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Abstract

Synthetic reviews mislead users and erode trust
in online marketplaces, and the advent of Large
Language Models (LLMs) makes detecting
such AI-generated content increasingly chal-
lenging due to their human-like fluency and
coherence. In the literature, LLM-generated
review detection datasets are limited to one or a
few domains, with reviews generated by only a
few LLMs. Consequently, datasets are limited
in diversity in terms of both domain coverage
and review generation styles. Models trained
on such datasets generalize poorly, lacking
cross-model adaptation and struggling to detect
diverse LLM-generated reviews in real-world,
open-domain scenarios. To address this, we
introduce DetectAIRev, a benchmark dataset
for AI-generated review detection that includes
human-written reviews from diverse domains
and AI-generated reviews generated by various
categories of LLMs. We evaluate the quality
and reliability of the proposed dataset through
several ablation studies and human evaluations.
Furthermore, we propose an AI-generated text
detection method ProtoFewRoBERTa, a few-
shot framework that combines prototypical net-
works with RoBERTa embeddings, which learn
discriminative features across multiple LLMs
and human-written text using only a few la-
beled examples per class to discriminate be-
tween LLMs as the author for text author de-
tection. We conduct our experiments on the
DetectAIRev and a publicly available bench-
mark dataset. Our experimental results sug-
gest that our proposed methods outperform the
state-of-the-art baseline models in detecting
AI-generated reviews and text detection. 1

1 Introduction

A synthetic review is an artificially generated re-
view created by automated systems or algorithms
rather than real consumer experiences, posing risks

1The dataset and code repository are publicly available at:
https://huggingface.co/datasets/Sifi-world/DetectAIRev.

Figure 1: Comparison of Human-Written and LLM-
Generated Reviews. The human-written review is per-
sonal and experience-driven, while the LLM-generated
review is structured and feature-focused, emphasising
product specifications over subjective experience.

such as distorted analytics, misrepresented opin-
ions, erosion of trust in online platforms, and rais-
ing ethical concerns over manipulated public opin-
ion and unfair market advantages (Liu, 2012; Ku-
mar et al., 2025; Agrahari et al., 2025b; Kumar
et al., 2024). Mitigating synthetic reviews is es-
sential to uphold the credibility, reliability, and au-
thenticity of digital feedback mechanisms, ensure
transparency across online shopping and digital
marketplaces, safeguard consumer trust in product
evaluations, and promote a fair and competitive
market environment (He et al., 2022; George et al.,
1970; Yao et al., 2017; Sharma and Kumar, 2023;
Filieri, 2016; Kaabachi et al., 2017).

In the literature, research on LLM-generated text
detection has primarily focused on Wikipedia ar-
ticles (Guo et al., 2023), academic essays (Peng
et al., 2023), and headlines or news content (Wang
et al., 2023b). However, reviews are comprehen-
sively different from essays or Wikipedia articles
due to their subjectivity, brevity, and focus on per-
sonal opinion, feedback and sentiments. Unlike
essays, which present structured arguments and
in-depth analysis, reviews are concise and often
centered on specific aspects like battery life, per-
formance, or customer service. Common words
like "good", "excellent", or "disappointing" along
with phrases reflecting personal experiences such
as "I liked" or "I didn’t enjoy" are frequently used
in reviews, making them emotionally charged and
evaluative. This informal, opinion-driven nature
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contrasts with the more objective, fact-based tone
of essays or news articles. Furthermore, reviews
are often highly context-specific, focusing on par-
ticular products or services, whereas essays and
articles cover broader topics. The presence of
sentiment-laden language and context-dependent
evaluations presents a unique challenge in detect-
ing Large Language Model (LLM) generated re-
views, as it requires identifying these personal, sub-
jective elements that are often absent in more for-
mal, structured texts.
In existing literature, datasets for detecting LLM-
generated reviews are limited to one or a few do-
mains, primarily focusing on Amazon product and
hotel reviews, while numerous other domains re-
main unexplored. For instance, (Salminen et al.,
2022) curated a dataset focusing solely on Amazon
product reviews, using GPT-2 and ULMFit mod-
els. Similarly, the MAiDE-up dataset (Buscaldi
and Liyanage, 2024) is limited to hotel reviews,
with reviews generated using GPT-3 through a few
predefined prompt instructions. However, these
datasets are limited in size and scope, focused on
one or a few domains, with reviews generated by
only a few LLMs (typically GPT-based), and lim-
ited in diversity in terms of both domain coverage
and review generation styles. As a result, mod-
els trained on such datasets may generalize poorly,
performing well in their training domains but strug-
gling to detect LLM-generated reviews from un-
seen domains or different LLMs (Bhattacharjee
et al., 2024). This undermines their robustness in
real-world, open-domain scenarios, as the lack of
cross-model adaptation limits their ability to detect
reviews generated by LLMs and adapt to diversity
in text generation patterns (Hua and Yao, 2024).

To address the limitations of existing datasets
for LLM-generated review detection, we propose
the DetectAIRev dataset, comprising reviews gen-
erated by seven different LLMs and human-written
counterparts across five diverse domains. Reviews
are generated using four different prompting strate-
gies: (i) direct prompting, (ii) few-shot prompt-
ing, (iii) review replication and (iv) facet-aware
prompting, resulting in a large-scale dataset that
captures a broad range of generative models, facets,
and linguistic variations. Diversities within our
dataset enable detection systems to learn from vary-
ing text generation patterns across domains, en-
hance the adaptability of detection systems, and
provide a comprehensive foundation for develop-
ing generalizable detectors capable of identifying

AI-generated reviews in real-world settings.
Initial AI-generated text detection methods, such
as watermarking-based techniques (Fu et al., 2024;
Jiang et al., 2024) and statistical detection meth-
ods (Abri et al., 2020; Gehrmann et al., 2019;
Su et al., 2023), were limited in performance
due to their dependence on manual feature en-
gineering and also struggled to adapt quickly to
newly emerging LLMs models, reducing their
long-term effectiveness. Further, recent training-
and finetuning-based approaches (Zellers et al.,
2019; Liu et al., 2023; Chakraborty et al., 2024)
have achieved notable performance gains; however,
training- and finetuning-based approaches require
carefully paired training data and often fail to gen-
eralize well in Out-Of-Distribution (OOD) detec-
tion settings, largely because of their fixed binary
classification framework. Unlike traditional binary
detectors, the study (Guo et al., 2024) transforms
AI-generated text detection as a writing style differ-
entiation problem, treating each LLM as a distinct
Author with a consistent stylistic signature. How-
ever, study (Guo et al., 2024) relies heavily on
paired, model-specific training data and involves
complex multi-objective optimization, making it
resource-intensive and difficult to adapt to new
LLMs. Its few-shot adaptation remains limited,
and OOD generalization degrades when training
data lacks stylistic diversity. To address these chal-
lenges, we frame AI-generated review detection as
a writing style differentiation problem, where each
LLM is treated as a distinct author with a consis-
tent stylistic signature. Instead of traditional binary
classification, our goal is to learn discriminative
features across multiple LLMs and human-written
text using only a few labeled examples per class.
We propose ProtoFewRoBERTa, a few-shot frame-
work that combines Prototypical Networks (Snell
et al., 2017) with RoBERTa embeddings. In each
episode, class prototypes are computed from a
small support set, and query samples are classified
based on their distance to these prototypes. Trained
with a negative log-likelihood loss, the model effi-
ciently distinguishes writing styles with minimal
supervision and training, offering a scalable and
adaptable detection approach. To comprehensively
understand the patterns and challenges in detecting
LLM-generated reviews, we investigate the fol-
lowing research question: What are the key differ-
ences between human-written and LLM-generated
reviews in terms of lexical, readability, sentiment,
and psycholinguistic features, and how do these
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differences affect detection effectiveness?. We con-
duct extensive evaluations and ablation studies to
assess the quality of the proposed dataset and the
performance of our model. Results show that the
dataset enables reliable AI-generated review detec-
tion, the proposed model consistently outperforms
baseline models on both this dataset and existing
benchmarks.

2 Related Work

In the literature, Several benchmark datasets exist
across different domains, such as Wiki and QnA
(Guo et al., 2023), ChatGPT-written abstracts (Yu
et al., 2025), Applied Statistics (Salim and Hos-
sain, 2024), M4 (Wang et al., 2023a), and Turing
Bench (Uchendu et al., 2021) as detail mention in
Appendix Subsec. A.3, Table 12. However, when
it comes to LLM-generated review datasets, exist-
ing efforts are limited. Notably, (Salminen et al.,
2022) focuses only on Amazon product reviews,
using GPT-2 and ULMFit to fine-tune review gen-
eration. Likewise, the MAiDE-up dataset (Bus-
caldi and Liyanage, 2024) is restricted to hotel
reviews, generated by GPT-3. Despite these con-
tributions, existing datasets suffer from limited do-
main diversity, covering only one or two review
domains. This restricts the generalization of detec-
tion models, as they struggle to adapt to different
review contexts and varying LLM-generated styles.
Over the last few years, numerous approaches have
been proposed to tackle the task of LLM-generated
text detection. Detecting machine-generated text
is primarily formulated as a binary classification
task (Zellers et al., 2019; Gehrmann et al., 2019;
Ippolito et al., 2019) naively distinguishing be-
tween human-written and LLM-generated text. In
general, there are three main approaches: the su-
pervised methods (Agrahari et al., 2025a; Zellers
et al., 2019; Zhong et al., 2020; Liu et al., 2023,
2022; Agrahari and Singh, 2025), the unsuper-
vised ones, such as zero-shot methods (Wang et al.,
2023b), and Adversarial measures on detection
accuracy (Susnjak and McIntosh, 2024; Agrahari
et al., 2025b), (Liang et al., 2023) especially within
the education domain. (Krishna et al., 2024) train
a generative model (DIPPER) to evade detection.
However, most supervised methods for detecting
AI-generated text require large amounts of labeled
data, are computationally intensive, and often over-
fit to the seen training distributions, limiting their
ability to generalize to new LLMs or domains. In

contrast, we propose ProtoFewRoBERTa, a few-
shot learning framework that offers a more effi-
cient and flexible paradigm by leveraging only a
few labeled examples per class. This significantly
reduces training time while enhancing adaptability
and generalization across diverse generative mod-
els in real-world, open-domain scenarios.

3 Proposed Dataset

This study proposes DetectAIRev, an AI-generated
review detection dataset curated from human-
written and LLM-generated reviews across diverse
domains. We have considered human written re-
view from several openly available review RH
dataset from different domains, including Book Re-
views2, (McAuley et al., 2015; He and McAuley,
2016; Wan and McAuley, 2018), E-Commerce Re-
view3 (Agarap, 2018b,a), Movie Reviews4 (Maas
et al., 2011), Trip Advisor Hotel Reviews5 (Alam
et al., 2016) and Restaurant Review (Abri et al.,
2020). Incorporating human-written reviews from
multiple domains enhances robustness and gen-
eralization by capturing diverse linguistic styles,
sentiment patterns, and writing structures. For ex-
ample, book and movie reviews are more narra-
tive, while hotel and restaurant reviews emphasize
service and amenities, enabling the model to cap-
ture diverse linguistic styles and adapt to varied
real-world scenarios. Given a human-written ac-
tual review RH , the objective of LLMs is to gener-
ate a corresponding review using various prompt-
ing strategies. This study considers four prompting
strategies to maintain diversity in LLM-generated
reviews. (i) Zero-Shot Prompting (Direct): The
LLM is directly prompted with an instruction (e.g.,
Write a review about the product) without any ad-
ditional examples. This approach relies solely on
the pretrained model to generate relevant reviews.
(ii) Few-Shot Prompting: These examples help
guide the model in generating coherent and con-
textually relevant reviews. The input format is
defined as: RL = LLM(RH ∪ E1 ∪ E2 ∪ · · · ∪ En).
Where RL is the LLM-generated review, E denotes
a few-shot example, ∪ denotes concatenation, and
n represents the number of examples provided as
few-shots. Appendix Sec. G.2 provides further de-
tails on the prompt design used in our Few-shot
Prompting strategy. (iii) Review Replication: In

2Books Reviews Dataset
3E-Commerce Dataset
4IMDb Movie Reviews Repository
5Trip Advisor Hotel Reviews Source Repository
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this method, the LLM receives a human-written
review RH as input and is prompted to gener-
ate a similar review. This helps assess the abil-
ity of the model to mimic human writing styles
directly: RL = LLM(RH). (iv) Facet-aware
Prompting: This approach generates LLMs that
are prompted to generate reviews based on facets
of human-written reviews RH. We design prompts
that explicitly ask the LLM to emphasis certain
aspects (e.g., food quality, ambiance, or service
in restaurant reviews), and these aspects are ex-
tracted from a facet analysis of human-written re-
views. Appendix Sec. G.3 presents the details of
the facet-based prompting strategy used to generate
reviews while maintaining diversity across differ-
ent aspects. Facet-aware review generation aims to
ensure alignment between facet emphasis in human
and LLM-generated reviews. We consider seven
LLMs to generate reviews using LLMs including
GPT-3 (Radford et al., 2019), Llama 3 (Touvron
et al., 2023), Gemma (Team et al., 2024), Mis-
tral (Jiang et al., 2023), Phi-3 (Li et al., 2023),
Qwen (Bai et al., 2023), and DeepSeek (Bi et al.,
2024) in this study. Table 10 provides the charac-
teristics, versions, full descriptions and specifica-
tions of the LLMs used in this study to generate
reviews. To simulate a real-world setting, we also
incorporate three types of adversarial attacks: (i)
alternative spelling, (ii) paraphrasing (rewrite) at-
tacks, and (iii) misspelling, as described in (Dugan
et al., 2024), with a detailed mention in Appendix
Subsec. G.1. The primary motivation behind incor-
porating diverse domains and diverse LLMs is that
each LLM exhibits unique writing and text gener-
ation styles, ensuring that the dataset captures a
wide range of linguistic patterns and review con-
texts. This diversity in our proposed dataset, both
in terms of LLMs and domains, aims to enhance
the ability of the AI-generated review detection
model to effectively distinguish between human-
written and LLM-generated content across various
real-world scenarios. Our proposed dataset, Detec-
tAIRev, contains English reviews with the follow-
ing columns: review text, generative model name
(author name), label (LLM or human), and domain.
Table 1 presents the distribution of our proposed
dataset across domains and generative models.

3.1 Quality Assessment of Proposed Datasets

We perform two different types of quality and re-
liability evaluation: (i) We conduct a Stylomet-
ric Feature analysis to study the differences be-

Label E-commerce Hotel Movie Tourist Restaurant

Human 19,998 10,000 10,000 7,102 8,902
LLM 53,349 25,948 27,994 26,849 45,321

Table 1: Domain-wise label distribution in the Detec-
tAIRev dataset.

Metric Human Phi LLaMA DeepSeek Mistral Qwen ChatGPT Gemma

# of Words 3,548 3,400 4,327 1,978 4,215 3,846 4,102 3,213
# of Sentences 240 227 227 134 245 238 250 199
Avg. Sentence Len 14.78 14.98 19.06 14.76 17.20 16.20 16.40 10.23
# of Unique Words 1,050 914 1,437 661 1,264 1,127 1,198 689
Lexical Diversity 0.296 0.269 0.332 0.334 0.300 0.293 0.292 0.338
# of Characters 17,250 16,041 20,256 9,442 19,834 18,240 19,560 8,442
# of Punctuation 580 518 742 822 690 630 680 476

Table 2: Comparison of human-written and LLM-generated
reviews based on lexical features.

tween human-written text and LLM-generated text
in terms of lexical features, readability, sentiment,
psycholinguistics, and text similarity. (ii) Human
annotation and evaluation of reviews generated by
LLMs are conducted to validate the quality and
reliability of the DetectAIRev dataset.

3.1.1 Stylometric Feature Evaluation

We consider multiple features to compare human
and LLM-generated text, including lexical, read-
ability, sentiment, psycholinguistic, and text simi-
larity features. We extract and calculate the textual
features of our proposed dataset by following the
procedure reported in previous studies (Lagutina
et al., 2019; Mindner et al., 2023; Agrahari et al.,
2024), to understand the lexical diversity between
reviews generated by LLMs and human-written
reviews. Table 2 presents key metrics, including
the average number of sentences per review, quota-
tions, and unique words per review, along with ad-
ditional indicators such as the frequency of special
characters and personal pronouns, which help iden-
tify conversational tones. The lexical analysis in
Table 2 highlights key differences between human-
written and LLM-generated reviews. From Table 2
it is evident that LLaMA produces the longest re-
views with the most complex sentence structures.
In contrast, DeepSeek generates the most concise
outputs with higher lexical diversity and highest
punctuation usage, indicating a structured writing
style. Similarly, Table 2 shows that human-written
reviews are short in terms of an average number of
sentences compared to LLMS-generated reviews;

Table 3 compares human-written reviews and
LLM-generated reviews by diverse categories of
LLMs in terms of readability metrics, which as-
sess how easy or difficult a text is to understand.
Flesch-Kincaid(FK) Grade and Automated Read-
ability Index(ARI) estimate the required school
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Metric Human Phi LLaMA Qwen Gemma Mistral DeepSeek GPT

Flesch Ease 68.6 65.62 70.94 70.23 82.44 74.90 73.17 76.50
FK Grade 8.5 7.6 7.6 7.9 5.3 6.1 6.8 6.5
Gunning Fog 8.0 5.76 7.03 7.41 5.94 5.44 6.19 6.7
Dale-Chall 1.26 0.88 1.09 1.26 1.09 0.86 1.02 1.12
SMOG 11.0 10.9 10.8 10.7 8.9 9.5 9.9 9.2
ARI 11.2 8.8 9.4 9.9 6.1 7.3 8.1 7.8
Yule’s K 79.77 192.65 145.35 209.24 130.02 158.33 182.72 160.5

Table 3: Comparison of readability and vocabulary metrics
between human-written and LLM-generated reviews (details
in Appendix B and (Mindner et al., 2023)).

Sentiment LLaMA GPT-3 Mistral Human Gemma Phi Qwen DeepSeek

Positive 40.2% 50.3% 37.5% 57.1% 42.8% 35.6% 43.4% 47.3%
Neutral 45.1% 38.2% 47.0% 35.8% 43.5% 48.0% 35.4% 42.5%
Negative 14.7% 11.5% 15.5% 9.1% 13.7% 16.4% 8.4% 11.3%

Table 4: Sentiment feature analysis based on the ratio of
positive, neutral, and negative reviews in human-written and
LLM-generated reviews across different models.

grade level to understand the text. Gunning Fog
and SMOG focus on complex words to determine
readability. Dale-Chall considers familiar words
for clarity. Yule’s K measures vocabulary richness.
Together,these metrics help evaluate the level of
text complexity to read and understand text written
by human and LLM-generated reviews. Intreprebil-
ity of range of these matrices mention in Appendix
Sec. B, Table 13.

The readability scores presented in Tabl 3
demonstrate that LLM-generated reviews are gen-
erally more formal, readable, simpler, and less
complex than human-written reviews. This ob-
servation is primarily based on the higher Flesch
Ease scores of LLM-generated content, particularly
from models like Gemma and GPT 3, compared
to human-written reviews. These higher scores
indicate that LLM-generated texts are easier to
read and understand. Additionally, the lower FK
Grade and SMOG scores of LLM-generated re-
views, especially those generated by Gemma, indi-
cate that these texts are significantly more straight-
forward and more accessible. In contrast, human-
written texts tend to be more sophisticated, re-
quiring a higher educational level for comprehen-
sion. Furthermore, human-written reviews exhibit
greater lexical diversity and complexity, as indi-
cated by the lower Yule’s K score compared to
most LLM-generated reviews, especially those gen-
erated by Qwen and DeepSeek, which have higher
Yule’s K scores. This difference highlights that
human-authored texts contain a richer and more
varied vocabulary. The Gunning Fog index fur-
ther supports this, as human-written texts show
higher scores, reflecting the use of more com-
plex words and sentence structures compared to
LLM-generated content, which tends to have lower
scores. Such observations from Table 3 suggest

Feature Human Phi LLaMA DeepSeek Mistral Qwen ChatGPT Gemma

Cognitive Words 12.2 10.9 12.5 12.3 11.8 9.6 13.5 13.0
Emotional Words 9.5 9.4 8.7 9.6 9.1 6.7 8.8 8.2

Table 5: Psycholinguistic feature analysis (LIWC) (Pen-
nebaker et al., 2001) of human-written and LLM-generated
reviews.

that while LLM-generated reviews might appear
more straightforward and readable due to their
higher readability scores and lower complexity
measures, the simplicity and reduced lexical diver-
sity make them more distinguishable from human-
authored content. This distinction is especially ap-
parent when examining Dale-Chall scores, where
LLM-generated texts, particularly from Mistral,
tend to score lower, indicating simpler and more
familiar word usage. In contrast, human-written
reviews score higher, reflecting the use of less com-
mon vocabulary. The reduced lexical richness and
simplicity of LLM-generated reviews could serve
as potential features for detecting AI-generated
content. These differences have significant impli-
cations for the detection of AI-generated reviews,
as they highlight specific linguistic features that
can help differentiate between human and LLM-
generated texts.

Sentiment regarding specific aspects of reviews
is a key indicator of human satisfaction. Therefore,
comparing LLM-generated and human-written re-
views in terms of sentiment helps evaluate whether
LLMs can write reviews similar to human written
review sentiment levels related to products. Ta-
ble 4 presents the comparison between reviews
generated by LLMs and human-written reviews in
terms of sentiment distribution. From Table 4, it
is apparent that human reviews exhibit the high-
est percentage of positive sentiment, suggesting
a more favorable tone in human-written reviews.
GPT-3 also produces a high proportion of posi-
tive reviews. In contrast, Phi and Mistral generate
the lowest positive sentiment scores, with higher
neutral or negative tendencies, reflecting a less pro-
nounced emotional tone in the review generated by
Phi and Mistral. Negative sentiment is relatively
low across all sources, with human reviews show-
ing the least negative sentiments, while Phi exhibits
the highest negative sentiment proportion. From
such observation, we conclude that there are signif-
icant differences in sentiment tendencies between
AI-generated and human-written reviews.

Table 5 presents the psycholinguistic feature cap-
ture how language reflects cognitive and emotional
states. Tools like LIWC (Linguistic Inquiry and
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Agreement Metric Fluency Origin Coherence Factuality

Krippendorff’s Alpha (α)(Krippendorff, 2011) 0.769 0.671 0.535 0.776
Fleiss’ Kappa (κ) (Fleiss, 1971) 0.719 0.573 0.512 0.563

Table 6: Krippendorff’s Alpha and Fleiss’ Kappa scores for the annotation scheme used in human evaluation across four
metrics, as described in Table 11.

Word Count) (Pennebaker et al., 2001) analyze
word categories, such as pronoun usage, cogni-
tive processes (e.g., "think", "know"), and emo-
tional expressions analysis across different models
and human-written texts. It highlights the differ-
ences in cognitive and emotional language. No-
tably, GPT-3 and Gemma exhibit higher use of
cognitive words, suggesting a more analytical tone.
Emotional word usage varies, with human reviews
demonstrating the highest proportion, reinforcing
their natural expressiveness. Conversely, Qwen
shows the least emotional engagement, potentially
indicating a more.

Metric Human Phi LLaMA DeepSeek Mistral Qwen ChatGPT GPT Gemma

Coherence S 0.876 0.848 0.891 0.686 0.872 0.860 0.870 0.888 0.787
Anger 21 24 47 20 30 26 28 27 14
Anticipation 110 100 129 62 120 115 118 119 61
Disgust 5 3 26 13 10 8 9 7 6
Fear 18 14 46 16 20 17 19 21 17
Joy 160 151 192 72 170 165 168 175 67
Sadness 20 17 64 111 30 22 25 23 20
Surprise 40 36 75 43 45 42 44 48 24
Trust 170 162 192 133 175 168 172 178 78

Table 7: Psychological and cognitive factor analysis in
human-written and LLM-generated reviews across models
using NRC Emotion Lexicon (Mohammad and Turney, 2013).

Table 7 highlights key psychological and cog-
nitive aspects of text generated by different mod-
els compared to human-written content. Notably,
Llama and GPT-3 exhibit the highest coherence
scores, suggesting strong logical flow in their
text. Emotional expressions vary significantly
across models Llama and Mistral show higher
levels of anger and sadness, whereas GPT-3 and
Gemma use more joyful and trust-related language.
DeepSeek indicating a weaker structural flow. Al-
though human generated review are avg in all the
matrics. These differences in sentiment and co-
herence suggest variations in how each model bal-
ances factual accuracy with emotional tone in re-
view generation. The Bilingual Evaluation Under-
study (BLEU) Score (Papineni et al., 2002) and
the Metric for Evaluation of Translation with Ex-
plicit Ordering (METEOR) Score (Banerjee and
Lavie, 2005) are used to analyze the relationship
between human-written reviews and those gen-
erated by LLMs. Appendix Figure 2 presents
that GPT-3 review are indicating strong similar-
ity to human-written text in term of lexical overall.

DeepSeek and Qwen also achieve relatively high
scores, while Phi and Mistral demonstrate the low-
est alignment with human text. These results high-
light differences in text fluency and word choice
precision across models.

3.1.2 Human Evaluation of Dataset

We conducted human annotation and evaluation of
the proposed datasets to assess their quality and
reliability. We created a subset of the datasets
consisting of eight hundred samples by randomly
selecting one hundred reviews generated by each
LLM and assigning them to four independent an-
notators. Each annotator was asked to evaluate the
reviews based on Fluency, Origin, Coherence, and
Factuality, following the scoring criteria defined
in Table 11. Fluency evaluates the grammatical
correctness and readability of a review, while Ori-
gin distinguishes whether it is human-written or
LLM-generated. Coherence measures the logical
flow and consistency of ideas, and Factuality as-
sesses the accuracy and truthfulness of the review
content. To ensure high-quality annotations, we se-
lected annotators with a computer science and lin-
guistics research background, including research
scholars. Next, we measured annotator agreement
on the scores assigned for Fluency, Origin, Co-
herence, and Factuality using Krippendorff’s al-
pha (α) (Krippendorff, 2011) and Fleiss’ kappa
(κ) (Fleiss, 1971). Table 6 presents Krippendorff’s
alpha and Fleiss’ kappa scores for inter-annotator
agreement on our proposed datasets. Fluency had
the highest agreement, indicating the grammatical
correctness and readability of LLM-generated re-
views. For origin, the inter-annotator agreement
(Krippendorff’s = 0.671; Fleiss’ = 0.573) indicates
moderate agreement among annotators regarding
the origin of a review, i.e., whether it is generated
by an LLM or written by a human. It highlights the
challenge of distinguishing LLM-generated text
from human-written reviews. Coherence showed
moderate agreement, because LLM-generated re-
views, while syntactically fluent, often lack deeper
discourse-level consistency, leading to divergent
interpretations among annotators. Factuality had
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the lowest agreement, reflecting the difficulty of
verifying factual claims. which is expected given
the categorical nature and inherent subjectivity of
factuality judgments. These results suggest that
distinguishing AI-generated content remains chal-
lenging, emphasizing the need for refined evalua-
tion criteria or automated assessment methods.

4 Proposed Method

This study proposes ProtoFewRoBERTa, A Proto-
typical Network-based Few-shot Learning Frame-
work Leveraging RoBERTa (Liu, 2019) representa-
tions for AI-generated text detection. Our proposed
ProtoFewRoBERTa model, inspired by Prototypi-
cal Networks (Snell et al., 2017), reformulates the
approach for multi-class classification of human-
and LLM-generated text using RoBERTa represen-
tations. The proposed ProtoFewRoBERTa model
constructs prototypical representations for each au-
thor (human and LLMs) using few-shot example
texts written or generated by the author (human
and LLMs). Given a dataset A consisting of text
samples Xi and their corresponding author labels
Yi, i.e., A = {(X1, Y1), . . . , (XN , YN )}, where
each Yi ∈ {1, . . . , k}, we first select the Support
and Query set. In each training episode, we con-
sider all k classes from the dataset A and for each
class c ∈ {1, . . . ,K}, we randomly sample p texts
from A to form the support set and support set as
defined by by the equations 1 below.

S =
k⋃

c = 1

{(X c
i ,Yc

i )}pi=1 (1)

Similarly, we consider all K classes from the
dataset A and for each class c ∈ {1, . . . , k}, we
randomly sample q texts from A to form the query
set as defined by the equations 2 below.

Q =
K⋃

c=1

{(X c
j ,Yc

j )}qj=1 (2)

Text samples for the support and query sets are
selected from each class by ensuring the two sets
are disjoint, i.e., S ∩ Q = ∅. Subsequently, for
each class c in the support set S, we compute the
class representation vector (prototype) ac by aver-
aging the encoded representations of all samples
belonging to class c in the support set S , as defined:

ac =
1

p

∑

(Xi,Yi)∈Sc

gθp
(
fθe(Xi)

)
, (3)

where fθe(·) is the RoBERTa encoder producing
contextualized text representations, gθp(·) is the

Algorithm 1. ProtoFewRoBERTa: Episodic Training and
Inference via Prototypical Networks for AI-Generated Review
and Text Detection

Input: Dataset A = {(Xi,Yi)}Ni = 1 with K classes; p:
samples per class in the support set; q: samples per class
in the query set; fθe : RoBERTa encoder; gθp : projection
network mapping encoded text to embedding space.
Objective: Learn parameters Θ = {θe, θp} that minimize
episodic classification loss L.
— Training Phase —

1: for each training episode do
2: Initialize support S ← ∅, queryQ ← ∅
3: for c = 1 to K do ▷ Construct class-specific support

and query sets
4: Sc ← RANDOMSAMPLE(Ac, p); Qc ←

RANDOMSAMPLE(Ac \ Sc, q)
5: S ← S ∪ Sc; Q ← Q∪Qc

6: end for
7: for c = 1 to K do ▷ Compute class prototypes
8: ac ← 1

p

∑
(Xi,Yi)∈Sc

gθp(fθe(Xi))

9: end for
10: Initialize L ← 0
11: for each (xj , yj) ∈ Q do ▷ Compute episodic loss
12: for c = 1 to K do
13: djc ← ∥gθp(fθe(xj))− ac∥22
14: end for
15: p(y = c | xj)← exp(−djc)

K∑
k′ = 1

exp(−djk′)

16: L ← L− log p(yj | xj)
17: end for
18: Update Θ← Θ− η∇ΘL using AdamW optimizer
19: end for

— Inference Phase —
20: Input: Unseen support set S ′ = {S ′

1, . . . ,S ′
K} with few

labeled examples per class
21: for c = 1 to K do
22: a′

c ← 1
|S′

c|
∑

(Xi,Yi)∈S′
c

gθp(fθe(Xi))

23: end for
24: for each unseen query xq do
25: for c = 1 to K do
26: dqc ← ∥gθp(fθe(xq))− a′

c∥22
27: end for
28: Assign ŷq ← argminc(dqc) ▷ nearest-prototype

classification
29: end for

projection function that maps these representa-
tions into the prototypical embedding space, and
Sc refers to the subset of support examples for
class c. We use RoBERTa (Liu, 2019) as the
text encoder. Given an input text Xi, the encoder
fθe(·) produces a contextual representation xi us-
ing RoBERTa, and the projection network gθp(·)
maps it to the metric space, resulting in the final em-
bedding x′

i = gθp(fθe(Xi)). Intuitively, the class
representation vector (prototype) ac can be viewed
as capturing the signature or writing style of the au-
thor (either an LLM or a human), as it is estimated
by averaging the encoded representations of a few
examples belonging to class c. Next, we estimate
the distance djk between each query encoding and
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Detector
DetectAIRev SemEval Product Review Restaurant Review Hotel Review DeepFake

Acc F1-H F1-AI Acc F1-H F1-AI Acc F1-H F1-AI Acc F1-H F1-AI Acc F1-H F1-AI Acc F1-H F1-AI

GTLR 0.477 0.438 0.455 0.501 0.460 0.479 0.496 0.331 0.596 0.486 0.348 0.575 0.491 0.319 0.592 0.395 0.368 0.420
OpenAI-det 0.641 0.598 0.621 0.672 0.582 0.601 0.536 0.255 0.663 0.486 0.344 0.650 0.605 0.389 0.707 0.340 0.265 0.401
DetectGPT 0.604 0.562 0.571 0.646 0.590 0.613 0.632 0.324 0.683 0.564 0.434 0.635 0.536 0.345 0.734 0.389 0.324 0.535
Radar 0.737 0.629 0.661 0.728 0.612 0.644 0.605 0.352 0.716 0.660 0.493 0.744 0.558 0.691 0.220 0.475 0.193 0.610
Binoculars 0.892 0.882 0.890 0.872 0.869 0.860 0.506 0.453 0.672 0.504 0.403 0.670 0.500 0.333 0.660 0.650 0.534 0.706
DeTeCtive 0.905 0.919 0.898 0.918 0.910 0.899 0.875 0.880 0.923 0.919 0.834 0.912 0.893 0.812 0.923 0.945 0.903 0.934
RoBERTa 0.793 0.701 0.716 0.781 0.698 0.711 0.827 0.654 0.723 0.756 0.743 0.742 0.758 0.767 0.870 0.548 0.540 0.560
RoBERTa + Stylometric 0.828 0.762 0.770 0.794 0.722 0.732 0.973 0.970 0.970 0.780 0.790 0.840 0.881 0.729 0.834 0.933 0.870 0.950
ProtoFewRoBERTa (Feat) 0.972 0.970 0.971 0.967 0.951 0.947 0.976 0.915 0.952 0.956 0.917 0.955 0.928 0.891 0.928 0.932 0.913 0.954
ProtoFewRoBERTa 0.983 0.970 0.981 0.961 0.948 0.957 0.982 0.922 0.952 0.966 0.865 0.965 0.959 0.932 0.962 0.980 0.972 0.984

Table 8: Performance (Accuracy, F1-Human, F1-AI) of baseline methods and proposed method
(ProtoFewRoBERTa) on proposed dataset (DetectAIRev) and other existing datasets.

each class representation vector (prototype) ac by
the equation defined below.

djk =
∥∥∥fθ(X(Q)

j )− ak

∥∥∥
2

2
(4)

where X(Q)
j denotes the jth text in the query set Q,

and fθ(·) represents the encoder defined earlier in
Equation 3. Subsequently, we estimate the proba-
bility of a query instance Xj belonging to class k
by applying a softmax function over the negative
distances djk as defined below.

p(y = k | X(Q)
j ) =

exp(−djk)∑
k′ exp(−djk′)

(5)

Next, we estimate the loss for each episode by
applying the negative log-likelihood loss over the
query set Q. The episodic loss function as follows:

L = −
∑

(xj ,yj)∈Q
log p(yj | xj) (6)

The primary objective of the loss function L
is to encourage the embedding of each query
sample X

(Q)
j to be close to the class represen-

tation vector (prototype) ac of its correspond-
ing class, while simultaneously pushing it farther
away from the class representation vector (proto-
type) ac of other classes. Our proposed method,
ProtoFewRoBERTa, minimises the negative log-
likelihood loss function L to learn the parameters
of the projection layer and fine-tune the parameters
of the RoBERTa model used for text encoding.

5 Experimental Results and discussion

5.1 Experimental Setup
We study the performance of the proposed and
baseline models on DetectAIRev dataset and the
SemEval-2024 Task 8 Monolingual dataset (Wang
et al., 2024). Appendix Subsec. E and Table 16
present the descriptions and characteristics of the

SemEval-2024 Task 8 Monolingual dataset (Wang
et al., 2024). This study considers Accuracy and
class-wise F1-score as the performance metrics.
We consider baseline models from diverse cate-
gories to ensure a comprehensive evaluation and
fair comparison of our proposed methods. This
study considers statistical method GTLR (Zellers
et al., 2019), supervised detectors such as OpenAI-
detector and DetectGPT (Guo et al., 2023), the
zero-shot detector-based method Binoculars (Hans
et al., 2024), the adversarial learning-based method
Radar (Hu et al., 2023), and the multi-class con-
trastive learning-based detector DeTeCtive (Guo
et al., 2024) as baseline models. Furthermore, we
fine-tune RoBERTa (Liu, 2019) for AI-generated
review detection and incorporate stylometric and
other linguistic features, as detailed in the corre-
sponding Subsec. 3.1.1, to analyze their influence
on detection performance. Appendix Subsec. F
presents the fusion methods adopted to combine
the RoBERTa encodings with stylometric and other
linguistic features for AI-generated content detec-
tion. Table 10 in Appendix Subsec. C presents the
details of the experimental hyperparameter.

5.2 Results and Discussions

Table 8, presents the performance of the pro-
posed and baseline models on the DetectAIRev,
SemEval Monolingual (Wang et al., 2024) Prod-
uct Review (Salminen et al., 2022), Restaurant
Review (Gambetti and Han, 2023), Hotel Re-
view (Buscaldi and Liyanage, 2024) and Deep-
Fake (Fagni et al., 2021) datasets. From Ta-
ble 8, it is apparent that our proposed method
ProtoFewRoBERTa outperforms recent state-of-
the-art baseline models from literature across
datasets in detecting AI-generated reviews and
text. From Table 8, comparing the performance
of RoBERTa with RoBERTa + Stylometric Fea-
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Model Human GPT LLaMA Phi Gemma DeepSeek Mistral Qwen Gemini ChatGPT

F1 0.923 0.945 0.935 0.932 0.945 0.925 0.945 0.941 0.923 0.912

Table 9: Presents class-wise F1-scores of ProtoFewRoBERTa in the author-detection task, showing consistent performance across human and various LLM-
generated text sources (author), including GPT, LLaMA, Phi, Gemma, DeepSeek, Mistral, Qwen, Gemini, and ChatGPT as author.

tures shows that incorporating stylometric features
helps capture linguistic style cues and improves
the performance of AI-generated review detec-
tion models. Compared to the multi-level con-
trastive learning approach of DeTeCtive (Guo et al.,
2024), ProtoFewRoBERTa demonstrates clear per-
formance advantages across both datasets. This
improvement stems from prototype-based episodic
training of ProtoFewRoBERTa, which captures
fine-grained stylistic differences between text writ-
ten by humans and generated by LLMs without
relying on extensive contrastive objectives or heav-
ily paired training data, addressing a key limitation
of DeTeCtive in out-of-distribution scenarios. Fur-
thermore, DeTeCtive (Guo et al., 2024) requires
large, stylistically diverse labelled datasets from
multiple LLMs to learn contrastive representations.
In contrast, ProtoFewRoBERTa can learn proto-
types from few labelled examples per class (few-
shot), reducing data preparation overhead and an-
notation costs. The DeTeCtive (Guo et al., 2024)
model requires retraining or fine-tuning whenever
a new LLM style emerges. ProtoFewRoBERTa
computes new prototypes for text generated by
new LLMs (author) using minimal samples, mak-
ing it highly scalable and future-proof for rapidly
evolving LLMs. While DeTeCtive improves OOD
detection compared to other baseline models in
the literature, its generalization still degrades if
new writing styles differ significantly from those
in the training set. In comparison, the prototype
space of ProtoFewRoBERTa naturally separates
diverse styles, maintaining robust out-of-domain
generalization with minimal recalibration. Further-
more, Table 9 presents the class-wise F1-scores
of the ProtoFewRoBERTa model across human
and LLM-generated text categories, underscoring
the robustness of ProtoFewRoBERTa in author de-
tection capability in distinguishing stylistic and
semantic cues specific to different LLMs (author).
Ablation Analysis: We extend our experiments for
deeper analysis (details in Appendix Sec. H). The
qualitative error analysis (Appendix Subsec. H.1,
Table 18) highlights three main error types: (i)
Generic brevity, (ii) Polished rewrites, and (iii)
Noisy text. Feature importance analysis (Ap-
pendix Subsec. H.2, Table 19) shows that emo-

tional and experiential cues are informative but
limited individually; combining stylometric and
RoBERTa embeddings yields the best performance.
Dataset preprocessing (Appendix Subsec. H.3, Ta-
ble 20) slightly reduces scores but confirms ro-
bustness against non-standard English. Adversar-
ial evaluation (Appendix Subsec. H.4, Table 21)
shows ProtoFewRoBERTa remains resilient under
semantic perturbations. Also, Extend setups (Ap-
pendix Subsec. H.5, Table 22) reveal that while
weighted strategies improve interpretability, aver-
aging achieves the highest overall performance.

6 Conclusion and Future Work

This paper proposes an AI-generated review de-
tection dataset, DetectAIRev, where seven differ-
ent LLMs generate reviews across five domains.
We conduct several analyses and evaluations to
assess the reliability of the proposed dataset and
demonstrate that it is suitable for training an AI-
generated review detection model across diverse
domains and reviews generated by various LLMs.
Furthermore, this study proposes an AI-generated
text detection method ProtoFewRoBERTa, a few-
shot framework that combines prototypical net-
works with RoBERTa embeddings, to learn dis-
criminative features across multiple LLMs and
human-written text using only a few labeled ex-
amples per class to discriminate between LLMs as
the author for text author detection. We conduct
our experiments on our proposed DetectAIRev
dataset and other existing datasets, and our exper-
imental results suggest that ProtoFewRoBERTa
outperformed the state-of-the-art methods from
the literature across the dataset. Furthermore,
ProtoFewRoBERTa is easily scalable for detecting
text generated by new authors (LLMs not included
in the training dataset) and remains future-proof
for rapidly evolving LLMs. To adapt the model
to a new author or LLM, ProtoFewRoBERTa only
requires estimating prototypes from a few labelled
examples (generated by new LLMs), thereby re-
ducing data preparation overhead and retraining of
the model to accommodate detecting the text gener-
ated by LLMs not in training. This study identifies
AI-generated review detection in low-resource lan-
guages and multilingual setups for future work.
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7 Limitations

While DetectAIRev represents a significant ad-
vancement in AI-generated review detection across
multiple domains, several limitations remain that
warrant discussion. First, the current version of
the dataset is limited to English-language reviews,
which restricts the model’s generalizability to mul-
tilingual or low-resource language scenarios. Ex-
tending the dataset to include diverse linguistic set-
tings is crucial for evaluating cross-lingual robust-
ness and supporting broader applicability. Second,
although ProtoFewRoBERTa leverages few-shot
learning for adaptability to unseen classes (i.e., text
written by new LLMs ), its performance may de-
grade when support examples are extremely sparse
or noisy. Addressing this requires more robust pro-
totype construction methods or hybrid techniques
incorporating uncertainty modelling. Third, the
model assumes clearly defined author categories.
In real-world scenarios, however, writing styles
may lie on a continuum or involve hybrid human-
AI collaboration, making discrete classification
more challenging. Lastly, while RoBERTa serves
as a strong encoder backbone in our framework, its
effectiveness may not generalise uniformly across
other transformer-based encoders. A systematic
evaluation of alternative backbones (e.g., BERT,
DeBERTa, XLNet) is necessary to understand their
impact on detection performance.

8 Ethical Considerations

Human-written reviews used to curate the
DetectAIRev dataset are publicly available for aca-
demic research and development. DetectAIRev
is curated based on reviews from publicly avail-
able datasets, including Book Reviews (Wan and
McAuley, 2018), E-Commerce Reviews (Agarap,
2018a), Movie Reviews (Maas et al., 2011), Tri-
pAdvisor Hotel Reviews (Alam et al., 2016), and
Restaurant Reviews (Abri et al., 2020). The
LLM-generated content was produced via con-
trolled prompting of large language models. No
personally identifiable information (PII) was used
or collected during the dataset construction pro-
cess. All human-authored and machine-generated
content is utilized solely for research purposes to
advance the development of AI-generated text de-
tection systems.
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Appendix

A Supplementary Details of the Proposed
Dataset

A.1 Diversity and Configuration of Large
Language Models for Review Generation

To explore the diversity of generated reviews, we
employ a wide range of large language models
(LLMs) that vary in size, architecture, and capabil-
ity. As shown in Table 10, these models differ in
parameter count (ranging from 7B to 175B), con-
text length, number of transformer layers, and at-
tention heads. This architectural diversity enables
a systematic analysis of how model complexity in-
fluences the quality and detectability of generated
reviews.

A.2 Human Annotation and Evaluation
Framework for the DetectAIRev Dataset

To assess the quality of reviews generated by LLMs
in our proposed DetectAIRev dataset, we conducted
human evaluations using four key metrics: Flu-
ency, Origin, Coherence, and Factuality. We
created a subset of the datasets consisting of eight
hundred samples by randomly selecting one hun-
dred reviews generated by each LLM and assign-
ing them to four independent annotators. We re-
cruited two annotators with an engineering back-
ground and two with a linguistics background to
ensure high-quality annotations. Each annotator
was asked to evaluate the reviews based on Flu-
ency, Origin, Coherence, and Factuality, following
the scoring criteria and dimension scales defined
in Table 11. Annotators assigned scores following
detailed labelling guidelines (Table 11), enabling
fine-grained judgment of linguistic quality and real-
ism while supporting a comprehensive analysis of
the content generated by LLMs overall quality and

2130

https://api.semanticscholar.org/CorpusID:259145150
https://api.semanticscholar.org/CorpusID:259145150
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr


Model Name Abbreviation Parameters
(Billion)

Context Length
(Tokens) Layers Attention Heads

GPT-3 GPT-3 175B 2048 96 96

Meta-Llama-3.1-70B Llama 70B 8192 80 64

Gemma-2-27B Gemma 27B 8192 64 48

Mistral-Nemo-Base-2407 Mistral 13B 8192 80 40

Phi-3-Medium-4K Phi 14B 4096 48 32

Qwen2.5-VL-7B Qwen 7B 4096 32 16

DeepSeek-R1-GGUF DeepSeek 16B 8192 60 32

Table 10: Comparison of different models used for LLM-generated reviews based on key parameters and hyperpa-
rameters.

Metric Labels

Fluency 3 – The review contains no grammatical errors, and its meaning can be understood.
2 – The review contains some grammatical errors but is still understandable.
1 – The review contains many grammatical errors and cannot be understood.

Origin 1 – The review has characteristics of a human-written review.
0 – The review has characteristics of an LLM-generated review.

Coherence 1 – The review is logically consistent, with ideas flowing naturally and connecting smoothly.
0 – The review lacks logical consistency, with disjointed ideas or poor transitions between sentences.

Factuality 5 – The review is completely accurate and truthful.
4 – The review is mostly accurate but may leave out some details.
3 – The review is mostly accurate, but contains some unclear or vague statements.
2 – The review has noticeable inaccuracies or misleading statements.
1 – The review is mostly incorrect or irrelevant to the topic.

Table 11: Annotation scheme for human evaluation metrics.

its similarity to human writing. We measured inter-
annotator agreement on the scores assigned for
Fluency, Origin, Coherence, and Factuality using
Krippendorff’s alpha and Fleiss’ kappa. Table 6
presents Krippendorff’s alpha and Fleiss’ kappa
scores for inter-annotator agreement on eight hun-
dred samples. The alpha values indicate the consis-
tency with which annotators applied the scoring cri-
teria, with values closer to 1 reflecting higher agree-
ment. Accordingly, our reported Krippendorff’s al-
pha values quantify the reliability of the annotators’
dimension-wise scores and confirm that the eval-
uation results are trustworthy. At the same time,
Krippendorff’s alpha accounts for disagreement
expected by chance and applies to both ordinal
and categorical scales. Fleiss’ kappa, in contrast,
measures the degree of agreement among multi-
ple annotators specifically for categorical ratings.
The Fluency of text measures the grammatical cor-
rectness, readability, and natural flow of generated
text. In contrast, Coherence evaluates the logical
consistency and contextual connectivity of ideas
across sentences within a review. Fluency evalu-
ates the grammatical correctness and readability
of a review, while Origin distinguishes whether it
is human-written or LLM-generated. Coherence

measures the logical flow and consistency of ideas,
and Factuality assesses the accuracy and truthful-
ness of the review content.

Origin distinguishes whether a review is human-
written or LLM-generated. Therefore, annotators
assign a score of 0 if the review has character-
istics of an LLM-generated review or generated
by LLMs, and 1 if they find it to be written by a
human (refer Table 11). The inter-annotator agree-
ment for Origin is Krippendorff’s Alpha = 0.671
and Fleiss’ Kappa = 0.573 (in Table 6), indicating
moderate agreement among annotators regarding
the origin of a review, i.e., whether it is generated
by an LLM or written by a human. Therefore, the
LLM-generated reviews in our dataset are on par
with human-written reviews, confirming that our
proposed dataset is reliable for training models
in AI-generated review detection. Consequently,
given a review text, it is often difficult for annota-
tors to determine whether it is LLM-generated or
human-written. As a result, annotators sometimes
rated the same review slightly differently, lead-
ing to only moderate inter-annotator agreement for
the Origin metric. This further confirms that dis-
tinguishing between LLM-generated and human-
written reviews is not trivial. From these observa-
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Corpus Name Size (Train) Source Language Domain

HC3 (Guo et al., 2023) 84K GPT-3 En Q/A, Computer Science
M4 (Wang et al., 2023a) 147K Multiple LLMs Multiple General
GPT-2 Output (Radford et al., 2019) 250K GPT-2 En Web
GPABenchmark (Liu et al., 2023) 1,200K GPT-3 En Scientific Writing (SW)
Deepfake (AbedRabbo et al., 2022) 319K GPT, LLaMA, etc. En News, Q/A, etc.
TuringBench (Uchendu et al., 2021) 200K GPT, Fair, etc. En News articles
DetectAIRev Dataset (Ours) 256K LLaMA, Mistral, Deepseek, Phi,

Gemma, Qwen, GPT-3
En Reviews (Book, Movie, Hotel,

Restaurant, E-commerce, etc.)

Table 12: Comparison of AI-generated text detection datasets from litrature and our proposed dataset DetectAIRev Dataset.

tions, we conclude that our proposed dataset pro-
vides a realistic and reliable benchmark for training
models to detect AI-generated reviews.

Factuality assesses the accuracy and truthful-
ness of the review content, referring to the degree
to which a review is accurate and reliable. Anno-
tators were asked to rate factuality on a scale of
1 to 5, where 5 indicates that the review is com-
pletely accurate and truthful and 1 indicates that
the review is mostly incorrect or irrelevant to the
topic. Table 11 presents the scoring criteria used
to assess the factuality of reviews generated by
LLMs. However, people expressed their opinions,
feedback, and experiences about a product, loca-
tion, hotel, or restaurant food item. Therefore,
factuality assessment can depend on the experi-
ence and domain knowledge of annotators; for
instance, subtle product details or contextual nu-
ances may be interpreted differently by different
annotators. Therefore, annotators rated each re-
view differently based on their prior experience
and knowledge. In Table 6, Krippendorff’s Alpha
(0.776) indicates substantial consistency among
annotators, while Fleiss’ Kappa (0.563) reflects
moderate agreement, which is expected given the
categorical nature and inherent subjectivity of fac-
tuality judgments. For example, consider the re-
view text: “I loved dining at SeaBreeze Restaurant.
Their grilled salmon was fresh and delicious, and
the menu said it was caught locally that morning.”
Here, annotators may differ in terms of factuality
because verifying whether the salmon was actually
caught locally that morning depends on external
knowledge. Some annotators may treat the review
as mostly accurate (focusing on the true parts, such
as the quality of food), while others may penalise
the potentially incorrect claim about the source
of the salmon. So, the inter-annotator agreement
score for factuality is moderate in our proposed
dataset; however, this truly reflects the nature of
reviews, where factual accuracy often depends on
context and can be interpreted differently by anno-

tators.

A.3 Comparison of the Proposed
DetectAIRev Dataset with Existing
AI-Generated Text Detection Datasets

To demonstrate the distinct breadth, relevance, and
novelty of our proposed dataset, we perform a
comparative analysis with existing AI-generated
text detection datasets from the literature, as sum-
marised in Table 12. Existing AI-generated text
detection datasets in the literature primarily fo-
cus on domains such as question answering, sci-
entific writing, and news articles, and often in-
clude AI-generated text produced by only a few
notable LLMs, such as GPT. In contrast, our Detec-
tAIRev dataset comprises both human-authored
and LLM-generated texts spanning diverse do-
mains, including book, e-commerce, movie, hotel,
travel, and restaurant reviews. It further incorpo-
rates AI-generated reviews produced by a broader
range of recent LLMs, including LLaMA, Mis-
tral, DeepSeek, Phi, Gemma, Qwen, and GPT-3.
This diversity establishes our dataset as a realistic
and comprehensive benchmark for AI-generated
review detection, enabling more reliable evalua-
tion and generalization of detection models across
diverse domains and writing styles.

B Feature Extraction and Estimation for
Linguistic, Readability, and
Psychological Features

Linguistic, readability, and psychological features
were computed using standard NLP and readability
formulas as mentioned in the literature (Mindner
et al., 2023; Agrahari et al., 2024). Linguistic met-
rics such as word, sentence, and character counts
were extracted using library NLTK and spaCy.
Also, readability measures are formula-based met-
rics: Flesch Reading Ease (FRE) (Fleiss, 1971) as
defined in Eq. 7 and Flesch–Kincaid Grade Level
(FKGL) (Eq. 8 used word, sentence, and syllable
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ratios.

FRE = 206.835−1.015× # Words
# Sentences

−84.6×# Syllables
# Words

(7)

FKGL = 0.39× # Words
# Sentences

+11.8× # Syllables
# Words

−15.59

(8)

Gunning Fog Index considered complex words as
defined 9; Similarly formular for all other such as
Dale–Chall and SMOG Index estimated difficulty
based on unfamiliar and polysyllabic words; Au-
tomated Readability Index (ARI) used character
and word length; and Yule’s K captured lexical
richness from word frequency distributions.

GFI = 0.4 ×
(

# Words
# Sentences

+ 100 × # Complex Words
# Words

)
(9)

Table 13 lists the range and interpretation of all
readability metrics. On the other hand, psycho-
logical features were derived using VADER and
TextBlob for sentiment polarity and LIWC (Pen-
nebaker et al., 2001) or NRC Emotion Lexi-
con (Mohammad and Turney, 2013). for emo-
tional and cognitive categories. Finally, coher-
ence was measured via cosine similarity between
consecutive sentence embeddings from Sentence-
BERT (Zhang* et al., 2020), reflecting logical flow
and semantic consistency. The extraction and anal-
ysis of these features help in evaluating content au-
thenticity and distinguishing between human and
LLM-generated reviews effectively.

C Hyperparameters and Training
Configuration

We train the proposed ProtoFewRoBERTa model
within an episodic meta-learning framework de-
signed for few-shot classification. Each episode
samples a subset of classes and constructs corre-
sponding support and query sets. The model em-
ploys RoBERTa as the base encoder, followed by
a trainable projection layer to obtain task-adaptive
embeddings. Class prototypes are computed from
support samples, and query samples are classi-
fied based on their proximity to the nearest pro-
totype in the embedding space using the squared
Euclidean distance. Model parameters are opti-
mized using the AdamW optimizer with a negative
log-likelihood loss over the query set. The key
hyperparameters and training configurations are
summarized in Table 14.

Metric Range Interpretation

Flesch Read-
ing Ease
(FRE)

90–100 Very easy (e.g., children’s books)

70–89 Easy to read (e.g., general news)
50–69 Fairly difficult (e.g., academic articles)
30–49 Difficult (e.g., technical writing)
0–29 Very difficult (e.g., legal text)

Flesch-
Kincaid
Grade Level
(FK Grade)

0–5 Very easy (elementary level)

6–8 Fairly easy (middle school)
9–12 Standard difficulty (high school)
13+ Difficult (college and above)

Gunning Fog
Index

6–8 Easy to read (general audience)

9–12 Moderately difficult (high school level)
13+ Difficult (college level and above)

Dale-Chall
Readability
Score

4.9 or lower Easily understood by 4th graders

5.0–9.9 Standard difficulty (grades 5–12)
10+ Difficult (college level)

SMOG Index 1–6 Easy to read (elementary to middle school)
7–9 Fairly difficult (high school)
10+ Difficult (college level and above)

Automated
Readability
Index (ARI)

1–5 Very easy (elementary school)

6–8 Fairly easy (middle school)
9–12 Standard difficulty (high school)
13+ Difficult (college level and above)

Yule’s K Low Simple, repetitive text
Medium Moderate lexical variety

High Complex text with diverse vocabulary

Table 13: Interpretation of Readability Metrics

D Effect of Support and Query Set Sizes
on the Performance of
ProtoFewRoBERTa

To study the influence of the number of sup-
port samples per class (K) and the number of
query samples per class (Q) on the performance
of ProtoFewRoBERTa, we conduct an empirical
evaluation over two key hyperparameters: (i) the
number of support samples per class (K) and (ii)
the number of query samples per class (Q). We
evaluated the performance of ProtoFewRoBERTa
by varying the number of support samples per class
(K) across 4, 8, 16, 32, and 64, and the number
of query samples per class (Q) across 10, 15, 20,
and 30, to examine their impact on overall model
effectiveness. Table 15 presents the performance
of the proposed ProtoFewRoBERTa model across
different values of K and Q. Table 15 reveals that
ProtoFewRoBERTa achieves its best performance
at K = 8 and Q = 15, with the highest accuracy
and F1 scores across both human and AI-generated
review classes. Increasing K or Q beyond K = 8
and Q = 15 does not lead to further improvements
and, in fact, slightly degrades performance, likely
due to redundancy and reduced episode diversity.
Conversely, smaller K and Q values provide insuf-
ficient support and query representation, limiting
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Parameter Value / Description

Base Encoder RoBERTa-base
Projection Layer Trainable linear layer
Few-shot Classes per Episode (N ) 8
Support Samples per Class (K) 8
Query Samples per Class (Q) 15
Optimizer AdamW
Learning Rate 2e-5
Weight Decay 0.01
Batch Size (episodes) 100
Dropout Rate 0.1 (on projection layer)
Sequence Length 256
Training Episodes 1000
Loss Function Episodic Negative Log-Likelihood
Distance Metric Squared Euclidean Distance
Hardware NVIDIA A100 (40GB GPU)
Train:Val:Test 70:10:20

Table 14: Hyperparameters and training settings for the
proposed ProtoFewRoBERTa model.

Para. Value Accuracy F1-Human F1-AI

K-shot

4 0.93 0.92 0.93
8 0.98 0.97 0.98
16 0.94 0.93 0.93
32 0.93 0.93 0.93
64 0.92 0.91 0.91

N-Query

10 0.95 0.93 0.97
15 0.98 0.97 0.98
20 0.92 0.92 0.92
30 0.93 0.92 0.92
40 0.93 0.92 0.92

Table 15: Performance across varying support and query set
sizes.

generalisation. From such observations, we con-
clude that a moderate number of support and query
samples per class (K = 8, Q = 15) offers the op-
timal trade-off between representational diversity
and learning stability.

E Description of the SemEval Dataset

In SemEval 2024 Task 8 (Subtask A) (Wang
et al., 2024) (monolingual track), the focus is
on English-only texts aimed at distinguishing
machine-generated from human-written content.
The dataset, summarised in Table 16, includes
statistics across multiple text generators, domains,
and data splits. The training set covers five do-
mains—Wikipedia, WikiHow, Reddit, arXiv, and
PeerRead—comprising 56,400 machine-generated
and 63,351 human-written texts. The develop-
ment (Dev) set introduces BLOOMz as an un-
seen generator, with 2,500 machine-generated and
2,500 human-written samples. The test set utilises
OUTFOX (Koike et al., 2024) as the surprising
domain and GPT-4 as the surprising generator,
comprising a total of 18,000 machine-generated
and 16,272 human-written texts. This configu-
ration ensures a diverse and challenging evalua-

tion environment for detecting AI-generated con-
tent. Our proposed Dataset and Code repository
are publicly available at the https://huggingf
ace.co/datasets/Sifi-world/DetectAIRev and
https://github.com/sifii/Detect-AI-Generated-
Reviews-ProtoFewRoBERTa-and-DetectAIRev.

F Fusion of Stylometric Features with
RoBERTa

We integrate stylometric and linguistic features
into the RoBERTa-based classification framework
using a feature fusion strategy. We first extract
the stylometric and linguistic features described
in Section 3.1.1, encompassing lexical, readability,
sentiment, psycholinguistic, and similarity-based
metrics. Next, these features are aggregated into
a fixed-length feature vector that represents each
input text. While training RoBERTa with fea-
ture fusion, each input review is passed through
RoBERTa to obtain the [CLS] token representation.
Subsequently, the [CLS] token representation is
concatenated with the external, handcrafted, fixed-
length feature vector. Next, the concatenated fea-
ture vector is passed through a fully connected neu-
ral network layer, enabling the model to learn from
both contextual embeddings and interpretable sty-
lometric cues jointly. This fusion approach lever-
ages the deep language understanding capabilities
of RoBERTa alongside the interpretability and dis-
criminative power of handcrafted features, result-
ing in improved performance in distinguishing AI-
generated reviews from human-written ones. As
evident in Table 8, integrating stylometric features
with RoBERTa leads to a clear improvement over
using RoBERTa alone. This enhancement demon-
strates that incorporating linguistic and stylistic
cues such as lexical richness, readability, and emo-
tional tone provides complementary information
that strengthens the ability of the model to distin-
guish between human-written and LLM-generated
reviews. The fusion of deep contextual embed-
dings with interpretable handcrafted features, there-
fore, results in a more robust and explainable de-
tection framework.

G Comprehensive Review Dataset
Design: Human, Facet-Aware, and
Adversarial Perspectives

To produce high-quality LLM-generated reviews
that closely align with human-authored content,
we adopted a human-aligned prompting strategy
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Split davinci-003 ChatGPT Cohere Dolly-v2 BLOOMz GPT-4 Machine Total Human Total

Train

Wikipedia 3,000 2,995 2,336 2,702 – – 11,033 14,497
Wikihow 3,000 3,000 3,000 3,000 – – 12,000 15,499
Reddit 3,000 3,000 3,000 3,000 – – 12,000 15,500
arXiv 2,999 3,000 3,000 3,000 – – 11,999 15,498
PeerRead 2,344 2,344 2,342 2,344 – – 9,374 2,357

Dev

Wikipedia – – – – 500 – 500 500
Wikihow – – – – 500 – 500 500
Reddit – – – – 500 – 500 500
arXiv – – – – 500 – 500 500
PeerRead – – – – 500 – 500 500

Test

Outfox 3,000 3,000 3,000 3,000 3,000 3,000 18,000 16,272

Table 16: Subtask A: Monolingual Binary Classification. Data statistics for Train/Dev/Test splits across various
models and sources.

across five domains: E-Commerce, Hotel, Movie,
Book, and Restaurant. For E-Commerce, we
used the Women’s E-Commerce Clothing Reviews
dataset and designed prompts like storytelling,
comparative, and use-case specific reviews (e.g., a
34-year-old reviewing a “Classic Fit Jacket” rated
4 stars). Hotel reviews were based on TripAdvisor
data, with prompts focusing on experiential narra-
tives and occasion-based stays (e.g., a honeymoon
highlighting luxury and service). Movie prompts
leveraged IMDb-style emotional and critic-style
reviews (e.g., describing acting and visuals with-
out naming the movie). For Book reviews, we
chose emotionally rich 4–5 star Amazon reviews
and crafted recommendation prompts (e.g., prais-
ing character development despite a low rating).
Restaurant reviews, drawn from short user entries,
were generated using expressive, emotional, and
comparative prompts (e.g., poetic descriptions of
ambiance or flavor comparisons). This prompting
framework emphasized emotional realism, person-
alization, and stylistic diversity to mirror human
review patterns across all domains.

G.1 Adversarial Attacks for Realistic Review
Generation

To enhance the realism and robustness of the
DetectAIRev dataset, we introduce adversarial
perturbations to a subset of LLM-generated re-
views. These perturbations simulate strategies com-
monly used to evade AI-generated text detection
systems. Inspired by techniques outlined in Dugan

et al. (2024), we apply the following three types of
adversarial attacks:

• Alternative Spelling: Common words are re-
placed with regionally or phonetically equiv-
alent variants (e.g., “color” → “colour”, “fa-
vorite” → “favourite”) to test sensitivity to
orthographic variants.

• Paraphrasing (Rewrite) Attack: Sentences
are rephrased using automatic paraphrasing
tools or prompt-based rewriting to retain se-
mantic meaning while altering syntax and
style. This attack challenges the detector’s
ability to generalize beyond surface-level
phrasing.

• Misspelling Attack: Intentionally introduced
spelling errors (e.g., “excellent” → “excel-
lant”, “battery” → “batery”) are used to sim-
ulate noisy user input and test the detector’s
robustness to typographical noise.

Each attack type was applied to a random sub-
set of LLM-generated reviews across different do-
mains and models. These adversarial variants are
included in the dataset with corresponding meta-
data flags to support targeted evaluation and robust-
ness testing of detection models.

G.2 Prompting Strategies and Evaluation

To generate LLM-based reviews closely aligned
with human-written reviews, we designed multi-
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ple prompting strategies—namely zero-shot, few-
shot, replication-based, and facet-guided prompt-
ing. Each approach was applied to gener-
ate domain-specific reviews (E-commerce, Hotel,
Book, Movie, and Restaurant), and their outputs
were evaluated against human-written reviews us-
ing BLEU and METEOR scores.

Zero-Shot Prompting. In the zero-shot set-
ting, the LLM was only provided with a sin-
gle task instruction without examples. For in-
stance, in the hotel domain, the prompt was:
"Generate a realistic review where a
{Age}-year-old user shares their experience
using the product ’{Title}’, rated {Rating}
stars. Focus on durability and value."
"Use review/score and summary by {profileName}
to recommend {Book Title}. Mention plot
richness, price, and time."

While effective at producing grammatically sound
outputs, these reviews tended to be generic, lack-
ing the stylistic nuance and domain-specific flair
present in human reviews.

Few-Shot Prompting. This strategy involved
providing 5–6 diverse human-written examples be-
fore the instruction. These examples were rotated
every 100 generations to promote diversity. A rep-
resentative few-shot hotel review prompt looked
like:

Example 1: "The location was perfect
and the staff were incredibly helpful.
The breakfast buffet was a highlight
of my trip."

Example 2: "Our room had a fantastic
view of the skyline and the amenities
exceeded expectations."

Now, write a similar 5-star hotel
review based on a comfortable stay,
emphasizing service and cleanliness.

Few-shot prompting produced outputs that were
significantly more human-like in tone, often repli-
cating patterns of authentic customer expression.

Replication-Based Prompting. In this setting,
we selected high-quality human-written reviews
and instructed the LLM to mimic their tone, struc-
ture, and stylistic richness while altering the con-
tent. For example:

Here is a {Human written} hotel
review: "From the check-in to
check-out, everything was seamless.
The concierge made sure we had local
maps and restaurant tips."

Now, write a new review about
a different hotel experience that
matches this style and structure.

This approach improved coherence and para-
graph structuring in generated reviews and helped
simulate human discourse organization.

Facet-Guided Prompting. To further enrich
the generation process, we incorporated key re-
view facets such as sentiment, aspects (e.g., service,
price, ambiance), and user profiles (e.g., occasion,
age). An example from the restaurant domain is:
"Write a detailed restaurant review covering
the following facets: facets 1, facets 2, and
facets 3."

These facet-driven prompts ensured higher con-
tent grounding and emotional resonance, key to
aligning with human preferences.

Evaluation Using BLEU and METEOR. To
quantify the similarity between human-written and
LLM-generated reviews, we computed BLEU and
METEOR scores across domains. As shown in
Figure 2, The llm generation achieved BLEU and
METEOR scores closest to human reference re-
views. In summary, the use of few-shot and facet-
guided prompting yielded the most human-aligned
reviews, capturing not only the lexical patterns but
also the emotional and structural authenticity of
real reviews. These strategies proved essential in
bridging the gap between synthetic and human-
authored review generation.

G.3 Facet-Aware Review Generation

This section elaborates on the facet-aware review
generation strategy used in our dataset. By guid-
ing Large Language Models (LLMs) to focus on
specific aspects (or facets) extracted from human-
written reviews, we enhance the alignment and
realism of the generated content. To emulate the
natural focus of human reviewers, we performed
facet analysis on each human-written review RH.
Facets refer to the key aspects frequently discussed
by users in reviews. These include domain-specific
elements such as “food quality” or “room cleanli-
ness” as mention in Table 17. We extracted candi-
date facets using a two-step approach:

2136



Domain Facet 1 Facet 2 Facet 3 Facet 4 Facet 5

Restaurant Food Quality Service Ambiance Price Location
Hotel Cleanliness Staff Behavior Amenities Location Check-in Process
Movie Plot Acting Cinematography Soundtrack Pacing
Book Writing Style Characters Storyline Themes Length
E-Commerce Product Quality Delivery Time Price Packaging Return Policy

Table 17: Top-5 most frequently mentioned facets in human-written reviews (RH) across different domains.

• Linguistic Phrase Extraction: We applied
noun phrase chunking using spaCy to identify
candidate aspect terms from each review.

• TF-IDF Ranking and Filtering: Domain-
specific high-TF-IDF terms were retained as
dominant facets. Manual curation ensured
aspect relevance.

Facet-aware prompting plays a crucial role in en-
suring the semantic fidelity and human-likeness of
LLM-generated reviews. By incorporating domain-
specific aspect control, we ensure that LLM re-
views are more nuanced and comparable to real-
world human-authored content, thereby enriching
the dataset and enhancing the robustness of down-
stream detection tasks.

H Comprehensive Evaluation: Ablation
Studies and Error Analysis

H.1 Qualitative Error Analysis
To better understand the limitations of
ProtoFewRoBERTa, we conducted a qualita-
tive error analysis on misclassified examples from
the test set. Table 18 presents representative cases
where the model failed to correctly identify the
origin of a review (i.e., human or LLM-generated).

We identify three key error patterns: (i) Generic
brevity – short, templated human reviews often
resemble LLM outputs; (ii) Polished rewrites –
formal or paraphrased human reviews are misclas-
sified due to surface style; (iii) Noisy text – un-
grammatical or informal language in human re-
views is mistaken for LLM-generated content.

H.2 Evaluating the Importance of
Stylometric Features in AI-Generated
Review Detection

To analyse the importance of stylometric features,
as discussed in Subsection 3.1.1, we conducted
post-hoc analyses and empirical evaluations to
identify which features are most influential for
AI-generated review detection and how they con-
tribute to distinguishing human-written from LLM-

Figure 2: BLEU (green) and METEOR (orange) scores
between human and each LLM, showing that DeepSeek-
generated reviews are most similar to human-written ones.

True Review Snippet PredictedLikely Cause

Human "Great value. Worked as expected. Would buy again." LLM Too short / templated phrasing

Human "This product delivered on all fronts—excellent quality and
exceptional value."

LLM Adversarial rewrite mimics
LLM style

LLM "The aesthetics of the device blend seamlessly with modern
home decor."

Human Subjective tone / stylistic person-
alization

LLM "It’s okay, nothing special. Gets the job done." Human Flat tone; resembles minimal
user feedback

Human "Gud prodct. Wurks gr8! Thnx." LLM Non-standard spelling; per-
ceived as synthetic

Human "One of the most beautiful place in Nepal. It is heaven
human."

LLM Ungrammatical phrasing; per-
ceived as unnatural

Human "I love this dress and want it in every color." LLM Common LLM-generation pat-
tern for positive sentiment

Table 18: Representative error cases and analysis from
ProtoFewRoBERTa.

generated reviews. As shown in Table 19, We
consider the following characteristic in our em-
pirical evaluations: (i) Lexical + Length, (ii) Sty-
lometry + Readability, (iii) Spelling + Noise, (iv)
POS + Syntax, (v) Discourse Markers, (vi) Redun-
dancy+Entropy, (vii) LM Stats (PPL+ Burgundi-
ness) (viii) Sentiment/Subjectivity (ix) Emotional
words + Personal experience phrases (x) All (fea-
tures only) and (xi) Hybrid (RoBERTa + All) list
each feature one by one and add a line about the
feature. From Table 19, it is evident that while
features such as emotional words and personal
experience phrases help distinguish shorter hu-
man reviews, their individual predictive power re-
mains limited. The hybrid model, which combines
RoBERTa embeddings with stylometric feature
types, achieves the best overall performance, high-
lighting the complementary nature of linguistic
features and transformer-based embeddings.
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Embedding / Features Accuracy F1-H F1-AI

Lexical + Length 0.5523 0.56 0.55
Stylometry + Readability 0.5580 0.55 0.53
Spelling and Noise 0.5210 0.53 0.51
POS / Syntax 0.5820 0.59 0.58
Discourse Markers 0.5765 0.58 0.57
Redundancy and Entropy 0.5380 0.54 0.53
LM Stats (PPL and Burstiness) 0.6123 0.59 0.60
Sentiment and Subjectivity 0.5715 0.57 0.57
Emotional Words and Phrases 0.5272 0.53 0.52
All (Features Only) 0.5625 0.55 0.58
Hybrid (RoBERTa + All) 0.9576 0.95 0.96

Table 19: Performance comparison of different embedding
and feature sets for AI-generated text detection.

H.3 Bias and Generalization Challenges
across English Variants

To evaluate the robustness of our model against
linguistic normalisation and spelling variation,
we conducted an empirical analysis examining
the effect of preprocessing on detection perfor-
mance. This analysis is crucial for assessing
whether standardisation and the inclusion of non-
standard English forms influence the ability of
the model to fairly and consistently distinguish
human-written from AI-generated reviews. We in-
corporated a preprocessing step into the proposed
DetectAIRev dataset. Specifically, we normal-
ized British spellings to American spellings (e.g.,
“colour” → “color”, “favourite” → “favorite”),
and flagged simplified non-standard spellings (e.g.,
“Gud”, “luv”, “plz”, “coz”). Additionally, we in-
cluded a small number of non-standard English
samples in training for regularization. The dataset
was tested with our proposed method as shown in
Table 20.

Dataset Acc F1-H F1-AI

DetectAIRev 0.983 0.970 0.981
DetectAIRev (after preprocessing) 0.971 0.964 0.973

Table 20: Comparison of ProtoFewRoBERTa performance
before and after text standardisation and normalisation on the
DetectAIRev dataset.

Table 20 reveals that preprocessing the Detec-
tAIRev dataset leads to only a marginal decrease
in performance across all metrics. Notably, the
results demonstrate that the model does not exhibit
misclassification bias toward non-standard English
(e.g., simplified spellings such as “Gud prodct").

H.4 Robustness of ProtoFewRoBERTa under
Deep Semantic Adversarial Attacks

To investigate the robustness of
ProtoFewRoBERTa against adversarial at-
tacks, we manually constructed two deep semantic

adversarial examples by rewriting existing reviews
to maintain their original sentiment and semantic
content while introducing substantial stylistic
variations. For instance, simple declarative
sentences were transformed into complex or
exclamatory ones; synonyms, and phrase-level
variations. Table 21 presents the performance of
our proposed model, ProtoFewRoBERTa, trained
on the DetectAIRev dataset and evaluated on the
newly curated deep semantic adversarial test set to
assess its robustness against semantic and stylistic
perturbations. Table 21 presents the performance
of our proposed model, ProtoFewRoBERTa,
trained on the DetectAIRev dataset and evaluated
on the newly curated deep semantic adversarial
test set to assess its robustness in detecting
AI-generated reviews exhibiting semantic and
stylistic perturbations.

Dataset Accuracy F1-Human F1-AI

DetectAIRev 0.983 0.970 0.980
Add Deep Adversarial 0.895 0.840 0.880

Table 21: ProtoFewRoBERTa performance under deep se-
mantic adversarial examples.

Table 21 reveals that ProtoFewRoBERTa ex-
hibits notable robustness in detecting AI-generated
reviews under deep semantic adversarial condi-
tions. Although its performance shows a relative
decline when faced with stylistic and structural
perturbations, the model consistently preserves its
ability to capture core sentiment cues. This obser-
vation suggests that the model generalises effec-
tively to linguistically diverse inputs and remains
resilient against semantically preserved adversarial
manipulations.

H.5 Incorporating Review-Specific Cues into
the Prototype Formation Process of
ProtoFewRoBERTa

Understanding the subtle linguistic characteris-
tics that distinguish human-written from LLM-
generated reviews requires more than seman-
tic representation alone. Conventional proto-
type formation in few-shot frameworks, such as
ProtoFewRoBERTa, often relies on uniform aver-
aging of embeddings, which may overlook stylis-
tic signals uniquely indicative of review authen-
ticity, including emotional tone, personal pronoun
use, or informal phrasing. To address this limita-
tion, we enhance ProtoFewRoBERTa by integrat-
ing lightweight, review-specific cues into prototype
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computation, which enables the model to assign
greater importance to linguistic traits that more
accurately capture the writing patterns of genuine
human reviews versus synthetic ones, thereby en-
hancing interpretability and robustness.

We further implemented a Feature Weighted Pro-
totype (FWP) aggregation strategy under four dif-
ferent settings:

(i) ProtoFewRoBERTa (average): This setup
computes class prototypes by taking the simple
mean of RoBERTa-derived embeddings across all
support samples, treating each review equally with-
out incorporating any stylistic or feature-based
weighting.

(ii) ProtoFewRoBERTa+FWP(rule-based):
The objective of this step is to move beyond av-
eraging all review embeddings equally. Instead,
we assign higher weights to reviews that exhibit
typical review cues, such as first-person phrases
or emotional words, so that class prototypes better
reflect realistic review characteristics. Each review
x is represented in two complementary ways. First,
a RoBERTa embedding e(x) captures its seman-
tic meaning in a dense vector space. Second, a
lightweight cue vector z(x) encodes interpretable
surface features, including the frequency of first-
person words, emotional word density, the use of
connectors or templates, n-gram repetition, and the
rate of typos or out-of-vocabulary tokens. These
features are standardized (z-scored) so that they
can be consistently compared. Rule-based weight-
ing. We then compute a weight for each review
using simple rule-based functions. For human-
written reviews, the weight is increased when first-
person words or typos appear, but decreased when
connectors or repeated phrases dominate. Con-
versely, for LLM-generated reviews, the weight
is increased when connectors and repetitions are
frequent, but decreased when typos or first-person
usage is high. To ensure stability, the weights are
clipped between 0.5 and 2.0.

(iii) ProtoFewRoBERTa + FWP (learned):
learned parameter-based feature weighting: To
compute a prototype for each class (human or
LLM), we start with the support set of examples be-
longing to that class. Each example is first mapped
into an embedding space using RoBERTa, and then
multiplied by a weight that reflects its linguistic
cues. Mathematically, the prototype is obtained
by taking the weighted sum of the embeddings for
all examples in the class and normalizing it by the
total weight. This ensures that more representative

samples contribute more strongly to the prototype
than less representative ones. Weight Estimation:
The weight wc(x) for each support example is esti-
mated using lightweight linguistic cues extracted
from the review text. Specifically, we compute
a small feature vector that includes interpretable
statistics such as the rate of first-person pronouns,
emotional word density, the use of connectors/tem-
plates, n-gram repetition, and the frequency of ty-
pos or out-of-vocabulary tokens. These features
are standardized (z-scored) and combined through
simple rule-based functions: For human-written re-
views weights are increased by first-person usage
and typos but decreased by excessive connectors
or repetition. For LLM-generated reviews weights
are increased by connectors and repetition but de-
creased by first-person usage or typos. To avoid
extreme scaling, the final weight is clipped within
a stability range (e.g., 0.5 to 2.0). In this way, the
weight reflects how representative a sample is of
its class, and more typical reviews contribute more
strongly to the prototype.

(iv) ProtoFewRoBERTa + FWP + length-
norm: feature weighting with length normaliza-
tion for short texts: Instead of using only hand-
crafted rules, we also learn per-class scorers di-
rectly from the linguistic cues. For each review,
the cue vector is combined with a set of learned
parameters to produce a score. This score is then
transformed into a positive weight, which is used
in the prototype computation. The parameters for
this scorer are trained jointly with the encoder in
an episodic framework, using query cross-entropy
loss. To ensure stability and interpretability, cue
features are z-scored, and embeddings are L2-
normalized. The number of cues is kept small
(8) to maintain efficiency. For short texts, we apply
length normalization so that very short reviews do
not dominate the prototype computation.

The results in Table 22 demonstrate that
while the simple averaging baseline of
ProtoFewRoBERTa achieves the highest
overall accuracy, incorporating feature-weighted
prototypes improves interpretability and maintains
competitive performance. The learned feature-
weighted variant outperforms the rule-based
approach, indicating that the model benefits
from adaptively learning the relative importance
of review-specific cues. Furthermore, adding
length normalization yields a balanced trade-off
between accuracy and class-wise F1 scores,
suggesting that normalization helps stabilize
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Method Acc F1-H F1-AI

ProtoFewRoBERTa (average) 0.9830 0.970 0.980
ProtoFewRoBERTa + FWP (rule-based) 0.9355 0.940 0.950
ProtoFewRoBERTa + FWP (learned) 0.9555 0.940 0.960
ProtoFewRoBERTa + FWP + length-norm 0.9643 0.960 0.980

Table 22: Comparison of ProtoFewRoBERTa and its variants with Feature Weighting Prototype (FWP) and length normalization
on short texts.

prototype representations for shorter reviews
without compromising detection precision.

H.6 Analysis of Cross-Domain Robustness of
ProtoFewRoBERTa across Unseen
Review Domains

Evaluating model robustness beyond the training
domain is essential for understanding real-world
generalization. In practical deployment scenarios,
AI-generated review detection systems must op-
erate reliably across diverse domains and writing
contexts that differ from their training data. To
assess this cross-domain adaptability, we examine
how models trained on our proposed dataset, De-
tectAIRev, perform when exposed to previously
unseen domains. Specifically, we evaluate our
methods on the Product Review and Hotel Review
datasets, which serve exclusively as test sets to
simulate domain shift and linguistic variability.

Domain Acc F1-H F1-AI

SemEval 0.71 0.65 0.80
Product Review 0.70 0.68 0.71
Hotel Review 0.88 0.88 0.88

Table 23: Performance across different domains when trained
on the proposed dataset.

Table 23 presents the performance of our pro-
posed model ProtoFewRoBERTa when trained on
the proposed DetectAIRev dataset and evaluated
on the Product Review and Hotel Review datasets.
The performance of the proposed method in Ta-
ble 23 indicates that models trained on the Detec-
tAIRev dataset demonstrate strong generalisation
capability to the Hotel Review domain, achiev-
ing high accuracy and balanced F1 scores across
human and AI-generated classes. In contrast,
performance on the Product Review domain de-
clines moderately, suggesting sensitivity to domain-
specific linguistic variations such as descriptive
product terminology and informal phrasing. From
such observations, we conclude that while the pro-
posed model generalizes effectively to semantically
similar domains, its robustness can be further im-
proved for domains exhibiting greater lexical and

stylistic divergence from the training distribution.
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