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Abstract

Simultaneous speech translation (SiST) re-
quires balancing translation quality and latency.
While most SiST systems follow machine trans-
lation assumptions that prioritize full semantic
accuracy to the source, human interpreters of-
ten omit less critical content to catch up with
the speaker. This study investigates whether
omission can be used to reduce latency while
preserving meaning in SiST. We construct a
dataset that includes omission using large lan-
guage models (LLMs) and propose a Target-
Duration Latency (TDL), target-based latency
metric that measures the output length consider-
ing the start and end timing of translation. Our
analysis shows that LLMs can omit less impor-
tant words while retaining the core meaning.
Furthermore, experimental results show that al-
though standard metrics overlook the benefit
of the model trained with proposed omission-
involving dataset, alternative evaluation meth-
ods capture it, as omission leads to shorter out-
puts with acceptable quality.

1 Introduction

Simultaneous speech translation (SiST) is gener-
ating translations before the speaker has finished
speaking, requiring a balance between translation
quality and latency (Ma et al., 2019; Zheng et al.,
2020). Despite the real-time characteristic of this
task, most prior work adopts conventional machine
translation assumptions during evaluation, leading
to output that resembles offline translation (Fujita
et al., 2013; Oda et al., 2014; Zhang and Feng,
2022; Papi et al., 2023). In contrast, human in-
terpreters use distinct strategies to manage this
trade-off, resulting in a different output style (He
et al., 2016; Zhao et al., 2021; Wein et al., 2024).
One such strategy is omission (Pym, 2009; Napier,
2004), where interpreters intentionally skip less
important information to keep up with the speaker
while preserving the speaker’s intended message.

Inspired by recent work on incorporating human
translation and interpretation strategies into ma-
chine translation (Briakou et al., 2024; He et al.,
2024; Makinae et al., 2024; Sakai et al., 2024), this
study investigates whether omission can be used in
SiST to reduce latency without significantly sacri-
ficing translation quality. By aligning more closely
with simultaneous interpretation strategies used by
human interpreters, our goal is to move beyond
conventional offline-style translation, which aims
for full semantic accuracy.

To explore the potential of omission in SiST,
we first construct a training dataset that incorpo-
rates omission by leveraging large language models
(LLMs). LLM is prompted to remove less impor-
tant information while preserving the core meaning,
producing shorter target outputs that mimic inter-
preter behavior. This allows us to examine whether
models can learn to generate such translations in si-
multaneous setting. Second, we introduce a Target-
Duration Latency (TDL), a target-based latency
metric that captures the impact of output length.
Existing metrics focus mainly on when translation
starts, overlooking how long the system takes to
complete the output. Our metric instead measures
how many source tokens are consumed to generate
each target token semantically, providing an esti-
mate of utterance duration and better reflecting the
potential benefits of omission.

Our analysis shows that LLMs can omit less
important words, generating shorter translations
that still preserve the core meaning. Furthermore,
experimental results revealed the gap between stan-
dard metrics and alternative evaluations. Models
trained with omission scored lower on standard
quality metrics, which penalize translations that
are not fully covered the source. In contrast, Natu-
ral Language Inference (NLI) evaluations showed
omission achieves acceptable meaning preserva-
tion with the number of entailment. Similarly, stan-
dard latency metrics failed to capture the benefit

2238



of shorter outputs, while Target Duration Latency
(TDL), which is our proposed latency metric, could
capture length of shorter outputs.

Our contributions are as follows:

• We construct an omission-involving dataset
using large language models by removing less
important information from source sentences.

• We propose a Target-Duration Latency (TDL),
a target-based latency metric that reflects the
impact of output length.

• Our findings revealed that although standard
metrics fail to capture the benefit of omission,
the alternative measurement can confirm its
advantage, producing shorter outputs with ac-
ceptable quality.

2 Background and Related Work

2.1 Simultaneous Speech Translation

In SiST, models process partial source inputs and
generate partial target outputs step by step, guided
by decoding policies (Ren et al., 2020; Zeng et al.,
2021; Ahmad et al., 2024), which are typically cate-
gorized as either fixed or adaptive. In fixed policies,
wait-k (Ma et al., 2019) reads k tokens before al-
ternating between reading and writing. In adaptive
policies (Liu et al., 2021; Zhang and Feng, 2022;
Papi et al., 2023), it dynamically decides when
to read or write. Among them, Local Agreement
(Liu et al., 2020) segments input into fixed-size
chunks and decodes each using prior chunk out-
puts to guide generation based on source and target
prefixes. Another research direction focuses on
constructing training data tailored to simultaneous
constraints. This includes generating pseudo refer-
ences that align with wait-k decoding policy (Chen
et al., 2021), applying grammar and meaning pre-
serving syntactic transformations (He et al., 2015),
and by using LLMs to rewrite sentences follow-
ing interpreter-like strategies (Sakai et al., 2024;
Makinae et al., 2024).

2.2 Application of Human Tactics into
Computational Approach

With recent progress in LLMs, there’s growing in-
terest in replicating human translation strategies
into a computational approach. Briakou et al.
(2024) draws from translation studies to model
translation as a multi-step process, pre-drafting re-
search, drafting, refining, and proofreading, rather

than a simple source-to-target mapping. By fol-
lowing this structured workflow, LLMs showed
improvement in translation quality. Similarly, He
et al. (2024) investigates whether LLMs can engage
in preparatory steps similar to those used by pro-
fessional translators, such as identifying key terms,
related topics, and relevant information, showing
that LLMs can enhance translation quality by in-
corporating such frameworks into their generation
process. In SiST, Sakai et al. (2024); Makinae
et al. (2024) have examined whether LLMs can
imitate human segmentation strategies, where inter-
preters break input into smaller meaningful units
and translate them incrementally while preserving
word order (Jones, 2015; Gillies, 2013).

2.3 Omission in Simultaneous Interpretation

In simultaneous interpretation studies, omission
refers to the deletion of source words or phrases
that do not appear in the target output (Barik,
1971; Altman, 1994; Kopczyski, 1980; Pym, 2009;
Napier, 2004). Barik (1971) classifies omission
into four types: “skipping”, “comprehension”, “de-
lay”, and “compounding” omission. Among these,
skipping omission involves removing elements that
results in minimal meaning loss. Such omission
viewed as an acceptable as strategic tactic for man-
aging time and efficiency (Pym, 2009; Napier,
2004). In contrast, other studies frame omission
negatively (Altman, 1994; Kopczyski, 1980), as a
sign of performance limitations. For instance, com-
prehension omission, as defined by Barik (1971),
results in a loss of meaning and is considered detri-
mental to translation quality.

2.4 Latency Metrics in Simultaneous Setting

In human interpretation scenario, the well-known
latency metrics is Ear-Voice-Span (EVS) (Hanna,
1957) which measures the delay between the
speaker’s words and the interpreter’s corresponding
translation in meaning.

In SiST, the latency is calculated by latency
metrics such as Average Lagging (AL) (Ma
et al., 2019), Length Adaptive Average Lagging
(LAAL) (Papi et al., 2022), and Average Token
Delay (ATD) (Kano et al., 2023). Among them,
ATD, inspired by EVS, is the only metric that con-
siders both the start and end timing of translation.
Since this study focuses on the end timing, we
explain how ATD works. We define an input sen-
tence as x = x1, x2, . . . , xm and its translation as
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y = y1, y2, . . . , yn, ATD is formulated as follows:

ATD(x,y) =
1

|y|

|y|∑

t=1

(
T (yt)− T (xa(t))

)
, (1)

where

a(t) = min (a(t− 1) + 1, g(t)) . (2)

T (·) represents the end time of each input and out-
put token. Each token is a subsegment of speech,
character or word in the text, and is tied to speech
segment. a(t) means the index of the input token
corresponding to yt. g(t) is directly related to the
policy employed in decoding algorithms, such as
wait-k, representing the number of input tokens
read until the prediction of t-th output token yt.
Therefore, ATD is calculated by comparing the
translation timing of source tokens based on the tar-
get output time, assuming a 1:1 alignment between
input and output tokens (i.e., ATD(x, y) in Equa-
tion 1), and taking into account both the ideal case
from the previous timestep and actual translation
delays.

However, ATD has several limitations. First, it
may not properly capture the duration of the utter-
ance. For example, when the target sequence y
is longer than the source x, ATD forces the align-
ment of excess target tokens to the final source
token. This leads to inaccurate latency estimates
in cases where the model generates longer outputs
than the source (Kano et al., 2024). Such cases,
where the target is either longer or shorter than the
source, are more common than 1:1 source–target
alignment, due to differences in word order, mor-
phology, or information density between languages,
easily violating the assumption in ATD. Second,
ATD mechanically calculates the distance between
input and output alignments following the policy
employed when decoding. It does not reflect actual
alignments between input and output tokens, but
instead relies on the assumption defined in Equa-
tion 2. For more details and comparisons with other
delay metrics, please refer to (Kano et al., 2024).

3 Proposed Method

3.1 Dataset Creation
Following recent trends in simulating human trans-
lation and interpretation strategies (Briakou et al.,
2024; He et al., 2024; Sakai et al., 2024; Makinae
et al., 2024), we focus on omission, a technique
used by human interpreters to shorten output for

time management (Pym, 2009; Napier, 2004). We
leverage LLMs1 to generate the omitted source
sentence using prompts designed to remove less
important words without significantly affecting the
overall meaning. The generated concise source sen-
tences are then translated into the target language,
with the goal of producing shorter target sentences
than those in existing datasets.

Dataset Construction Pipeline Figure 1 illus-
trates the prompt design and data creation pipeline.
In the first pipeline, we used the term conscious
strategic omission, prompting LLMs to produce
concise English outputs compared to the original
source. We adopted the term conscious strategic
omission (Napier, 2004), as preliminary studies
indicated that this terminology guided the model
to remove less important words without compro-
mising overall meaning. Both the input and out-
put languages were English, and sentences were
processed independently without context, under
the assumption that less important words can be
identified without relying on surrounding discourse.
While human interpreters omit information based
on broader context, this study focuses on the ini-
tial step of omission, leaving context dependent
omission for future work. In the second pipeline,
we make the translation monotonic with respect
to the source, following Simul-MuST-C (Makinae
et al., 2024), using LLMs. To this end, we used
the omitted English outputs from the first step as
input to generate monotonic translations in the tar-
get languages during the second step. We refer to
the resulting dataset as “Omission”. A two step
pipeline was necessary, as a single prompt could
not effectively achieve both omission and mono-
tonic translation at the same time.

Dataset Selection We applied our method to
MuST-C (Di Gangi et al., 2019) for three language
pairs: English–Japanese (En–Ja), English–German
(En–De), and English–Chinese (En–Zh). MuST-C
is a multilingual speech translation corpus consist-
ing of English TED Talk recordings aligned at the
sentence level with manual transcriptions and trans-
lations, which are originally for subtitles. These
three language pairs were selected to maintain con-
sistency with the setting of Simul-MuST-C (Mak-
inae et al., 2024)2, enabling fair comparisons and

1We used GPT-4o (OpenAI et al., 2024) (2024-05-13 ver.)
2Since the dataset only provides the prompt code for data

creation, we used it to produce an equivalent version of the
Simul-MuST-C dataset, and applied the code in the second
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Output: I'm going to talk  about energy and climate.

Output:
1. I'm going to talk / about energy and climate.
2. 私は話す /.         エネルギーと気候について
(I'm going to talk /.       about energy and climate.)
3. お話するのはエネルギーと気候についてです。
(I'm going to talk /.       about energy and climate.)

content: You will be provided with a sentence in English, and your task is to delete words that are less critical into {'deleted'}.{'deleted'} 
should be in English and would be translated into Japanese later so consider the target language characteristics. 
Instructions: Based on the concept of conscious strategic omission in simultaneous interpreting, delete redundant elements that do not 
affect the core message or are implied by context to enhance the effectiveness of the interpretation delete words that are less critical. 
Ensure that the original sentence structure is preserved as much as possible, making only minimal adjustments necessary for 
grammatical correctness

Input:
I‘m going to talk today about energy and climate.

Step1. Break down the following sentence into smaller segments.
Step2. Translate each segment into Japanese.
Step3. Connect the translated segments.

Input:
I'm going to talk about energy and climate.

1st Pipeline：Delete Less Important Words

2nd Pipeline：Translate to make the target  align with source syntax as much as possible

Prompt Example 

Prompt Example

LLM

LLM

Figure 1: The prompt and workflow for constructing the proposed dataset. The first pipeline aims to generate more
concise English outputs, and the second pipeline aims to make the target monotonic to the source.

allowing us to investigate whether shortening target
sentences contributes to latency reduction.

3.2 TDL: Target-Duration Latency
Inspired by EVS, we proposed Target-Duration La-
tency (TDL), a metric that measures how long a
model must wait, measured in source token steps,
to produce each target token based on source token
availability to compute total latency, considered as
utterance duration. To compute this, we first ob-
tain the semantic alignment a = a1, ..., an using
Awesome Align (Dou and Neubig, 2021) between
the source and target tokens, in which at denotes
an index to a source token for yt with 0 indicat-
ing no-alignment. Based on this alignment and the
generated target tokens, TDL is defined as follows:

TDL(y) =
|y|∑

t=1

ℓt (3)

ℓt =





T (y|y|)− T (yt) if at = 0

|T (xat)− T (yt)| if at > dt

T (xdt)− T (xat) if 0 < at ≤ dt

(4)

where

dt+1 = max(dt, at). (5)

dt is the index of the longest source token that
has been delivered so far at t. ℓt is the latency for
each target token t. Figure 2 describes how the
TDL works, and the examples below illustrate each
case division. The green indicates that t4 is not

pipeline also.

SRC_TGT(at): 

TGT(t): 1 2 3 4 5 6

5 3 4 1 7

SRC: 1 2 3 4 5 76

TDL = (5-1)+(5-3)+(5-4)+(6-4)+(5-1)+(7-6)
= 12

Figure 2: The overview of Target-Duration Latency
(TDL). Green represents when at = 0, blue represents
when at > dt, and red represents when 0 < at ≤ dt.

aligned to any source token, so its semantic dis-
tance cannot be computed. However, even though
y4 is unaligned, it still appears in the output se-
quence y, and its insertion and shift influences the
generation of later tokens y5 and y6. This shift
should therefore be treated as latency, calculated
as 6− 4 = 2, serving as an alternative to semantic
distance calculation. The first blue line indicates
that y1 is aligned to a1 = 5. To produce y1, the
model must read the fifth token of the source, so
the latency is calculated as |5 − 1| = 4. The first
red line indicates that y2 is aligned to a2 = 3. To
generate y2, the model must read the third token of
the source. However, since it has already read up to
the fifth token to produce y1, no additional reading
is required to generate y2. In this case, latency is
computed as the difference between the furthest
source token read so far and the token aligned to
y2, calculated as 5− 3 = 2.

There are two distinct difference from ATD.
First, this method properly get the word align-
ment between the source and the target so that this

2241



Dataset src-src deletion tgt-tgt deletion
ratio (words) ratio (words)

En-Ja MuST-C 1 (20.3) 1 (20.8)
Simul-MuST-C 1 (20.3) 1.39 (28.8)

Omission 0.830(16.9) 1.18 (24.5)

En-Zh MuST-C 1 (22.9) 1 (18.9)
Simul-MuST-C 1 (22.9) 1.01 (19.1)

Omission 0.813 (18.6) 0.883 (16.7)

En-De MuST-C 1 (20.5) 1 (21.6)
Simul-MuST-C 1 (20.5) 1.03 (22.4

Omission 0.803 (16.5) 0.887 (19.2)

Table 1: Sentence length comparison between MuST-C
and the outputs from the first pipeline step, and target
in across MuST-C, Simul-MuST-C, Omission which is
translations generated in the second pipeline step.

method is more close to EVS. Second, the calcu-
lation of this score is based on the target so that it
properly counts the length of target from the start to
the end, and we don’t do cut-offs even if the target
gets longer than the source.

4 Dataset Analysis

4.1 Length Analysis

We conducted a sentence length analysis to as-
sess whether LLMs can identify and remove non-
essential words from the source, thereby producing
more concise source sentences in dev data. These
shortened sources are then translated into shorter
target outputs, with the aim of reducing overall
translation length, in comparison with two exist-
ing datasets: MuST-C (Di Gangi et al., 2019) and
Simul-MuST-C (Makinae et al., 2024).

Source Sentences Length Difference Analysis
We compared the original source from MuST-
C with those generated in the first step of our
pipeline (Omission) to analyze how many words
were deleted, what coarse semantic roles those
deleted words served, and which words were most
frequently omitted. The analysis method is de-
scribed in Appendix B. Table 1 shows approxi-
mately four words were deleted per sentence on av-
erage across all language pairs, resulting in an out-
put length of around 0.8 compared to the original.
The most frequently deleted words were function
words such as “that”, “the”, “and”, and “of”. These
serve grammatical purposes rather than contribut-
ing semantic content, suggesting their omission
does not alter meaning, therefore it’s not yet clear
whether deleting such function words improves la-
tency. Modifiers such as “really,” “actually,” “very,”

Lang entailment neutral contradiction COMET-QE

En-Ja 1369 0 0 0.818

En-Zh 1349 0 0 0.782

En-De 1414 0 0 0.816

Table 2: Quality comparison using NLI between the
source before and after the omission in dev sets.

Lang MuST-C simul-MuST-C Omission

En-Ja 0.776 0.836 0.815

En-Zh 0.757 0.798 0.777

En-De 0.802 0.833 0.806

Table 3: Monotonicity comparison in dev sets.

and “all” were also omitted. These words add em-
phasis or nuance but are not critical to the core
message. Their removal likely contributed to mean-
ingful length reduction with minimal quality degra-
dation, highlighting the model’s ability to prioritize
semantically important content. The details regard-
ing deleted words and coarse semantic roles those
deleted words served are in Appendix A.

Target Sentences Length Difference Analysis
Table 1 compares target sentence length across
three datasets, and Omission refers to the trans-
lation of source sentences generated in the first
pipeline. Word counts were computed after the
sentences is tokenized using SpaCy3. The analysis
revealed that Simul-MuST-C produced the longest
target sentences across all three language pairs.
This is likely due to its design Simul-MuST-C out-
puts were generated without explicit instructions
to limit sentence length. For En–Ja, the Omission
output ranked in the middle, with MuST-C produc-
ing the shortest translations. We hypothesize that
this is due to MuST-C’s subtitle based structure,
which is constrained by word limits. In En–De
and En–Zh, a different trend emerged compared to
En-Ja. Despite these MuST-C pairs being subtitle-
based, Omission was the shortest among the three
datasets. We attribute this to the deletion step in
the Omission pipeline: certain source words were
intentionally omitted and thus didn’t translate, re-
sulting in reduced output length.

3https://spacy.io/
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4.2 Quality Analysis

Table 2 presents the quality evaluation of the Omis-
sion dataset. We conducted a two-step analysis,
recognizing that standard quality metrics such as
BLEU and COMET are designed for fully faithful
translations that contradict our goal of producing
shorter outputs that still preserve the core meaning.

First, we used a Natural Language Inference
(NLI) model (Conneau et al., 2020)4 to assess
whether the essential meaning of the source is re-
tained after omission, which outputs one of three
labels, entailment, neutral, or contradiction, to in-
dicate the logical relationship between the source
and target. This analysis was performed on the de-
velopment sets of all three language pairs. Table 2
shows that a ll results were labeled as entailment,
suggesting that the core meaning remains, despite
the omission.

Second, we measured the quality using COMET-
QE (Rei et al., 2021), a reference-free metric that
assesses semantic similarity between the source
and hypothesis. Using the omitted source sentences
and their corresponding translations, COMET-QE
consistently reported high quality scores across all
three language pairs.This suggests that the short-
ened outputs are still semantically adequate.

Taken together, these results support our central
claim: that translation output can be shortened with
maintaining the core message in the source. Exam-
ple analysis of the created dataset is in Appendix C.

4.3 Monotonicity Analysis

We compared the monotonicity between source
and target sentences to assess the degree of word
reordering. This analysis reveals how closely the
target follows the source word order, an important
factor in SiST, where reduced reordering can con-
tribute to lower latency. The calculation steps are
described in Appendix D. Table 3 shows all three
language pairs followed the same trend, though
the level of monotonicity varies. The gap was the
largest for En–Ja and smallest for En–De. As ex-
pected, Simul-MuST-C achieved the highest mono-
tonicity, MuST-C the lowest, and Omission ranked
in between. Although slightly lower than Simul-
MuST-C, the monotonicity of Omission is substan-
tially higher than that of MuST-C.

4https://huggingface.co/joeddav/
xlm-roberta-large-xnli

5 Experimental Setup

To investigate whether shorter target lengths can re-
duce latency without severely compromising trans-
lation quality, we compare three models trained on
different datasets: MuST-C (Di Gangi et al., 2019),
Simul-MuST-C (Makinae et al., 2024), and our pro-
posed dataset “Omission”. The experiment covers
three language pairs: En→{Ja, Zh, De}, which
cover all English-to-many directions included in
the IWSLT 2024 simultaneous track5. Further de-
tails on the language selection are provided in the
Limitations section.

Dataset Selection MuST-C is a speech transla-
tion dataset based on TED Talks, consisting of
audio recordings, transcriptions, and target trans-
lations. The target side is subtitle-style transla-
tions and serves as reference. Simul-MuST-C is
built on MuST-C but applies word order manipu-
lation to make target syntax as monotonic to the
source. Omission, also derived from MuST-C, is
characterized by both shorter target lengths and
high monotonicity. These characteristics reflect
strategies used by human interpreters to manage
latency, making it well-suited for investigating the
impact of omission in a computational setting. For
evaluation, we use tst-COMMON from MuST-C.

Tranining and Decoding We implemented an
end-to-end speech-to-text model initialized with
two pre-trained components: a HuBERT-based en-
coder (Hsu et al., 2021) and an mBART50-based
decoder (Tang et al., 2021). The model architec-
ture follows the Transformer (Vaswani et al., 2017)
and is implemented using Fairseq (Ott et al., 2019).
Text data is tokenized using a multilingual Sen-
tencePiece tokenizer (Kudo and Richardson, 2018)
with a 250,000 subword vocabulary, consistent with
the mBART50. Model validation was performed
every 500 steps, with early stopping applied after 8
validations without improvement. We evaluated the
model’s performance under Local Agreement (Liu
et al., 2020) as a representative adaptive policy. The
input chunk sizes were set to 400, 600, 800, 1000.
Hypotheses for each input chunk were generated
using beam search with a beam width of five. We
also evaluated the model with wait-k (Ma et al.,
2019) as a fixed policy. The k values were set to
3, 5, 7, 9, 11, 13, 15, 17, with one unit correspond-
ing to 160 frames. For For comparison purposes,
we also report the offline setting performance.

5https://iwslt.org/2024/simultaneous
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Lang System Ent. Neu. Con.

En-Ja
MuST-C 2274 386 181
Simul-MuST-C 2337 397 107
Omission 2398 319 124

En-Zh
MuST-C 2394 306 141
Simul-MuST-C 2466 268 107
Omission 2506 208 127

En-De
MuST-C 2267 230 83
Simul-MuST-C 2309 209 62
Omission 2370 149 61

Table 4: NLI results across language pairs (En-Ja, En-
Zh, En-De) when the chunk size is 400 in local agree-
ment. Ent. stands for Entailment, Neu. stands for
Neutral, and Con. stands for Contradiction. The result
in all chunk size is in Appendix 10

Lang System la-400 la-600 la-800 la-1000

En-Ja
MuST-C 2,096 1,606 1,444 1,409
Simul-MuST-C 3,114 2,709 2,610 2,552
Omission 2,559 2,300 2,145 2,032

En-Zh
MuST-C 1,259 924 824 799
Simul-MuST-C 1,050 880 843 879
Omission 817 690 664 649

En-De
MuST-C 11,488 8,222 7,504 7,341
Simul-MuST-C 9,203 7,990 7,690 7,495
Omission 7,381 6,537 6,205 6,050

Table 5: Target-Duration Latency for local agreement
under different chunk-size settings across language
pairs.

Evaluation The performance is evaluated using
the SimulEval toolkit (Ma et al., 2020), which mea-
sures both translation quality and latency. For
quality, we report BLEU (Papineni et al., 2002),
BLEURT (Sellam et al., 2020), COMET (Rei et al.,
2020), and COMET-QE (Rei et al., 2021), and Nat-
ural Language Inference (NLI) (Conneau et al.,
2020)6. For latency, we report Length-Adaptive Av-
erage Lagging (LAAL) (Papi et al., 2022), Average
Token Delay (ATD) (Kano et al., 2023), and Dif-
ferentiable Average Lagging (DAL) (Cherry and
Foster, 2019). We also measured TDL; our pro-
posed latency metric described in Section 3.2.

6 Experimental Results

We focus on En-Ja results for Local Agreement,
as all language pairs exhibited similar trends that
highlight the gap between standard metrics and
alternative evaluations. Results for other language
pairs are in Appendix E. The analysis for wait-k is

6https://huggingface.co/joeddav/
xlm-roberta-large-xnli

in Appendix F, and analysis of generated sentences
is included in Appendix G.

En-Ja We observe different trends depending
on the evaluation method used. Figure 3 is the
result in En-Ja. Under standard quality metrics
such as BLEU and COMET, MuST-C achieves
the highest in BLEU due to its close surface-level
match with the subtitle-based reference. How-
ever, MuST-C performs the worst when evalu-
ated with embedding-based metrics like BLEURT,
COMET, and COMET-QE. In contrast, Simul-
MuST-C achieves the highest, while Omission falls
in between. For COMET in particular, the over-
all scores across the three models are relatively
close, with Simul-MuST-C slightly outperforming
the others. Table 4 shows that using NLI to eval-
uate whether the generated output preserves the
core meaning reveals a different pattern. MuST-C
achieves the lowest number of entailment, which
is consistent with its lower performance on stan-
dard embedding-based metrics. Between Simul-
MuST-C and Omission, the trend reverses com-
pared to standard metrics: Omission achieves a
higher number of entailment than Simul-MuST-C.
This suggests that, despite scoring slightly lower
on standard evaluations, Omission could preserves
the intended meaning of the source.

In standard latency latency metrics, Simul-
MuST-C demonstrates the best performance, as
presented in Table 3. It demonstrates the lowest
scores in both LAAL and DAL, which focus on
the start timing of translation, as well as in ATD,
which considers both the start and end timings of
the output, suggesting that Simul-MuST-C appears
most efficient when evaluated using these latency
metrics. However, Table 5 shows that when ap-
plying TDL, which measure utterance length by
calculating the begin and end semantically, a differ-
ent trend emerged. MuST-C achieves the shortest
output durations, Simul-MuST-C the longest, and
Omission in the middle. This aligns with the tar-
get sentence length analysis in Table 1, reflecting
the target length in the training data align with the
generated outputs.

Summary While omission performed worse un-
der standard quality metrics (e.g., BLEU, COMET),
which penalizes translations that lack full fidelity
to the source, NLI results indicate that omission
can preserve the intended meaning. This suggests
that omission is still semantically included in the
reference, as shown by the number of entailment
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Figure 3: Results for En–Ja on tst-COMMON. The dotted line with circles represents Local Agreement. The dashed
line shows the offline results. The solid line with crosses shows wait-k decoding.

cases across all language pairs. Similarly, ATD
did not fairly account for the length of shorter out-
puts, as its did not align with the target lengths
observed in the training data. In contrast, TDL cap-
tured output length more accurately, with scores
that corresponded well to those target lengths.

7 Discussion

This work investigates whether omission, a strat-
egy used by human interpreters, can be effective
in SiST. Our findings indicate that while certain
components of SiST show potential in handling
omission, current model architectures such as trans-
formers, decoding policies like local agreement,
and LLMs with their generated translation have
demonstrated this capability. However, the poten-
tial of omission is not well captured by existing
standard evaluation metrics. These metrics remain
limited in their ability to reflect the benefits of omis-
sion, whereas the alternative method, NLI, demon-
strates its value. This suggests that SiST could
more closely resemble a human interpreter’s trans-
lation style than conventional offline-style trans-
lations, but achieving this requires shifting away
from conventional evaluation methods in order to

recognize the value of omission.
Simultaneous interpreters reduce delays by short-

ening their translations, and this work aims to
mimic that behavior. Therefore, it is also impor-
tant to evaluate whether the translation output is
indeed shorter. ATD is based on the assumption
that it captures both the start and end timing of
translation to reflect output length. However, there
are several limitations in ATD’s settings that may
prevent it from accurately measuring output length.
As shown in the experimental results, ATD scores
did not align with the target lengths observed in
the training data. In contrast, TDL captured out-
put length more accurately, with scores that corre-
sponded well to the target lengths in the training
data. This suggests that ATD may overlook the in-
fluence of output length, despite its intended design,
while TDL handles this aspect more reliably.

8 Conclusion

This work explored whether omission, a strat-
egy used by human interpreters to reduce latency
while preserving the original meaning, can be lever-
aged in SiST. To investigate this, we constructed
a dataset involving omission using LLMs and in-
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troduced TDL, latency metric that measures out-
put length. The analysis indicates that LLMs are
capable of omitting less important words while
preserving the essential meaning. Furthermore,
experimental results show that although standard
metrics fail to justify the advantage of omission,
alternative evaluation approaches reveal its value,
as omission results in shorter while maintaining
acceptable quality. These findings suggest that
SiST could adopt a more human-interpreter-like-
translation style rather than the conventional offline-
translation style, pointing to a promising direction
for future work.

9 Limitation

Omission Has No Single Answer This paper in-
vestigates whether training models on data with
relatively short target sentences, compared to ex-
isting datasets, can help reduce latency with only
minor degradation in translation quality in simul-
taneous settings. This approach, which shortens
output for time saving purposes, mirrors strategies
commonly employed by human interpreters. In hu-
man interpretation, omission is context-dependent
and has no single correct answer that it often varies
based on factors such as speech rate or informa-
tion density. The same can be said of our dataset,
there is no definitive ground truth for which words
should be omitted. While LLMs showed the ability
to omit less important words such as really and
very, they also tended to remove function words
like that, of, and is, leading to shorter outputs with
seemingly minimal quality loss.

Scalability to Other Architectures and Decod-
ing Policies This study focuses on a Transformer-
based architecture, using wait-k as a representa-
tive fixed decoding policy and Local Agreement
as a representative adaptive policy. While we ac-
knowledge that there are other model architectures
and decoding methods, some of which explicitly
control output length during training, these are
beyond the scope of this work. Our goal in this
study is to take an initial step toward exploring
whether training on datasets with shortened target
outputs can effectively reduce latency without sig-
nificantly compromising quality. Our contribution
in the experiment is although standard metrics over-
look the benefit of the model trained with proposed
omission-involving dataset, alternative evaluation
methods capture it, as omission leads to shorter
outputs with acceptable quality. Future research

could explore more scalable solutions, such as ar-
chitectures and decoding policies that incorporate
output length control directly into the training or
decoding process for SiST.

Language Pair Selection We selected the lan-
guage pairs En–Ja, En–Zh, and En–De to align with
prior work (Makinae et al., 2024), which investi-
gated monotonicity as a latency reduction strategy
in simultaneous interpretation. Building on that,
our goal was to explore whether omission for length
control in addition to monotonicity, could further
reduce latency. Therefore, our proposed dataset
incorporates both strategies. We believe that our
corpus construction method could be applied to
other language pairs.

Versatility Across LLMs This study uses GPT-
4o and leverages the OpenAI batch API for dataset
construction, with prompts specifically designed
for this model. Applying the same method to other
LLMs would likely require prompt adjustments
to accommodate each model’s capabilities and re-
sponse behavior. While our current implementation
is optimized for GPT-4o, the underlying approach
is designed to be broadly applicable. The prompts
are crafted to retain a degree of flexibility, making
it feasible to adapt the method for other language
models. Thus, despite being tailored to a specific
system, our methodology remains aligned with the
broader goal of developing tools that can generalize
across languages and model architectures.

Human Evaluation for Latency Metrics While
human evaluation is always desirable, most prior
works on latency metrics in simultaneous speech
translation have not included human validation, as
such evaluation is extremely challenging. More-
over, existing studies have not established clear
methodologies for conducting human evaluation
of latency, making it unclear how such an assess-
ment should be designed or standardized. Our pro-
posed latency metric is grounded in the Ear Voice
Span (EVS) from interpretation studies, providing
a theoretically interpretable and empirically moti-
vated approach to investigate omission strategies
and construct the corresponding dataset. While
human evaluation could offer additional insight, it
falls outside the scope of this study and may serve
as a valuable direction for future work.
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is derived from MuST-C7, which is licensed under
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our check with OpenAI Moderation APIs10 found
no harmful content.

Acknowledgments

This work is supported by JSPS KAKENHI un-
der Grant Number JP21H05054 and JST SPRING
under Grant Number JPMJSP2140.

References
Ibrahim Said Ahmad, Antonios Anastasopoulos, Ondřej
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Word Counts

that 177
the 175
and 138
of 129
to 71
a 64
you 51
really 49
very 47
actually 42
it 40
we 40
so 37
is 37
in 35
just 35
it’s 35
i 35
all 28
was 25

Coarse role Counts

TMP 67
ARG1 962
CAU 72
ARG2 629
O 494
MNR 38
V 192
ARG0 127
EXT 14
ADV 154
DIS 55
ARG3 11
ARG4 11
PRP 22
MOD 2
DIR 14
LOC 36
PRD 5
PNC 2
GOL 2
REC 1
COM 2

Table 6: Top 20 most frequently deleted words in source
sentence and deleted coarse role counts in En-Ja.

A Top 20 Deleted Words and Coarse
Semantic Roles

Table 6 is Top 20 Deleted Words and Coarse Se-
mantic Roles in En-Ja. It shows that the deleted
words are function words.

Table 7 is Top 20 Deleted Words and Coarse
Semantic Roles in En-Zh.It shows that the deleted
words are function words.

Table 8 is Top 20 Deleted Words and Coarse
Semantic Roles in En-De. It shows that the deleted
words are function words.

B Source Sentences Length Difference
Analysis Method

To quantify deletions, we tokenized each sentence
using SpaCy11 and counted the number of tokens
in both MuST-C and Omission. We then calcu-
lated the average number of deletions per sentence
and the deletion ratio, using the original source
sentence length as a baseline (1.0). To analyze
the functions of deleted words, we used Semantic

11https://spacy.io/

Word #Words

and 210
that 194
the 189
of 137
a 72
to 70
you 63
really 50
so 49
actually 46
very 45
it 42
is 41
i 41
in 40
we 40
just 38
it’s 35
all 34
was 28

Coarse role Counts

TMP 75
ARG1 1027
CAU 65
ARG2 681
O 579
V 217
MNR 43
ARG0 144
EXT 12
ADV 165
DIS 96
ARG3 16
ARG4 10
LOC 47
PRP 13
MOD 2
DIR 15
PRD 9
PNC 2
GOL 2
REC 1
COM 2

Table 7: Top 20 most frequently deleted words in source
sentence and deleted coarse role counts in En-Zh.

Role Labeling (SRL) with AllenNLP12 on the orig-
inal source sentences. By aligning each omitted
sentence with its corresponding original sentence,
we identified which words were removed and ex-
amined their semantic roles. We then aggregated
counts of deleted words by role (e.g., arguments,
modifiers, adjuncts) to determine which types of
information were most frequently omitted.

C Additional Quality Analysis

Example Analysis of Created Dataset Table 9
shows an example from the created dataset along-
side the corresponding line from existing datasets.
We first compare Source and Omission-src to
observe which words were deleted during the
first pipeline step, where less important words
were removed. We then compare the target sen-
tence lengths across MuST-C, Simul-MuST-C, and
Omission-tgt to examine whether the omission per-
formed in the first step contributes to shorter trans-
lations in the second pipeline.

12https://github.com/masrb/
Semantic-Role-Labeling-allenNLP-
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Word #Words

that 221
the 218
and 209
of 159
to 90
a 2 85
you 63
really 57
actually 56
so 53
very 52
is 51
i 49
just 46
in 45
we 43
it 42
it’s 41
all 37
have 33

Coarse role Counts

TMP 92
ARG1 1229
CAU 84
ARG2 792
O 658
MNR 51
V 233
ARG0 168
EXT 13
ADV 183
ARG3 17
ARG4 11
DIS 76
PRP 25
LOC 43
DIR 15
PRD 16
GOL 2
REC 1
ADJ 6
COM 3

Table 8: Top 20 most frequently deleted words in source
sentence and deleted coarse role counts in En-De

En-Ja Focusing on the underlined differences
between Source and Omission-src, we find that the
LLM is capable of deleting words such as it’s and
really. Since these words are no longer present in
the source, their corresponding translations do not
appear in Omission-tgt, resulting in a shorter output.
In contrast, Simul-MuST-C, which preserves a 1:1
source-target correspondence, includes these words
in the translation. In MuST-C, although omission
is not explicitly applied, we assume that subtitle
constraints naturally limit sentence length, which
may also result in the exclusion of such words.

En-Zh The first pipeline step demonstrates ef-
fective deletion of less important words such as so
and really, similar to the underlined differences ob-
served between Source and Omission-src in En–Ja.
Additionally, the phrase where we had these amaz-
ing, which adds expressive tone but is not essential
for core meaning, is also removed. This phrase
appears in Simul-MuST-C but is omitted in both
Omission-tgt and MuST-C. As a result, the output
length in Omission-tgt is the shortest among the
three, which is consistent with the results reported
in the earlier section.

En-De The LLM demonstrates the ability to ap-
ply omission effectively. Comparing the Source
and Omission-src, we observe that the deleted
words are primarily adverbs that serve to empha-
size the upcoming verb. As a result of these dele-
tions, the corresponding translations are omitted in
Omission-tgt, leading to a shorter target sentence.
This observation aligns with our broader analy-
sis, where Omission-tgt consistently produced the
shortest translations among the three datasets in
En–De. For example, expressions like very quickly
that were removed from the source do not appear in
the translation. In contrast, MuST-C retains these
expressions in the target, resulting in a longer out-
put. Unlike the pattern observed in En–Ja, where
Omission-tgt was not always the shortest, in this
case it clearly results in the shortest translation.

Summary Overall, the LLM demonstrates the
ability to identify and remove relatively unimpor-
tant words within a sentence, resulting in a shorter
source. This shortened source, in turn, contributes
to more concise target translations. However, the
extent of this effect varies by language pair. In
En–Ja, Omission-tgt remains longer than MuST-C,
while in En-Zh and En–De, Omission-tgt ends up
as the shortest among the three datasets.

D Monotonicity Calculation

Similar to the method described by (Isozaki
et al., 2010), we analyzed monotonicity by com-
puting Spearman’s rank correlation coefficient
based on word alignments obtained using Awesome
Align (Dou and Neubig, 2021). The process in-
volved three steps: (1) each source-target sentence
pair was tokenized using SpaCy13; (2) word align-
ments were generated using Awesome Align14; and
(3) Spearman’s rank correlation coefficient was cal-
culated for each pair, with the final monotonic-
ity score derived by averaging across all sentence
pairs. A higher score (closer to 1) indicates less re-
ordering and, therefore, greater monotonicity. For
MuST-C, we examined alignments between the
original source sentences and their corresponding
subtitle-based translations from TED Talks. For
Simul-MuST-C, we compared the original MuST-C
source sentences with the translations produced by
Simul-MuST-C, which were specifically designed
to follow source word order more closely and
achieve higher monotonicity. For Omission, we

13https://spacy.io/
14https://github.com/neulab/awesome-align
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En-Ja

Source It’s selfish, it’s ugly, it’s beneath us, and we really have to stop it.

Omission-src It’s selfish, ugly, beneath us, and we have to stop it.

MuST-C 利己的で醜く我々がやるべきことではありません それはもう止めなければなりません
(It’s selfish and ugly and it’s not what we should be doing and it has to stop.)。

Simul-MuST-C それは利己的です、それは醜いです、それは私たちにふさわしくありません、そして私

たちは本当にそれを止めなければなりません (It’s selfish, it’s ugly, it doesn’t deserve us, and
we really have to stop it)。

Omission-tgt 利己的な、醜い、私たちの品位にかかわる、それを止めなければならない (It’s selfish,
ugly, it’s beneath our dignity, and it has to stop.)。

En-Zh

Source So, having done these expeditions, and really beginning to appreciate what was down there, such
as at the deep ocean vents where we had these amazing, amazing animals – they’re basically aliens
right here on Earth.

Omission-src Having done these expeditions and beginning to appreciate what was down there, such as at the deep
ocean vents with amazing animals basically aliens on Earth.

MuST-C 所以通过这些探险我开始真正地欣赏海底的美妙，比如那些生活在深海裂口处的奇妙的

动物们。 它们算得上就是地球上的外星生物(So through these expeditions, I began to really
appreciate the beauty of the ocean floor, like the amazing animals that live in the rifts of the deep
ocean. They’re almost alien to Earth.)。

Simul-MuST-C 所以，完成了这些探险之后，并且真正开始欣赏那里有什么，比如在深海热泉那里，

我们有这些令人惊叹的动物——它们基本上就是地球上的外星人 (So, having done these
expeditions and really starting to appreciate what’s out there, like at the hydrothermal vents,
we have these amazing animals - they’re basically aliens on Earth.)。

Omission-tgt 完成了这些探险之后，并开始了解那里有什么，例如在深海热液喷口处有惊人的动
物——它们基本上是地球上的外星生物 (After completing these expeditions and starting to
understand what’s out there, for example, there are amazing animals at deep-sea hydrothermal vents
- they’re basically alien creatures on Earth.)。

En-De

Source Now, very quickly, another reason we cannot think straight about happiness is that we do not attend
to the same things when we think about life, and we actually live.

Omission-src Now, another reason we cannot think straight about happiness is that we do not attend to the same
things when we think about life and live.

MuST-C Nun, ganz kurz, ein anderer Grund, aus dem wir nicht klar über Glück nachdenken können ist, dass
wir nicht auf die selben Dinge achten wenn wir über das Leben nachdenken und wenn wir tatsächlich
leben (Well, very briefly, another reason why we cannot think clearly about happiness is that we do
not pay attention to the same things when we think about life and when we actually live).

Simul-MuST-C Nun, sehr schnell, ein weiterer Grund, warum wir nicht klar über Glück nachdenken können, ist, dass
wir nicht auf die gleichen Dinge achten, wenn wir über das Leben nachdenken, und wir tatsächlich
leben (Well, very quickly, another reason why we can’t think clearly about happiness is that we don’t
pay attention to the same things when we think about life, and we actually live).

Omission-tgt Nun, ein weiterer Grund, warum wir nicht klar über Glück nachdenken können, ist, dass wir nicht
auf dieselben Dinge achten, wenn wir über das Leben nachdenken und leben (Well, another reason
why we can’t think clearly about happiness is that we don’t pay attention to the same things when
we think about and live life).

Table 9: An example of created sentences. Omission-refers to outputs created at first pipeline, and Omission-tgt
refers to outputs created at the second pipeline.

aligned the omitted source sentences—generated
in the first step of our pipeline with their corre-
sponding translations produced in the second step.
We used the modified source (Omission) rather
than the original MuST-C source because the omis-
sion process disrupts standard source-target corre-
spondence. Aligning against the modified source
enables more accurate measurement, as aligning
content when the original source and target diverge
significantly is inherently more difficult and less

meaningful.

E Results on Local Agreement

En-Zh All metrics consistently ranked Simul-
MuST-C highest, followed by MuST-C, with Omis-
sion performing the lowest. The only exception
occurred with BLEU under the chunk size of 400,
where Omission slightly outperformed MuST-C.
However, this trend reversed as chunk size in-
creased, and MuST-C eventually surpassed Omis-

2252



0 500 1000 1500 2000

5

10

15

20

25

0 500 1000 1500 2000

0.3

0.4

0.5

0.6

0 500 1000 1500 2000

0.6

0.7

0 500 1000 1500 2000
0.4

0.5

0.6

0.7

0 200 400 600 800

5

10

15

20

25

0 200 400 600 800

0.3

0.4

0.5

0.6

0 200 400 600 800

0.6

0.7

0 200 400 600 800
0.4

0.5

0.6

0.7

0 1000 2000 3000

5

10

15

20

25

0 1000 2000 3000

0.3

0.4

0.5

0.6

0 1000 2000 3000

0.6

0.7

0 1000 2000 3000
0.4

0.5

0.6

0.7

Simul-MuST-C (wait-k) - tst-COMMON Simul-MuST-C (offline) - tst-COMMON Simul-MuST-C (Local Agreement) - tst-COMMON

MuST-C (wait-k) - tst-COMMON MuST-C (offline) - tst-COMMON MuST-C (Local Agreement) - tst-COMMON

Omission (wait-k) - tst-COMMON Omission (offline) - tst-COMMON Omission (Local Agreement) - tst-COMMON

en-zh tested on tst-COMMON

LAAL LAAL LAAL LAAL

ATD ATD ATD ATD

DAL DAL DAL DAL

B
LE

U

B
LE

U
R

T

C
O

M
E

T

C
O

M
E

T
_Q

E

B
LE

U

B
LE

U
R

T

C
O

M
E

T

C
O

M
E

T
_Q

E

B
LE

U

B
LE

U
R

T

C
O

M
E

T

C
O

M
E

T
_Q

E

BLEU-LAAL BLEURT-LAAL COMET-LAAL COMET_QE-LAAL

BLEU-ATD BLEURT-ATD COMET-ATD COMET_QE-ATD

BLEU-DAL BLEURT-DAL COMET-DAL COMET_QE-DAL

Figure 4: Results for En–Zh on tst-COMMON. The solid line with crosses shows wait-k decoding. The dotted line
with circles represents Local Agreement. The dashed line shows the offline results.

sion. Although the overall quality gap among the
three models was relatively small, Omission con-
sistently scored the lowest. This may be due to its
omission of less important words, which violates
the assumption in standard quality metrics.

On the other hand, when evaluated using NLI,
however, a different trend emerged. Assuming
that a higher number of entailment cases indicates
better meaning preservation, Omission achieved
the best performance, followed by Simul-MuST-C,
with MuST-C performing the worst. This ranking
directly contrasts with the results from standard
quality metrics, further highlighting that omission-
based translations, while penalized by conventional
evaluation methods, can still successfully preserve
the core meaning of the source.

In a standard latency metrics, Simul-MuST-C
achieves the best performance in LAAL and DAL,
both of which focus on the start timing of transla-
tion. Even in ATD, which considers both the start
and end timings of the output, Simul-MuST-C still
performs best. Notably, the advantage of Omission,
its shorter target output, does not appear to be re-
flected in ATD, suggesting that ATD may overlook
the impact of reduced output length.

Under the proposed target-based latency met-
ric, the trend differs: Omission yields the short-
est output durations, followed by Simul-MuST-C,
while MuST-C is the longest. We hypothesize that
Omission achieves the lowest latency in this metric
due to the characteristics of its training data that is
shorter translations with stronger monotonicity.

Interestingly, although MuST-C produces shorter
target sentences than Simul-MuST-C in traiing data,
its latency is higher. This can be explained by its
lower monotonicity, which indicates that the sys-
tem must consume more source input before gener-
ating output. This behavior results in longer latency,
despite the shorter output length, and aligns with
the observed trend between MuST-C and Simul-
MuST-C in training data.

En-De In En-De, Omission consistently under-
performs when evaluated with standard quality met-
rics such as BLEU and COMET. Among the three
language pairs studied, the performance gap be-
tween Omission and the other two models, MuST-
C and Simul-MuST-C, is the largest in this case.
This suggests that, based on standard metrics, the
Omission model may introduce more substantial
quality loss in this language pair.
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Figure 5: Results for En–De on tst-COMMON.The solid line with crosses shows wait-k decoding. The dotted line
with circles represents Local Agreement. The dashed line shows the offline results.

However, when using NLI to assess whether the
core meaning is preserved, the evaluation reveals
a different outcome. As observed in the En-Ja and
En-Zh results, the NLI-based evaluation shows a
reversed trend. The number of entailment cases
is highest for the Omission, followed by Simul-
MuST-C, with MuST-C ranking last. This ordering
directly contradicts the findings from standard met-
rics and highlights a key insight: while surface or
embedding level similarity may decline, Omission
still succeeds in preserving meaning. This again
points out the limitations of conventional metrics
in evaluating strategies that mimic human interpre-
tation, such as omission.

In standard latency metrics, Simul-MuST-C
achieves the best performance in LAAL and DAL,
both of which emphasize the initial timing of trans-
lation. It also leads in ATD, which captures both
when the translation starts and finishes. In con-
trast, Omission does not demonstrate any clear la-
tency advantage under these conventional metrics,
despite generating more concise translations that
preserve core meaning.

In line with the pattern seen in the En–Zh results,
Omission yields the lowest latency when evalu-

ated with the proposed target-based metric. Simul-
MuST-C follows, and MuST-C shows the highest
latency. This result likely stems from the proper-
ties of the Omission training data, which encourage
more compact and monotonic output.

Notably, even though MuST-C generates shorter
outputs than Simul-MuST-C, its latency is greater.
This can be explained by its lower monotonicity
score, indicating that it requires more source input
before producing translations. As a result, MuST-C
incurs longer delays, highlighting that shorter out-
put length alone does not guarantee lower latency.

F Results on wait-k

En-Ja Figure 3 shows the results for En-Ja. Un-
der the wait-k policy, MuST-C shows the lowest
translation quality across most metrics despite its
alignment with tst-COMMON. In contrast, Simul-
MuST-C achieves the highest quality across all met-
rics, including BLEU, despite structural differences
from the subtitle style reference. This suggests that
its emphasis on monotonicity and lack of length
constraints, resulting in strong 1:1 input-output cor-
respondence, achieves the best quality, even though
it produces longer outputs. Omission consistently
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Lang System Latency Ent. Neu. Con.

En-Ja

MuST-C

la-200 2,179 461 201
la-400 2,274 386 181
la-600 2,302 374 165
la-800 2,334 346 161
la-1000 2,321 351 169

Simul-MuST-C

la-200 2,262 411 168
la-400 2,337 397 107
la-600 2,356 392 93
la-800 2,386 364 91
la-1000 2,368 390 83

Omission

la-200 2,300 389 152
la-400 2,398 319 124
la-600 2,390 335 116
la-800 2,418 314 109
la-1000 2,411 327 103

En-Zh

MuST-C

la-200 2,358 326 157
la-400 2,394 306 141
la-600 2,411 301 129
la-800 2,447 279 118
la-1000 2,446 265 130

Simul-MuST-C

la-200 2,400 299 142
la-400 2,466 268 107
la-600 2,497 236 108
la-800 2,505 232 104
la-1000 2,510 243 119

Omission

la-200 2,442 248 151
la-400 2,506 208 127
la-600 2,522 204 115
la-800 2,525 203 113
la-1000 2,513 209 119

En-De

MuST-C

la-200 2,205 282 93
la-400 2,267 230 83
la-600 2,296 210 74
la-800 2,311 191 78
la-1000 2,312 195 73

Simul-MuST-C

la-200 2,245 243 92
la-400 2,309 209 62
la-600 2,318 196 66
la-800 2,328 182 70
la-1000 2,342 168 70

Omission

la-200 2,263 207 110
la-400 2,370 149 61
la-600 2,378 149 53
la-800 2,386 133 61
la-1000 2,390 129 61

Table 10: Entailment classification results across lan-
guage pairs (En-Ja, En-Zh, En-De), systems, and latency
settings. Ent. stands for Entailment, Neu. stands for
Neutral, and Con. stands for Contradiction.

ranks between Simul-MuST-C and MuST-C across
all metrics, slightly outperforming MuST-C but
falling behind Simul-MuST-C. This middle per-
formance likely reflects output length and quality
trade-offs, suggesting that longer target lengths in
the training data tend to yield better translation
quality. In terms of latency, as shown in the data
analysis (Section 4.1), target sentences in the Omis-

sion had intermediate length, shorter than Simul-
MuST-C but longer than MuST-C. If shorter trans-
lations directly led to reduced latency, as initially
assumed in this work, MuST-C would be expected
to yield the lowest latency. However, the results
reveal the opposite: Simul-MuST-C, despite hav-
ing the longest target side training data, achieved
the lowest latency across all metrics, followed by
Omission, with MuST-C performing the worst.

En-Zh Figure 4 shows the results for En-Zh.
Omission produced the weakest results across both
quality and latency, contrasting with the trend ob-
served in En–Ja. BLEU revealed a clear qual-
ity ranking: Simul-MuST-C > MuST-C > Omis-
sion. This pattern held across embedding-based
evaluation metrics as well, though the quality gap
between Simul-MuST-C and MuST-C was less
pronounced than in BLEU. Omission consistently
ranked lowest across all metrics, with a substan-
tial quality gap compared to Simul-MuST-C and
MuST-C. Regarding latency, as discussed in the
target sentence length analysis (Section 4.1), Omis-
sion achieves shorter outputs without a significant
drop in translation quality. This led to the expecta-
tion that shorter translations would reduce latency,
especially in metrics like ATD, which reflect both
start and end timing. However, contrary to this ex-
pectation, omission did not lead to latency improve-
ments. Instead, Simul-MuST-C, despite this model
trained with the longest target sentences, achieved
the lowest latency among the three, consistent with
the experimental results in En–Ja.

En-De Figure 5 shows the results for En-De.
Omission showed the weakest performance in
both translation quality and latency. The qual-
ity drop in En–De was more pronounced than
in En–Zh. While the quality difference between
Simul-MuST-C and MuST-C was relatively small,
Omission lagged significantly behind both. This
trend was consistent across all evaluation metrics,
surface-based BLEU as well as embedding-based
BLEURT, COMET, and COMET-QE. Regarding
latency, as noted in the Sentence Length Analysis
(Section 4.1), Omission produced shorter transla-
tions without a significant loss in quality, leading
us to expect lower latency. However, in En–De,
latency metrics showed no improvement. Contrary
to expectations, reducing sentence length through
omission did not result in measurable latency gains,
consistent with the results in En-Ja and En-Zh.
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En-Ja

Source You can imagine how startling then it is when you have
children who are born who are two people inside of one body.

MuST-C 想像できますか (Can you imagine)?

Simul-MuST-C あ な た は 想 像 で き ま す 、 ど れ ほ ど 驚 く べ き も の に な る
か、それが、子供を持つとき、生まれた、二人の子供である、一対の体の中で (You can
imagine how amazing it would be when you have a child, two children born in a pair of bodies.)。

Omission 想像してみてください、どれほど驚くべきか、あなたが持っているとき (Imagine how
amazing it would be if you had)。

En-Zh

Source And let me close with three words of my own: I do remember.

MuST-C 让我来跟你们讲三个词 (Let me tell you three words)。

Simul-MuST-C 而且让我以这个结束三个词 (And let me end with these three words)。

Omission 让我结束 (Let me finish)。

En-De

Source I’ve come to understand the sentiments of George Burns, who was performing still in Las Vegas
well into his 90s.

MuST-C Ich habe verstanden, dass es sich um die Gefühle von George Bush handelt (I understand
that these are the feelings of George Bush).

Simul-MuST-C Ich habe verstanden die Gefühle von George Berns, der immer
noch in Las Vegas auftrat, bis in seine 90er Jahre (I understood
the feelings of George Berns, who was still performing in Las Vegas until his 90s).

Omission Ich habe verstanden (I have understood).

Table 11: An example of generated sentence when the value of k is three in wait-k setting.

En-Ja

Source I was the second volunteer on the scene, so there was a pretty good chance I was going to get in.

MuST-C 私が2番目のボランティアでしただから参加する可能性は大きかったのです (I was the
second volunteer, so my chances of participating were high.)。

Simul-MuST-C それは2番目のボランティアでした、現場で、だから、かなり良いチャンスがありまし
た、私が参加できる (It was the second volunteer on-site, so there was a pretty good chance I
could participate.)。

Omission それは2番目のボランティアでした。だから、良いチャンスがありました。入るための
(It was the second volunteer. So I had a good chance to get in.)。

En-Zh

Source So of course, random sequences of instructions are very unlikely to sort numbers, so none of them
will really do it.

MuST-C 当然,随机序列的指令是非常不可能排序的数字。因此,没有一个数字能真正排序 (Of course,
a random sequence of instructions is very unlikely to be a sequence of numbers. Therefore, no
number can really be sequenced.)。

Simul-MuST-C 所以,当然,随机指令序列是非常不可能的分类数字,所以没有一个会真正做到 (So, of course,
random instruction sequences are extremely unlikely to be class numbers, so none of them will
actually do)。

Omission 当然,随机序列的指令是不太可能的。所以没有一个会这样做 (Of course, a random sequence
of instructions is unlikely. So no one will do this)。

En-De

Source I want to get back to my suitcase and tell you what I packed for this exciting week here at TED.

MuST-C Ich möchte zu meinem Koffer zurückkehren. Und Ihnen sagen, was ich getan habe. Ich habe mich
für diese aufregende Woche hier bei TED gepackt (I want to return to my suitcase and tell you what
I’ve done. I’ve packed myself for this exciting week here at TED).

Simul-MuST-C Ich möchte zurückkommen zu meinem Koffer. Und dir sagen, was ich für diese aufregende Woche
hier bei TED gepackt habe (I want to go back to my suitcase and tell you what I’ve packed for this
exciting week here at TED).

Omission Ich möchte zu meinem Koffer zurückkehren. Und Ihnen sagen, was ich für diese Woche bei TED
verpackt habe (I’d like to return to my suitcase and tell you what I packed for this week at TED).

Table 12: An example of generated sentence when the chunk size is 400 in Local Agreement setting.
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En-Ja

Source So, not exactly what I was hoping for, but off I went – up the stairs, down the hall, past the ’real’
firefighters, who were pretty much done putting out the fire at this point, into the master bedroom to
get a pair of shoes.

MuST-C 私が望んでいたこととはまったく異なりとにかく階段を登り実際の消防士を通り抜け
ました消防士は火を消すのに苦労していました主人の寝室に行き靴を買いました (So
anyway, not at all what I wanted, I walked up the stairs, past actual firefighters who were struggling
to put out the fire, and into the master bedroom to get some shoes.)。

Simul-MuST-C だから、私が望んでいたこととは正確には違いますが、しかし、私は出発しました、階
段を登り、廊下を通り、本物の消防士たちを通り過ぎ、彼らはこの時点で火を消すの
にかなり苦労していました、主人の寝室に入り、靴を手に入れるために (So, not exactly
what I had hoped for, but off I went, up the stairs, down the hallway, past the real firefighters who
were having a pretty hard time putting out the fire at this point, into the master bedroom to get my
shoes.)。

Omission だから、私が望んでいたことではなく、私は出て行きました、階段を上がって、本当の
消防士たちを通り過ぎ、火を消すのに苦労していた、師匠の寝室に、靴を手に入れるた
めに (So, not what I wanted, I went out, up the stairs, past the real firemen who were struggling to
put out the fire, to my master’s bedroom, to get my shoes.)。

En-Zh

Source If we look at what’s really happening in the online world, we can group the attacks based on the
attackers.

MuST-C 如果我们看看网络世界到底发生了什么,我们可以根据攻击者组织攻击者 (If we look at what
is happening in the cyber world, we can organize attackers by)。

Simul-MuST-C 如果我们看在网络世界中真正发生的事情,我们可以组织基于攻击者的攻击 (If we look at
what is really happening in the cyber world, we can organize attacks based on the attackers)。

Omission 如果我们看看网络世界中正在发生的事情,我们可以根据攻击者组织攻击 (If we look at what
is happening in the cyber world, we can organize attacks based on the attackers)。

En-De

Source So get in the game. Save the shoes.

MuST-C Also gehen Sie ins Spiel, sparen Sie die Schuhe (So go into the game, save the shoes).

Simul-MuST-C Also, steigen Sie ins Spiel, sparen Sie die Schuhe (So, get in the game, save the shoes).

Omission Also, gehen Sie ins Spiel. Sparen Sie Schuhe (So, get in the game. Save on shoes).

Table 13: An example of generated sentence under an offline setting.

G Analysis on Generated Sentences

Local Agreement Table 12 shows an example of
generated sentence when the chunk size is 400 in
Local Agreement setting, results on tst-COMMON.
The overall trend in Table 12 is similar to what
was observed in Table 11, but translation quality
is generally higher,even for the model trained on
the Omission dataset. In En–Ja, all three models
produce translations of relatively similar quality,
in contrast to the results under wait-k, where qual-
ity differences between datasets were more pro-
nounced. In En–Zh, the model trained on Omission
performs better than it did with wait-k, aligning
with the findings from the previous section, where
Local Agreement resulted in smaller quality gaps.
Although the underlined part of the source sentence
is missing in the output, the translation still cap-
tures most of the original meaning and successfully
omits really,a word that was frequently removed
during the Dataset Creation process.

A similar pattern is observed in En–De, where
the Omission model also performs better than it

did under wait-k. The output preserves most of the
source content, omitting exciting, a non-essential
modifier that adds emphasis but does not impact
the core meaning.

These quality gap between wait-k and Local
Agreement can be attributed to the flexibility of the
Local Agreement decoding policy. Unlike wait-k,
which enforces a strict alternation between reading
and writing, Local Agreement allows the model
to dynamically determine when to read and write.
This adaptability is particularly beneficial when the
training data includes structural asymmetries, such
as proposed dataset that includes omission. Our re-
sults suggest that for models trained on unbalanced
or selectively reduced data, adaptive decoding poli-
cies like Local Agreement are better suited than
rigid fixed policies like wait-k.

Wait-k Table 11 example of generated sentence
when the value of k is three in wait-k setting, re-
sults on tst-COMMON. Similar to the sentence
length patterns observed in our created data analy-
sis, the output quality trends also differ across lan-
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guage pairs. In En–Ja, Simul-MuST-C produced
the highest quality translations, followed by Omis-
sion, with MuST-C performing the worst. Notably,
only Simul-MuST-C was able to fully translate the
underlined portion of the source sentence. Omis-
sion translated only the first half, and MuST-C
barely captured the content at all.

In contrast, for En–Zh and En–De, the pattern re-
versed: Omission resulted in the lowest quality out-
puts. The underlined content was omitted entirely
in the Omission outputs, whereas both MuST-C and
Simul-MuST-C included it in their translations.

We found that these quality differences correlate
with target sentence length. In En–Ja, Simul-MuST-
C produced the longest outputs, Omission ranked
in the middle, and MuST-C had the shortest, as de-
scribed in the Created Data Analysis section. The
output quality ranking followed the same order:
Simul-MuST-C > Omission > MuST-C. In En–Zh
and En–De, Simul-MuST-C again produced the
longest outputs, MuST-C the second longest, and
Omission the shortest—and once again, translation
output quality followed this length-based order.

These findings suggest that while our data cre-
ation process aimed to remove only less impor-
tant word, described in the Created Data Analysis
section, the models trained on omission-involved
data struggled to replicate this behavior during gen-
eration. That is, although the training data was
designed to omit less critical content, the trained
model often failed to reproduce this selective omis-
sion. Instead, it frequently omitted key parts of the
input, resulting in degraded output quality. This in-
dicates that the omission strategy is difficult to repli-
cate under current training and decoding frame-
works.

Offline Table 13 presents an example of gener-
ated output in the offline setting, evaluated on tst-
COMMON. The quality trend differs from what
was observed in Table 11 and Table 12, and instead
aligns more closely with the observations from the
Created Data Analysis.

Across all language pairs, the three models pro-
duce translations of relatively similar quality, with
a slight drop observed in the outputs from the Omis-
sion. Since omission involves the deletion of less
important words, some level of quality degradation
is expected. However, the deterioration is not as
pronounced as what we observed in the wait-k and
Local Agreement results.

In En–Ja, for example, the phrase pretty much

done is omitted, while in En–Zh, the word really
is missing from the Omission output. Both are em-
phasis markers that contribute more to tone than to
essential meaning. Their absence reflects the goal
of our approach to shorten translations by remov-
ing less critical words and reduce overall latency.
In En–De, all models achieve comparable quality.

From this perspective, the minor quality loss may
be acceptable, especially when the goal is faster out-
put. However, this behavior challenges the current
assumption that all content in the source must be
fully represented in the target. Our findings suggest
that even when 1:1 source-target correspondence
is not strictly maintained, offline setting results
exhibit that translations can still be semantically ac-
curate and practically useful, which highlights the
potential for more flexible translation strategies.
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