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Abstract

Reasoning over procedural sequences, where
the order of steps directly impacts outcomes,
is a critical capability for large language mod-
els (LLMs). In this work, we study the task
of reconstructing globally ordered sequences
from shuffled procedural steps, using a curated
dataset of food recipes, a domain where cor-
rect sequencing is essential for task success.
We evaluate several LLMs under zero-shot and
few-shot settings and present a comprehen-
sive evaluation framework that adapts estab-
lished metrics from ranking and sequence align-
ment. These include Kendall’s Tau, Normal-
ized Longest Common Subsequence (NLCS),
and Normalized Edit Distance (NED), which
capture complementary aspects of ordering
quality. Our analysis shows that model per-
formance declines with increasing sequence
length, reflecting the added complexity of
longer procedures. We also find that greater
step displacement in the input, corresponding
to more severe shuffling, leads to further degra-
dation. These findings highlight the limitations
of current LLMs in procedural reasoning, espe-
cially with longer and more disordered inputs.

1 Introduction

Understanding and generating correctly ordered ac-
tion sequences is a key aspect of reasoning. Many
real world tasks, such as cooking recipes or car-
rying out technical procedures, require steps be
completed in a precise order to achieve the in-
tended outcome. LL.Ms have demonstrated strong
performance on various reasoning tasks including
arithmetic computation (Imani et al., 2023; Ahn
et al., 2024), commonsense inference (Rajani et al.,
2019), question answering (Robinson et al., 2022;
Anika et al., 2025), and multimodal reasoning
and understanding tasks (Miah et al., 2025, 2023).
While much prior work has evaluated LLMs on
step-by-step reasoning, their ability to reason over

“Work done outside of role at Amazon

Recipe: Apple cheese casserole

Shuffled Steps:

1. bake 325: for about 30-45 minutes

2.serves 4-6

3. add flour and mix well-batter will be stiff

4.place apples in a buttered baking dish about 1.5 qt
size

5. cream butter and sugar in a mixing bowl , add
cheese & combine well

6. spread the cheese / flour mixture over the apples
covering the apples well

Correct Order: [5, 3, 4, 6, 1, 2]

Correctly Ordered Steps:

1. cream butter and sugar in a mixing bowl , add
cheese & combine well

2. add flour and mix well-batter will be stiff

3. place apples in a buttered baking dish about 1.5
gt size

4. spread the cheese / flour mixture over the apples
covering the apples well

5. bake 325: for about 30-45 minutes

6.serves 4-6

Figure 1: Example of the step ordering task. Given
a shuffled list of recipe instructions (top), the goal is
to recover the correct sequence (bottom) required to
successfully complete the recipe. The middle row shows
the gold permutation that reorders the input into the
correct order.

and reconstruct ordered procedural steps remains
relatively underexplored.

Step ordering tasks, where the correctness of the
output depends on recovering a globally coherent
sequence, pose a unique challenge. Most existing
research focuses on predicting the immediate next
step (Yong et al., 2025; Wang et al., 2023), rather
than reconstructing the full sequence from a shuf-
fled set. Moreover, prior evaluations rely only on
accuracy (Quan and Liu, 2024), measuring exact
matches between predicted and reference positions.
This limits our ability to fully understand LLMs
procedural reasoning. In this work, we evaluate
LLMs’ step ordering capabilities using a curated
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dataset of food recipes due to their clearly defined
structure and strong ordering constraints. As illus-
trated in Figure 1, the model receives a shuffled
list of recipe instructions and must recover the cor-
rect sequence that reflects the intended preparation
process. We use complementary metrics, including
Kendall’s Tau to measure rank correlation, Nor-
malized Longest Common Subsequence (NLCS)
to assess subsequence preservation, and Normal-
ized Edit Distance (NED) to quantify reordering
cost, providing a deeper analysis of model perfor-
mance. We conduct a systematic evaluation across
multiple LLMs under 0-shot and few-shot settings.
We further analyze performance as a function of
sequence complexity, examining how models re-
spond to longer recipes and greater amounts of step
shuffling. Our main contributions are:

* We present a comprehensive evaluation of
step-order reasoning abilities in LLMs using
a structured cooking recipe dataset, going be-
yond next-step prediction to assess full se-
quence reconstruction.

* We introduce a multi-metric evaluation
framework that captures partial correct-
ness, subsequence alignment, and reordering
cost—offering a richer picture of model be-
havior than accuracy alone.

* We analyze how model performance varies
with step count and shuffling difficulty, reveal-
ing performance gaps and highlighting ongo-
ing challenges in LLM’s procedural reasoning

2 Related Work

Previous studies have explored LLMs reasoning on
procedural tasks. STEPS (Wang et al., 2023) pro-
poses a benchmark to assess models’ procedural
reasoning through two subtasks: next-step predic-
tion and multiple-choice selection of the correct
next step. While valuable, these tasks focus only on
local coherence by predicting or identifying a sin-
gle correct step rather than requiring the model to
recover an entire global sequence. ProcBench (Fu-
jisawa et al., 2024) focuses on multi-step reasoning
over structured tasks like string manipulation and
arithmetic operations. It evaluates whether LLMs
can follow explicit instructions step-by-step, mini-
mizing the need for external knowledge or path ex-
ploration. AttackSeqBench (Yong et al., 2025) eval-
uates LLMs’ understanding of sequential patterns
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Figure 2: Distribution of step movement distances
across recipes of different sequence lengths.

in cybersecurity reports through a suite of question-
answering tasks. These are designed to probe mod-
els’ ability to reason about adversarial behavior
over time. However, the setting remains extractive
QA, and models are not required to reconstruct full
procedural chains. EconLogicQA (Quan and Liu,
2024) introduces a benchmark targeting sequential
reasoning over interdependent events drawn from
economic articles, emphasizing complex temporal
and logical relationships. However, like other QA-
style evaluations, it relies mainly on accuracy or
exact match at each step, missing partial correct-
ness or structural misalignment. In contrast, our
study focuses on full-sequence reconstruction and
introduces additional metrics for a more compre-
hensive assessment of procedural reasoning.

3 Problem Definition

Given a shuffled set of procedural steps S =
{s1,82,...,5n}, the goal is to find a permu-
tation S = {51, 82,...,8,} that best approxi-
mates the ground truth ordered sequence S* =
{s%,s5,...,s°}. The predicted sequence S is
aligned with S* to assess ordering quality.

4 Dataset

Majumder et al. (2019) has introduced a dataset
containing 230K recipes from Food.com'. From
this corpus, we select 5,000 samples with 6 to 8
steps and 5 to 6 ingredients, ensuring moderate se-
quence length and complexity. Food recipes are in-
herently sequential, and prior work has treated step
ordering as critical to successful execution (Wang
et al., 2023). However, some recipes may have
some steps that may be interchangeable without
affecting the outcome (e.g., cutting onions and cut-
ting potatoes). To focus on sequences where step

"https://www.food.com
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order is necessary, we apply an additional cura-
tion step using a LLM to filter recipes requiring
strict ordering (see Appendix A) which yields to
1,740 recipes. Each recipe provides a coherent step
sequence S = {s1, ..., sy}, which we shuffle ran-
domly (with fixed seed) to produce S. The task is
to recover the original order from S. We generate
a permutation label 7 € {1, ..., n}", where 7; de-
notes the original position of the ¢-th step in the
shuffled sequence.

The dataset is balanced with 29.6% (515 sam-
ples) having 6 steps, 36.7% (638 samples) with 7
steps, and 33.7% (587 samples) with 8 steps.

We quantify the extent of step permutation by
measuring the average positional displacement, de-
fined as the mean absolute difference between the
original position p; and the shuffled position s; of
each step ¢ in a sequence of length n, i.e.,

1 n
n Z Ipi — sil
i=1

This metric captures the average magnitude of
step movement caused by shuffling. Figure 2 vi-
sualizes the displacement distribution, highlight-
ing mean values and variability. Longer sequences
show higher average displacement, increasing from
1.97 for 6-step to 2.62 for 8-step recipes, indicating
greater complexity in step rearrangements. The me-
dian displacement remains at 2 across all lengths.

5 Experimental Setup

5.1 Inference Settings

We evaluate five instruction-tuned LLMs:
Llama-3.1-8B-Instruct(Grattafiori et al.,

2024), Mistral-7B-Instruct(Jiang et al.,
2024), Gemma-2-9b-it(Team et al.,, 2024),
GPT-40-mini(OpenAl et al, 2024) and

Qwen3-8b(Team, 2025) under three settings:
zero-shot, 3-shot, and 5-shot.

Each model is prompted with a set of task in-
structions, the recipe name, and a list of shuffled
procedural steps (see Appendix B, C ). The model
is expected to output both the reordered step se-
quence and the corresponding order as a list of
indices. Qwen3-8b is a reasoning model, and think-
ing mode was enabled during evaluation. From
the 1,740 samples, we use 1,700 as the test set and
remaining samples for few-shot demonstrations.

5.2 Evaluation Metrics

We use four complementary metrics:

Step Accuracy (Acc).
step level:

We report accuracy at the

1 .
Acc = ﬁ Z(?Tz = 7TZ')

i=1

This metric measures the fraction of steps placed
at the correct positions and provides a measure
of how often the model recovers the exact step
location.

Kendall’s Tau (7) (KTau). Kendall’s tau is a
rank correlation metric (Lapata, 2006) that evalu-
ates the relative order of all possible step pairs be-
tween the predicted permutation 7 and the ground
truth 7. It is computed as

C-D
sn(n—1)

where C' is the number of concordant pairs and
D is the number of discordant pairs. It is suitable
for assessing whether the predicted step sequence
agrees with the ground truth in terms of relative
step precedence, regardless of their absolute posi-
tions. This metric is sensitive to pairwise inversions
and captures global ordering consistency.

Normalized Edit Distance (NED). Edit distance
counts the number of insertions, deletions, or swaps
required to convert the predicted order into the gold
sequence. We use its normalized form (Marzal and
Vidal, 2002),

EditDistance(7, )
n

NED =

This metric measures the total transformation
cost and is particularly sensitive to local misplace-
ments. NED is an error-based metric; lower values
indicate better sequence similarity.

Normalized Longest Common Subsequence
(NLCS). We compute the length of the longest
common subsequence (LCS) between 7 and 7, nor-
malized by the length of the reference:

LCS(#, )
n

NLCS =

This metric rewards the preservation of correct
subsequences and reflects the extent to which a
model recovers partial ordering structure. It is ro-
bust to small local reorderings and has been widely
used in structured sequence evaluation.
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Together, these metrics capture global, local, and
partial structural alignment between predicted and
target step sequences.

Model Shots | Acc | NLCS | KTau | NED
Llama-3.1 | O-shot | 0.33 0.62 0.70 0.56
3-shot | 0.45 0.73 0.83 0.42
5-shot | 0.44 0.73 0.83 0.43
Mistral 0-shot | 0.29 0.61 0.73 0.55
3-shot | 0.32 0.66 0.79 0.51
5-shot | 0.31 0.66 0.79 0.51
Gemma-2 | O-shot | 0.59 0.81 0.87 0.32
3-shot | 0.62 0.84 0.90 0.28
5-shot | 0.61 0.84 0.90 0.28
GPT-40 0-shot | 0.63 0.83 0.89 0.29
3-shot | 0.64 | 0.85 090 | 0.27
5-shot | 0.64 0.84 0.90 0.27
Qwen3 0-shot | 0.71 0.88 0.92 0.22
3-shot | 0.63 0.82 0.88 0.30
5-shot | 0.62 0.81 0.87 0.30

Table 1: Performance of different models across few-
shot settings (0, 3, 5) using Accuracy (Acc), Normalized
Longest Common Subsequence (NLCS), Kendall Tau
(KTau), and Normalized Edit Distance (NED). The best
and second-best results across all models are highlighted
(lowest for NED).

6 Results and Analysis

6.1 Performance in Zero-Shot and Few-Shot
Settings

Table 1 reports LLMs’ performance in 0-shot and
few-shot settings. Most models, i.e., Llama-3.1,
Mistral, Gemma-2, and GPT-40, show notable
improvements from 0-shot to 3-shot prompting,
whereas Qwen3 maintains strong performance even
without demonstrations. This suggests that a small
number of demonstrations helps models learn struc-
tural reordering patterns. However, across all mod-
els, performance plateaus beyond 3-shot as no
model shows meaningful gains with five examples,
indicating limited additional value from further
demonstrations.

Qwen3 achieves the best overall performance
across all metrics in the 0-shot setting, reaching
the highest accuracy (0.71), NLCS (0.88), and
KTau (0.92), and the lowest NED (0.22), indicating
strong intrinsic capabilities for accurate and con-
sistent reordering than other models. This superior
performance suggests that Qwen3’s reasoning abil-
ities allow it to better understand and model the
logical structure of sequences, enabling it to main-
tain correct absolute positions and preserve subse-
quences effectively. GPT-40 ranks second overall,
performing best among the remaining models in
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Figure 3: 3-shot performance of models (Acc, NLCS,
KTau, NED) across varying numbers of steps.

the 3-shot setting, with high accuracy (0.64), NLCS
(0.85), and KTau (0.90), and low NED (0.27), indi-
cating better absolute positioning, strong preserva-
tion of subsequences, and minimal local reordering.
Gemma-2 performs competitively whereas Mistral
and Llama-3.1 fall behind across all metrics, of-
ten producing more fragmented sequences (lower
NLCS) and higher reordering costs (higher NED),
despite moderate KTau scores.

KTau values show that even when models make
positional errors, they may still preserve correct rel-
ative ordering. For example, Llama-3.1 in 3-shot
achieves 0.83 KTau despite only 0.45 accuracy, in-
dicating good understanding of step precedence
even with absolute misplacements. NED values
further expose models’ tendency to make local
misorderings, with Qwen3 achieving the lowest
scores, followed by GPT-40 and Gemma-2, indicat-
ing minimal local reordering. NLCS emphasizes
preservation of long subsequences; again, Qwen3
attains the highest score, demonstrating stronger
retention of step continuity compared to other mod-
els. Despite these improvements, all models still
exhibit gaps in fine-grained step-level reasoning,
suggesting remaining challenges in capturing de-
tailed procedural structure.

6.2 Impact of Number of Steps on Ordering
Performance

We analyze model performance in the three-shot
setting by the number of steps in the sequence (n),
where longer sequences indicate increased com-
plexity. As shown in Figure 3, with n increasing
from 6 to 8, a general performance decline is ob-
served across all models, reflecting the added diffi-
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Figure 4: Smoothed 3-shot performance of models (Acc,
NLCS, KTau, NED) across average positional displace-
ment

culty in recovering longer step sequences. GPT-4
consistently performs best, maintaining high accu-
racy (0.73 — 0.56), strong subsequence alignment
(NLCS: 0.88 — 0.82), and low edit cost (NED:
0.21 — 0.31) as complexity increases. Gemma
2B shows similar robustness, with slightly lower
performance. Qwen 3 performs competitively, sur-
passing LLaMA 3.1 and Mistral on most met-
rics, with stable subsequence alignment (NLCS
~ 0.86 — 0.79) and consistent ranking correla-
tion (KTau ~ 0.89 — 0.86). In contrast, LLaMA
3.1 and Mistral show more pronounced declines
across all metrics, indicating a stronger tendency to
produce fragmented and disordered outputs under
increased complexity.

6.3 Impact of Step Average Positional
Displacement on Model Performance

We further assess robustness to reordering by an-
alyzing model performance with respect to aver-
age positional displacement. As shown in Fig-
ure 4, as displacement increases, indicating more
severe shuffling, all models exhibit noticeable per-
formance degradation across metrics. For Accu-
racy, Gemma-2 starts highest but drops sharply
from near 1.0 to approximately 0.4, while GPT-
4 declines more gradually, demonstrating greater
stability. Qwen3 achieves strong initial perfor-
mance and remains competitive with GPT-4, show-
ing moderate declines in accuracy and NLCS as
displacement increases. In contrast, LLaMA 3.1
remains consistently lower, and Mistral performs
worst overall, maintaining a steady but low tra-
jectory across all displacement levels. For NLCS,
GPT-4, Gemma-2, and Qwen3 maintain relatively

high subsequence alignment compared to LLaMA
3.1 and Mistral. KTau follows a similar trend, with
GPT-4 and Qwen3 sustaining high ranking corre-
lation and smaller declines under increased dis-
placement. NED rises with displacement, reflect-
ing larger deviations from the reference ordering,
where GPT-4 and Qwen show smaller increases
compared to the other models, indicating stronger
resistance to disorder.

7 Conclusion

We evaluated five LLMs on step ordering tasks
using four complementary metrics. Most models
improved from 0-shot to 3-shot prompting, with
no additional gains from five examples, whereas
Qwen3 maintained strong performance in the 0-
shot setting but degraded in the 3-shot setting. No
gains were observed from 3-shot to 5-shot for any
model. Qwen3 achieved the best overall perfor-
mance, followed by GPT-40 and Gemma-2, while
Llama-3.1 and Mistral were less reliable. Perfor-
mance declined as sequence length and reorder-
ing complexity increased. Although models often
preserved relative ordering (high KTau) and subse-
quences (high NLCS), they continued to struggle
with precise step-level reasoning, highlighting lim-
itations in LLMs’ procedural understanding.

8 Limitations

While our study offers a comprehensive evaluation
of LL.Ms on step ordering tasks, it leaves room for
further exploration. First, we restrict our analysis
to relatively short sequences (68 steps), extending
the evaluation to longer instructions could uncover
new insights. Second, we evaluate only instruction-
tuned models without task-specific fine-tuning. Tar-
geted fine-tuning on step ordering or procedural
datasets may yield improved performance. Finally,
although our dataset is carefully curated to ensure
strong ordering constraints, it is focused solely on
the cooking domain; evaluating cross-domain gen-
eralization would offer a broader view of LLM
procedural reasoning capabilities.

9 Ethics Statement

The research conducted for this paper adheres to
ethical principles and guidelines. The study utilizes
publicly available datasets from reputable sources,
ensuring compliance with data usage policies and
respecting the privacy and confidentiality of in-
dividuals involved. All methodologies follow es-
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tablished scientific practices, emphasizing trans-
parency, validity, and reliability. As the study does
not involve human subjects or sensitive informa-
tion, no ethics approval was sought.

References

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui
Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. arXiv preprint arXiv:2402.00157.

Adrita Anika, Md Messal Monem Miah, and Man
Luo. 2025. Leveraging LLM-generated QA pairs
for biomedical open-domain question answering. In
Workshop on Large Language Models and Genera-
tive Al for Health at AAAI 2025.

Ippei Fujisawa, Sensho Nobe, Hiroki Seto, Rina Onda,
Yoshiaki Uchida, Hiroki Ikoma, Pei-Chun Chien,
and Ryota Kanai. 2024. Procbench: Benchmark for
multi-step reasoning and following procedure. arXiv
preprint arXiv:2410.03117.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398.

AQ Jiang, A Sablayrolles, A Mensch, C Bamford,
DS Chaplot, Ddl Casas, F Bressand, G Lengyel,
G Lample, L Saulnier, and 1 others. 2024. Mistral
7b. arxiv 2023. arXiv preprint arXiv:2310.06825.

Mirella Lapata. 2006. Automatic evaluation of informa-
tion ordering: Kendall’s tau. Computational Linguis-
tics, 32(4):471-484.

Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo
Ni, and Julian McAuley. 2019. Generating personal-
ized recipes from historical user preferences. arXiv
preprint arXiv:1909.00105.

Andres Marzal and Enrique Vidal. 2002. Computation
of normalized edit distance and applications. IEEE

transactions on pattern analysis and machine intelli-
gence, 15(9):926-932.

Md Messal Monem Miah, Adrita Anika, Xi Shi, and
Ruihong Huang. 2025. Hidden in plain sight: Evalu-
ation of the deception detection capabilities of LLMs
in multimodal settings. In Proceedings of the 63rd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 31013—
31034, Vienna, Austria. Association for Computa-
tional Linguistics.

Md Messal Monem Miah, Adarsh Pyarelal, and Rui-
hong Huang. 2023. Hierarchical fusion for online
multimodal dialog act classification. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 7532-7545, Singapore. Associ-
ation for Computational Linguistics.

OpenAl, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec
Radford, Aleksander Madry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex
Chow, Alex Kirillov, and 401 others. 2024. Gpt-4o0
system card. Preprint, arXiv:2410.21276.

Yinzhu Quan and Zefang Liu. 2024. Econlogicqa: A
question-answering benchmark for evaluating large
language models in economic sequential reasoning.
arXiv preprint arXiv:2405.07938.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain your-
self! leveraging language models for commonsense
reasoning. arXiv preprint arXiv:1906.02361.

Joshua Robinson, Christopher Michael Rytting, and
David Wingate. 2022. Leveraging large language
models for multiple choice question answering.
arXiv preprint arXiv:2210.12353.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu,
Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela
Ramos, Ravin Kumar, Charline Le Lan, Sammy
Jerome, and 179 others. 2024. Gemma 2: Improving
open language models at a practical size. Preprint,
arXiv:2408.00118.

Qwen Team. 2025. Qwen3 technical report. Preprint,
arXiv:2505.09388.

Weizhi Wang, Hong Wang, and Xifeng Yan. 2023.
Steps: A benchmark for order reasoning in sequential
tasks. arXiv preprint arXiv:2306.04441.

Javier Yong, Haokai Ma, Yunshan Ma, Anis Yusof,
Zhenkai Liang, and Ee-Chien Chang. 2025. Attack-
seqgbench: Benchmarking large language models’ un-
derstanding of sequential patterns in cyber attacks.
arXiv preprint arXiv:2503.03170.

2264


https://openreview.net/forum?id=ffGkirkJ35
https://openreview.net/forum?id=ffGkirkJ35
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2025.acl-long.1497
https://doi.org/10.18653/v1/2025.acl-long.1497
https://doi.org/10.18653/v1/2025.acl-long.1497
https://doi.org/10.18653/v1/2023.findings-emnlp.505
https://doi.org/10.18653/v1/2023.findings-emnlp.505
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2505.09388

A Dataset Curation

A.1 Dataset Curation Prompt
We used LLaMA-3 models with the prompt shown

in Figure 5 to curate a dataset of 5,000 samples.

Each sample was processed in two independent
runs, where the model was asked to determine
whether the order of steps matters. We retained
only those samples for which both runs returned a
positive response (“‘yes”), indicating that step order
is important.

A.2 Dataset Curation Examples

Some examples of data curation are provided in
Figure 6. The examples demonstrate which food
recipes was selected by the LLMs along with its
reasoning.

B Task Details

B.1 Prompt

The prompt used for evaluation of the LLMs for
step ordering is given in Figure 7. This is the
prompt for 0-shot setting. Demonstrations were
incorporated for 3-shot and 5-shot settings.

B.2 Few-Shot Examples Selections

The few shot examples in this experiment were
chosen randomly out of the samples considered for
few shot demponstartions. For 3 shot setting- 1
example with 6 steps, 1 example with 7 steps, 1 ex-
ample with 8 steps were chosen. For 5 shot setting-
2 examples with 6 steps, 1 example with 7 steps, 2
examples with 8 steps were chosen. These fixed set
of chosen examples were used for all evaluation.

Prompt For Data Curation:

Definition:

cannot bake before marinating).

Instructions:
- Analyze the sequence of steps.

predecessor.

{

steps_matter: <yesino>,

}

Recipe Name: <recipe_name>
Recipe steps: <ordered_recipe_steps>

You will be given a list of steps from a food recipe. Your task is to determine whether the steps must be
followed in the given order, or if the steps can be rearranged without affecting the outcome.

- steps_matter: "yes" — All steps depend on the previous ones and must be performed in order (e.g., you

- steps_matter: "no" — The steps are not fully order-dependent and can be rearranged without significantly
affecting the outcome (e.g., you can prepare the sauce before or after cooking the meat).

- For each adjacent step pair, determine if the later step depends on the previous one.

- For example, if there are 4 steps, evaluate: (step 1 — step 2), (step 2 — step 3), (step 3 — step 4)

- If all transitions require the given order, return steps_matter = "yes".

- If even one pair can be reordered without affecting the result, return steps_matter = "no".

- Provide a detailed explanation justifying your conclusion, explaining whether each step depends on its

- Return your output in the following JSON format **only**:

explanation: <elaborate explanation justifying the decision for each step transition>

- Do NOT include any other text in your output before or after the JSON, ONLY return the JSON Object.

Figure 5: LLM prompt used for data curation
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Data Curation Example 1:

1. 'rinse the quinoa in water using a strainer , as you would was rice',

2. 'add the quinoa to the water in a medium sized saucepan',

3. 'bring to the boil , reduce heat and gentley simmer for 5 minutes',

4. 'add the apples , raisins and cinnamon',

5. 'simmer until the water has absorbed',

6. 'serve with milk of your choice and sweeten with honey / rice syrup if desired']

LLM Decision:

Step Matter: Yes

LLM Reasoning: The quinoa must be cooked before adding the liquid, and the liquid must be added before the quinoa is tender.
The quinoa must be drained before adding the soymilk, apples, sugar, and cinnamon. The mixture must be simmered before being
transferred to a blender. Each step depends on the previous one, so the steps must be followed in the given order.

Data Curation Example 2
Steps:

'in a bowl combine eggs , sugar , flour and milk’,

'grease a stoneware dish with all the butter',

'pour in the dough and add fruit , raisins or almonds to taste', '

bake in the cold oven at 180c for about 60 minutes or until custard has set',
'you might need to cover the dish after 40 minutes or so',

‘allow to stand and set for at least 10 minutes before serving']

QLN

LLM Decision:

Step Matter: No

LLM Reasoning: The steps can be rearranged without affecting the outcome. For example, step 2 (greasing the dish) does not
depend on step 1 (combining the ingredients).

Figure 6: Examples of data curation

Prompt Used For LLM Evaluation on Step Ordering Task of Food Recipes :

You are given a list of randomly shuffled cooking recipe steps. These steps are out of their intended logical
order. Your task is to reorder them based on your understanding of typical recipe structure.

Cooking recipes usually follow a logical progression: starting with preparation, then actual cooking, and
ending with final touches (e.g., serving, garnishing).

### Instructions:

- Analyze the shuffled steps and infer the most logical correct order.

- Return ONLY a JSON object in the exact format described below — no extra text or explanation.

- Do not renumber or reword the steps; return them as-is from the input, just reordered.

- You must respond with ONLY the JSON object — no explanations, comments, or markdown formatting.
Your output will be parsed automatically, so format strictly.

### Output (JSON format only):

"reordered_steps": [<step_1>, <step_2>, ..., <step_n>],
"order": [<index in the original shuffled list of step_1>, <index of step_2>, ..., <index of step_n>]

}

### Examples: Here are some examples:

Here's the input

### Input

Recipe Name: <recipe_name>

Recipe steps: <shuffled_recipe, steps>

Figure 7: LLM prompt used for step ordering
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C Experimental Details

The table shows the hyperparameters of the LLM
models used for experimentation and their respec-
tive values. We used 1 A100 GPU for all experi-
ments. For Qwen3-8B, the maximum number of
generated tokens was set to 2048, and thinking
mode was enabled, whereas for all other models
‘max_new_tokens‘ was 512.

Hyperparameter Value
temperature 0.9
max_new_tokens | 512 (2048 for Qwen3-8B)
top_p 0.9

Table 2: Hyperparameter Values

Model Details License

LLaMA-3.1 meta-llama/Llama-3.1-8B (Hugging Face) Ilama 3.1
Mistral-7 | mistralai/Mistral-7B-Instruct-v0.2 (Hugging Face) | apache-2.0

Gemma-2 google/gemma-2-9b-it (Hugging Face) gemma
GPT-40 gpt-4o0-mini (OpenAl) proprietary
Qwen-3 gqwen-3-8b (Hugging Face) apache-2.0

Table 3: List of models used in our experiments.

D Al Assistance

We have used ChatGPT for writing assistance in

the paper writing
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