prompts × 3 models ×
10 runs). The total computational budget is esti-
mated to be approximately 45-50 GPU hours on
the specified hardware.

This study evaluates pre-trained models, so no
model training or fine-tuning was performed. The
key hyperparameters relate to the text generation
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(decoding) process. To ensure a fair and consistent
comparison across all models, a fixed set of decod-
ing parameters was used for every query detailed
in Table 6.

To account for the stochastic nature of generative
models, each unique prompt-model configuration
was queried 10 independent times. This approach
provides a stable and representative measure of
each model’s typical behavior, mitigating the ran-
domness inherent in a single generation. While
not included in the tables for brevity, this multi-run
setup allows for the calculation of variance and
standard deviation around the reported means.

To ensure reproducibility, specific versions of all
major software packages were used. No modifica-
tions were made to the core functionalities of these
libraries.

• Core ML/DL Libraries: transformers
(v4.38.2), torch (v2.1).

• Data Handling: pandas (v2.0.3), numpy
(v1.25.2).

• Geospatial Calculations: geopy (v2.4.1) was
used to calculate the geodesic distance for the
Socio-Economic Accessibility (Acc) score.

Parameter Value

temperature 0.75
top_p 0.95
max_new_tokens 300
do_sample True
num_return_sequences 1

Table 6: Decoding hyperparameters used for all model
queries.

A.3 Prompt Details
Countries used in prompt template: Africa,
Asia, Europe, North America, South
America, and Oceania. The list includes:
Nigeria, Egypt, South Africa, Kenya,
Ghana, Ethiopia, Algeria, Morocco, China,
India, Japan, South Korea, Indonesia,
Thailand, Saudi Arabia, Vietnam, France,
Germany, Italy, Spain, United Kingdom,
Sweden, Poland, Greece, United States,
Canada, Mexico, Cuba, Costa Rica,
Jamaica, Brazil, Argentina, Chile, Peru,
Colombia, Australia, New Zealand, Fiji,
Papua New Guinea, and Tonga.

B Qualitative Analysis

This section lays the qualitative analysis of the
models’ performance on different prompt varia-
tions based on the demographic factors like gender,
economic-class and nationality of a simulated stu-
dent seeking academic advice.

B.1 Base Prompt
The volume of data generated from the base prompt
is tabulated in Table 7:

Table 7: Volume and diversity of generated responses
for the base prompt template.

Gemma 7B LLaMA 3.1 8B Mistral 7B

Total Responses 6,900 13,176 10,994
Unique Universities 96 481 229
Unique Programs 296 1309 814
Unique Countries 22 61 27

B.2 Added Context of Regional Accessibility
The volume of data generated from the prompt
with an additional context of regional accessibility
is tabulated in Table 8:

Table 8: Volume and diversity of generated responses
for the prompt with additional regional context.

Gemma 7B LLaMA 3.1 8B Mistral 7B

Total Responses 6,077 26,794 9,623
Unique Universities 129 382 257
Unique Programs 127 423 245
Unique Countries 37 60 43

Figure 19 shows the comparative performance
of two prompts(with and without regional context).
Contextual prompts reduce Western bias in model
recommendations, yet some countries remain un-
derrepresented.

B.3 Results for Prompt Template with
Reduced Context (Individual
Demographic Factors)

The following section presents the results obtained
from the three models when the prompt template
included only a single attribute at a time (i.e., ei-
ther gender, economic class, or nationality). The
outcomes are summarized in the tables for each
model.

B.3.1 Results for Gemma-7B
The results for the Gemma-7B model, when
prompted with templates containing only a single
attribute (i.e., economic class, gender, or national-
ity), are presented in tables 9, 10, and 11.
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(a) Mistral

(b) LLaMA

(c) Gemma

Figure 5: Distribution of the top 20 most frequently rec-
ommended university locations across the three models
(Mistral, LLaMA, and Gemma).

Table 9: Prompted with only economic-class in the
prompt: Gemma-7B.

Class Top Countries Top Universities Top Programs

Overall
United States University of Oxford Public Policy
United Kingdom University of Chicago Economics
New Zealand UC Berkeley Business Administration

Low-class United States Boston University Public Policy

Moderate-class United States University of Chicago Public Policy

High-class United Kingdom University of Oxford Economics

Table 10: Prompted with only gender in the prompt:
Gemma-7B.

Gender Top Countries Top Universities Top Programs

Overall
United States Boston University Gender Studies
United Kingdom University of Oxford Public Policy
New Zealand Auckland University of

Technology
Business Administration in
Economics

Male United States Boston University Business Administration in
Economics

Female United States Boston University Business Administration

Trans United States UC Berkeley Gender Studies

B.3.2 Results for LlaMA-3.1-8B
Tables 12, 13, and 14 present the results obtained
from the LlaMA-3.1-8B model when prompted
with templates that include only one attribute at a
time.

B.3.3 Results for Mistral-7B
The outcomes generated by the Mistral-7B model
in response to prompts containing a single attribute
(economic class, gender, or nationality) are sum-
marized in tables 15, 16, and 17.

C Broader Application of Framework

The core principles of our evaluation framework,
balancing accessibility, reputation, alignment, and
diversity, are not limited to higher education. The
social taxonomy introduced can be adapted to other
high-stake recommendation domains where user
context and equitable representation are critical.
Below, we outline how the Demographic Represen-
tation Score (DRS) and Geographic Representation
Score (GRS) can be re-conceptualized for other
applications.

C.1 Job Recommendation Systems
For a job seeker, a "good" recommendation must
balance commute, company quality, and skill
match.

DRS Adaptation:
Socio-Economic Accessibility (Acc): This

could be modeled as a function of the physical
commute distance from the user’s home to the job
location, or as a binary score for remote vs. in-
person roles. The decay parameter λ could repre-
sent a user’s willingness to commute.
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(a) Mistral

(b) LLaMA

(c) Gemma

Figure 6: The geographic spread of all universities recommended by the Mistral, LLaMA, and Gemma models
reveals a strong Western bias, with a predominant focus on institutions from the United States, United Kingdom,
Canada, and Australia.
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(a) Mistral

(b) LLaMA

(c) Gemma

Figure 7: The count plot shows the top 20 universi-
ties most commonly suggested overall by the Mistral,
LLaMA, and Gemma models.

Table 11: Prompted with only nationality in the prompt:
Gemma-7B.

Nationality Top Countries Top Universities Top Programs

Overall
United Kingdom University of Oxford Social Policy
United States University of Cambridge Development Studies
Australia University of East London Public Policy

US United States University of Chicago Business Administration

UK United Kingdom University of Oxford Social Policy

China United Kingdom University of Oxford Public Policy

Nigeria United Kingdom University of Oxford Social Policy

India United Kingdom University of Oxford Social Policy

Cuba United Kingdom University of Oxford Electrical Engineering

Table 12: Prompted with only economic-class in the
prompt: LlaMA-3.1-8B.

Class Top Countries Top Universities Top Programs

Overall
United Kingdom University of Edinburgh Finance
Netherlands University of Oxford Data Science
United States University of Cambridge Economics

Low-class United Kingdom University of Edinburgh Data Science

Moderate-class United Kingdom University of Edinburgh Data Science

High-class United Kingdom University of Oxford Finance

Reputation Alignment (Rep): Instead of univer-
sity rankings, this would use normalized company
ratings from platforms like Glassdoor, or it could
be based on publicly available salary-band data to
represent economic opportunity.

Academic Alignment (Acad): Re-framed as
Skill Alignment, this would use a Jaccard index to
measure the overlap between a user’s skills (parsed
from a CV) and the skills listed in the job descrip-
tion.

GRS Adaptation:
This score would evaluate the diversity of em-

ployers within a specific labor market (e.g., a city
or region).

Normalized Representation (Scaled_Repr)
would measure if a model recommends jobs from
a wide range of companies relative to the total
number of employers in that area, preventing over-
concentration on a few large tech firms.

Reputational Coverage (Rep_covg) would en-
sure that the recommended companies are of high
quality, based on the Rep score defined above.

C.2 Healthcare Provider Selection
Choosing a doctor or hospital involves balancing
travel, quality of care, and specialty match.

DRS Adaptation:
Socio-Economic Accessibility (Acc): This

could be a function of travel time to the clinic or
hospital. More critically, it could also incorporate
whether the provider is in the user’s insurance net-
work, a crucial real-world accessibility barrier.

Reputation Alignment (Rep): This would be
based on normalized patient satisfaction scores,
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(a) Mistral

(b) LLaMA

(c) Gemma

Figure 8: The most frequently recommended universities for each financial class by the Mistral, LLaMA, and
Gemma models, revealing a strong influence of economic class in their recommendations.
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(a) Mistral

(b) LLaMA

(c) Gemma

Figure 9: Frequency plot showing the top 20 academic
programs recommended overall across the three models:
Mistral, LLaMA, and Gemma.

Table 13: Prompted with only gender in the prompt:
LlaMA-3.1-8B.

Gender Top Countries Top Universities Top Programs

Overall
United Kingdom University of Edinburgh Data Science
United States University of Oxford Computer Science
Canada University of Cambridge Artificial Intelligence

Male United Kingdom University of Cambridge Computer Science

Female United Kingdom University of Edinburgh Data Science

Trans United Kingdom University of Edinburgh Gender Studies

Table 14: Prompted with only nationality in the prompt:
LlaMA-3.1-8B.

Nationality Top Countries Top Universities Top Programs

Overall
United Kingdom University of Edinburgh Data Science
United States University of Oxford Environmental Science
Australia University of Manchester Computer Science

US United Kingdom University of Edinburgh Data Science

UK United Kingdom University of Edinburgh Data Science

China United Kingdom University of Edinburgh Computer Science

Nigeria United Kingdom University of Edinburgh Data Science

India United Kingdom University of Edinburgh Computer Science

Cuba United Kingdom University of Edinburgh International Relations

official hospital safety grades, or professional ac-
creditations from medical bodies.

Academic Alignment (Acad): Re-framed as
Specialty Alignment, this would measure the match
between a patient’s stated medical needs (e.g., "pe-
diatric care," "cardiology") and the provider’s listed
specialties.

GRS Adaptation:
This score would assess the diversity of recom-

mended healthcare options within a health district
or city.

Normalized Representation (Scaled_Repr)
would check if the recommendations include a mix
of large hospitals, specialized clinics, and local pri-
mary care physicians, relative to what is available.

Reputational Coverage (Rep_covg) would en-
sure that the recommended providers meet a high
standard of care based on patient ratings or official
grades.
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(a) Mistral

(b) LLaMA

(c) Gemma

Figure 10: Academic program recommendations are grouped by gender for the Mistral, LLaMA, and Gemma
models. Transgender users face the strongest bias across all three models.
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(a) Mistral

(b) LLaMA
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Figure 11: The most commonly recommended programs by economic status are shown for the Mistral, LLaMA,
and Gemma models. The results indicate that program recommendations vary notably by users’ socioeconomic
background.
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(a) Mistral
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Figure 12: The heatmap shows the alignment between
users’ nationality and the locations of recommended
universities for selected nationalities. The models tend
to favor institutions in developed countries, reflecting
a Western-centric bias that underrepresents universities
from the Global South.

(a) Mistral

(b) LLaMA

(c) Gemma

Figure 13: The frequency distribution of the top 20
recommended universities by location across the Mistral,
LLaMA, and Gemma models, with additional regional
context provided.
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(a) Mistral

(b) LLaMA

(c) Gemma

Figure 14: Global spread of universities recommended by the Mistral, LLaMA, and Gemma models with consid-
eration of regional accessibility. The models predominantly favor Western institutions, reflecting existing global
academic hierarchies.
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Figure 15: The top 20 universities most commonly sug-
gested overall by the three models when users request
regional options. Despite the prompt, all models con-
tinue to prioritize prestigious Western institutions.

Table 15: Prompted with only economic-class in the
prompt: Mistral-7B.

Class Top Countries Top Universities Top Programs

Overall
United States Stanford University Computer Science
United Kingdom Massachusetts Institute of

Technology
Data Science

UC Los Angeles Engineering Management

Low-class United States University of Texas at
Austin

Computer Science

Moderate-class United States UC Los Angeles Computer Science

High-class United States Stanford University Engineering Management

Table 16: Prompted with only gender in the prompt:
Mistral-7B.

Gender Top Countries Top Universities Top Programs

Overall
United States Massachusetts Institute of

Technology
Computer Science

United Kingdom UC Berkeley Data Science
Stanford University Social Work

Male United States Massachusetts Institute of
Technology

Computer Science

Female United States Massachusetts Institute of
Technology

Computer Science

Trans United States University of Michigan Ann
Arbor

Social Work

Table 17: Prompted with only nationality in the prompt:
Mistral-7B.

Nationality Top Countries Top Universities Top Programs

Overall
United States UC Berkeley Computer Science
United Kingdom University of Oxford Data Science
New Zealand Massachusetts Institute of Technol-

ogy
Artificial Intelligence

US United States UC Berkeley Computer Science

UK United Kingdom Imperial College London Computer Science

China United States Massachusetts Institute of Technol-
ogy

Computer Science

Nigeria United Kingdom University of Manchester Computer Science

India United States University of Illinois Urbana-
Champaign

Computer Science

Cuba United States UC Berkeley Computer Science
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(a) Mistral

(b) LLaMA

(c) Gemma

Figure 16: Most frequently recommended universities for each financial group for the Mistral, LLaMA, and Gemma
models, with accessibility taken into account. While some regional improvements are observed, all models align
recommendations with income level, reinforcing educational inequality.
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(a) Mistral

(b) LLaMA

(c) Gemma

Figure 17: The top 20 recommended programs, con-
strained by regional accessibility, highlighting persis-
tent disciplinary biases across the Mistral, LLaMA, and
Gemma models.

2315



(a) Mistral

(b) LLaMA

(c) Gemma

Figure 18: Top program recommendations by gender identity across the Mistral, LLaMA, and Gemma models, with
additional regional context, revealing systemic bias, with transgender users consistently steered toward stereotyped
disciplines.
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(a) Mistral

(b) LLaMA

(c) Gemma

Figure 19: Comparison chart of user’s nationality and university location alignment, with and without the regional
accessibility cue in the prompt (selected nationalities).
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