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Abstract

Vision-Language Models (VLMs) have demon-
strated impressive capabilities across a range
of tasks, yet concerns about their potential bi-
ases persist. This work investigates the cultural
biases in state-of-the-art VLMs by evaluating
their performance on an image-based country
identification task at the country level. Uti-
lizing the geographically diverse Country211
(OpenAl, 2021) dataset, we probe VLMs via
open-ended questions, multiple-choice ques-
tions (MCQs), and include challenging multi-
lingual and adversarial task settings. Our anal-
ysis aims to uncover disparities in model ac-
curacy across different countries and question
formats, providing insights into how training
data distribution and evaluation methodologies
may influence cultural biases in VLMs. The
findings highlight significant variations in per-
formance, suggesting that while VLMs possess
considerable visual understanding, they inherit
biases from their pre-training data and scale,
which impact their ability to generalize uni-
formly across diverse global contexts.

1 Introduction

VLMs have rapidly advanced, demonstrating ex-
ceptional capabilities in integrating visual and tex-
tual information for a wide array of tasks, from
image captioning to visual question answering (Liu
etal., 2024; Alayrac et al., 2022; Wang et al., 2024).
These models are increasingly being deployed in
diverse applications, impacting areas such as ed-
ucation, healthcare, and public services globally
(Zhang et al., 2024).

However, as their influence grows, so do con-
cerns regarding their potential to perpetuate and
even amplify societal biases present in their train-
ing data (Zhao et al., 2017; Zhou et al., 2022; Ca-
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bello et al., 2023; Weng et al., 2024). Cultural and
geographical biases are of particular concern be-
cause they can lead to unequal performance and rep-
resentation across different populations and regions
of the world (AlKhamissi et al., 2024; Manvi et al.,
2024). Defining "culture" is inherently complex,
encompassing a broad spectrum of social norms,
values, practices, languages, and historical contexts
that shape the lived experiences of individuals and
communities (Kroeber et al., 1985) (Yadav et al.,
2025a). Establishing culture in computational set-
tings presents a persistent challenge due to its mul-
tifaceted and dynamic nature. Empirical studies
employ tractable proxies such as demographic or
geographic proxies to enable systematic analysis
(Liu et al., 2021; Adilazuarda et al., 2024; Yadav
et al., 2025b). While nation-level aggregation can
mask sub-national heterogeneity, prior work in hu-
man—computer interaction and cultural analytics
has demonstrated that country labels often serve as
a practical proxy for coarse-grained cultural signals
when large-scale analyses are required (Obradovich
et al., 2022).

In order to quantify cultural disparities in VLMs,
we adopt image-based country identification as a
concrete proxy task in which a model must both in-
fer an image’s country of origin solely from visual
cues and also provide a justification. Prior work
has shown that geolocation tasks reveal representa-
tional imbalances in visual models, as performance
often correlates with the prevalence of training data
from different regions (Pouget et al., 2024).

The main contributions of this paper are:

1. We introduce a scalable framework to evaluate
cultural biases in VLMs using an image-based
country identification task over 211 countries,
leveraging the geographically diverse and bal-
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Figure 1: Visualization of the average country-wise recognition accuracy across the VLMs studied in this paper.
VLMs perform well at recognizing images from North American and Western European countries, but there are
clear disparities in performance for African and Central American countries.

anced Country211 dataset.

2. We systematically probe VLMs under var-
ied settings—open-ended and multiple-choice
questions (MCQs) with both random and cul-
turally similar distractors—alongside multi-
lingual prompts in five languages, to capture
nuanced cultural and linguistic disparities.!

3. We examine model robustness to image pertur-
bations and analyse performance across nine
image categories (e.g. architecture, landscape,
food etc), revealing the influence of image
content on cultural bias.

4. Our findings show that VLM biases do not
consistently favour Western countries; instead,
biases often reflect over representation of cer-
tain popular countries (e.g., India, USA) in
the training data®, suggesting a more complex
bias landscape.

2 Related Work

Recent work has explored the socio-cultural dimen-
sions of VLMs, including how they encode, ex-
press, and respond to culturally specific knowledge.
Studies have examined value alignment (Choenni
and Shutova, 2024), moral reasoning across lan-
guages (Agarwal et al., 2024), and cultural persona

"Due to cultural similarities, misclassification among sim-
ilar countries is more likely than misclassification with an
unrelated country. MCQ with random and similar distractors
tested the VLM in both scenarios as to whether misclassifica-
tion would occur when all distractors are neither neighboring
nor similar countries

%For deliberately under specified inputs without country
names, the generated images most reflect the surroundings of
the United States followed by India. (Basu et al., 2023)

(AlKhamissi et al., 2024), while also uncovering
strong Western biases in model outputs (Naous
et al., 2024) which risk marginalizing cultural di-
versity if deployed in real world. There have also
been efforts to address these concerns, like prompt-
ing based on ethnographic fieldwork (AlKhamissi
et al., 2024) and fine-tuning culture-specific LLMs
(Li et al., 2024a). Similar studies have been per-
formed for Vision Language Models (VLMs) start-
ing from (Liu et al., 2021) over cultural aspects,
while (Nwatu et al., 2023) showed that CLIP (Rad-
ford et al., 2021) struggled in data for poor socio-
economic groups worldwide in the Dollar Street
dataset (Gaviria Rojas et al., 2022). State-of-the-art
off-the-shelf VLMs perform better when process-
ing images depicting western scenes than equiva-
lent East-Asian scenes for every vision task, such as
identification, question-answering, and art emotion
classification (Ananthram et al., 2025). It has also
been shown that VLMs show stronger performance
in Western concepts and weaker results in African
& Asian contexts(Liu et al., 2025; Yadav et al.,
2025b). These findings align with the fact that
large pretraining corpora are dominated by high-
resource languages. Of the samples that can be geo-
located in the Openlmages dataset (Kuznetsova
et al., 2020), 32% were from the USA, and 60%
came from only six Western countries (Shankar
et al., 2017). Such imbalance could lead to biases
in VLM behavior (de Vries et al., 2019).

Datasets & Benchmarks : To probe these biases,
a growing body of work has constructed specialized
datasets and benchmarks with cross-cultural con-
tent, such as MOSAIC-1.5k (Burda-Lassen et al.,
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Evaluation Languages Adversarial Regions Samples Categories
Cultural VQA (Nayak et al., 2024) Open-Ended 1 No 11 Countries 2,328 5
WorldCuisines (Winata et al., 2025) Both 30 Yes 189 Countries 6,045 Only Food
Food-500 CAP (Ma et al., 2023) Open-Ended 1 Yes 7 Regions 24,700  Only Food
MOSAIC-1.5k (Burda-Lassen et al., 2025) Open-Ended 1 No N/A 1,500 3
See It From My Perspective (Ananthram et al., 2025) ~ Open-Ended 2 No 2 Regions 38,479 4
CVQA (Romero et al., 2024) MCQ 31 Yes 39 Countries 5,239 10
GIMMICK (Schneider et al., 2025) Both(MCQ)** 1 No 144 Countries  1,741%* -
This paper Both 5 Yes 211 Countries 21,100 9

Table 1: Overview of prior datasets used in cultural recognition experiments. “: the values in brackets indicate the

features in the Country recognition task subset.

Label : €3 (Afghanistan)
Categories : [Appearance (Attire),
Text/Scripts/Flags]

Label : 4 (Bhutan)
Categories : [Appearance (Attire),
Architecture (Exterior),
Texts/Scripts/Posters]

Label : ™ (Singapore)
Categories : [Landscape (Water)]

Label: * (Japan)

Categories : [Architecture (Interior),
Texts/Scripts/Flags,
Patterns/Designs]

A o
Label : = (India)
Categories : [Appearance (Attires),
Appearance (People)]

Label : 5 (UK)
Categories : [Texts/Scripts/Flags]

Label : = (Kuwait)

Label : = (Egypt)
Categories : [Appearance (People)] o es: [1

Apperance (Attires)]

Figure 2: Examples of the Country211 dataset, alongside automatically-predicted categories for each image,
showcasing the visual diversity of the examples to be classified.

2025), CULTURAL-VQA (Nayak et al., 2024),
and GlobalRG (Bhatia et al., 2024). Many works
also opt for probing specific aspects of culture, such
as food (Li et al., 2024b), race (tse Huang et al.,
2025), art (Mohamed et al., 2024), etc., instead of
providing an overall view for bias study. (Winata
et al., 2025) introduced WorldCuisines for Food
Vision Question Answering and country identifica-
tion and found that VLMs often fail on adversari-
ally misleading contexts or less-common cuisines.
(Ma et al., 2023) introduced the Food-500 CAP
dataset and observed that most models exhibited
geographical culinary biases. Several studies have
also treated country-of-origin or geolocation as a
proxy for cultural provenance. WorldCuisines in-
cludes a country identification task to reveal fail-
ures on uncommon or misleading contexts (Winata
et al., 2025), and Food-500 CAP finds systematic
mismatches between predicted and actual coun-
tries of culinary images (Ma et al., 2023). Even
in datasets like Dollar Street (Gaviria Rojas et al.,
2022) or Openlmages (Kuznetsova et al., 2020), ge-
ographic metadata has been used to analyze repre-

sentational imbalances across regions (Nwatu et al.,
2023; Shankar et al., 2017), demonstrating that
country-level annotations provide a practical signal
for probing cultural and geographic bias in VLMs.
Table 1 presents an overview of datasets used for
cultural recognition experiments.

Impact of Evaluation: The format of evalua-
tion also impacts bias measurement. Many of
the above benchmarks use multiple-choice or bi-
nary questions, which can mask a model’s true
understanding. Since language choice can influ-
ence bias, benchmarks are often performed across
multiple languages. (Romero et al., 2024) showed
that the performance of LLaVA-1.5-7B dropped by
19.6% when prompted without multiple choices for
CVQA. Models also showed lower performance
when prompted in native language of the image’s
country of origin. However, (Ananthram et al.,
2025) observed that prompting in a culturally closer
language can reduce Western bias in some VLMs.
It was also observed that people of different cul-
tures are capable of differently capable of describ-
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ing what they see in an image (van Miltenburg et al.,
2017). We build on these insights by comparing
open-ended vs. multiple-choice prompts (including
“hard” questions with challenging distractors) and
by evaluating in both English and native languages,
to see how the prompting strategy affects cultural
bias in VLMs.

3 Dataset Used

The dataset used for the experiments is the Coun-
try211 (Radford et al., 2021) dataset, which is a
subset of images from YFCC100M (Thomee et al.,
2016) that has GPS coordinates associated with
them. The images cover several domains including
but not limited to - exterior architecture, interior ar-
chitecture, landscape (vegetation, nature, sky view),
people’s appearance, attires, scripts, texts, posters,
etc. The GPS coordinates associated with the im-
ages were then used to map them to individual
countries. ISO-3166 codes representing each coun-
try were used as labels for each image. ISO labels
were used for consistency as country names used by
the VLMs were not deterministic e.g. Britain was
also used simultaneously in place of Great Britain
or UK or its constituents, proving that the list of
tags and corresponding country names led to the
models responding consistently with no observable
difference in performance. For our experiments,
we utilized this dataset, which consists of 21.1 K
images i.e., 100 images each from 211 countries.

Key Differences: Existing benchmarks highlight
cultural blind spots in VLMs, but they generally
either cover fewer categories or countries or are
restricted to specialized domains. Our work differs
by using an image-based country-identification task
covering 211 countries, providing a broader geo-
graphic coverage, and adversarial probing. Further-
more, the datasets used in prior work contain im-
ages that might be easier to classify, including but
not limited to close-up shots of food items, popular
monuments being the primary object in an image,
etc. The Country211 dataset consists of images
with verified location information that were ran-
domly selected from each country. The dataset was
chosen to evaluate VLMs in realistic and practical
scenarios rather than curated/idealized conditions.
The issue of the representativeness of countries
is already taken into account by our experiments,
which test the VLMs with both culturally similar
and random distractors in the multiple-choice ques-
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Figure 3: Model-wise averaged accuracy when varying
the prompt language or selection of MCQA alternatives
(left: random; right: similar). Overall performance is
consistent across conditions.

tions, as well as in open-ended experiments.3

4 Experiments

Prompt Variations: We probed each VLM under
three complementary prompting paradigms.

1. Open-ended questions
2. MCQs (with random distractors)
3. MCQs (with similar distractors)

The open-ended experiments pose challenges for
objective scoring due to semantic variability. The
MCQs with random distractors may over-estimate
model performance because the distractors can
be easily ruled out by the model. The more
challenging MCQs with similar distractors are
expected to force models to discriminate between
culturally proximate options, thus exposing
fine-grained bias patterns. The MCQs are designed
as part of discriminative probing and to assess the
disparity in the model’s cultural knowledge.

Linguistic Variations: We further extend
discriminative proving to a multilingual setting,
prompting models in five languages: English
(ENG), Hindi (HIN), Chinese (ZHO), Portuguese
(POR), and Spanish (SPA) to assess the intersec-
tion of cultural and linguistic biases.

Image Perturbations: In addition to lin-
guistic variations, the open-ended experiments
were performed with these adversarial changes:

3The images are part of OpenAI’s YFCC100M dataset and
come with pre-verified country labels. Although some samples
might be difficult to classify, even for local experts, the primary
goal was to uncover cultural biases using the features that the
VLMs could probably misclassify with a culturally similar or
neighboring country, but frequently misclassify with a very
dissimilar country.
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1. Rotation by 90° clockwise,

2. Rotation by 90° counterclockwise
3. Flipping the image

4. Gray-scaling the image

Model Variations: A diverse set of VLMs
were tested including both proprietary and open-
weight models of varying sizes: Gemini-2.5-Flash,
Gemma-3-12B and 27B (Team et al., 2025), Aya-
Vision-8B, Aya-Vision-32B (Dash et al., 2025),
GPT-40-Mini (OpenAl et al., 2024), (etal, 2025).

The experiments are repeated with each permu-
tation of features, resulting in a total of 168.8 K
samples tested. Inference was done in JSON format
with the default hyperparameters for each of the
models tested through Cohere* and OpenRouter’s
APT. More on the JSON formatting and prompts
used can be found in Appendix D.

4.1 Open-Ended Evaluation

For the open-ended experiments, we asked each
model to respond to four questions: (1) name of
the country; (2) country selection rationale in a
few sentences; (3) a score from 0 to 100 that rep-
resents the model confidence in the classification;
and (4) up to 6 features from the image listed that
had an influence on the decision. The accuracies
of each country obtained using each of the VLMs
used can be seen in Figure 17. The accuracies of
many countries were far lower especially in East-
ern Europe, South America, Africa and Central
Asia. This gap between country level accuracies
was higher in open ended experiments compared
to the multiple-choice experiments.

4.2 MCQA with random distractors

For these experiments, we asked each model to
provide information on 4 areas: (1) name of the
country, (2) label of the chosen country from the
choices provided (3) country selection rationale in
a few sentences, and (4) a score from 0—100 repre-
senting the model confidence in the classification.
For these experiments, 4 countries were chosen at
random from among the other 210 countries for
each sample as distractors. The order of options
were then shuffled such that the distribution of cor-
rect answer choice is uniform. Compared to other
settings, this setting led to the highest average ac-
curacies performance. We expect this is due to the

4https ://docs. cohere.com/cohere-documentation
5https ://openrouter.ai/docs/quickstart

MCQA

Region Open-Ended Similar Random
North America 41.9 73.7 80.2
Central America 11.1 69.7 68.0
Caribbean 13.6 50.5 714
South America 20.4 70.9 68.7
Oceania 19.0 57.5 68.9
Western Europe 30.9 57.9 71.5
Northern Europe 25.3 60.6 79.4
Eastern Europe 26.6 53.4 759
Middle East 29.3 68.4 77.1
Central Asia 26.7 53.5 78.1
East Asia 43.6 71.6 83.8
Southeast Asia 41.7 67.5 81.7
South Asia 49.1 69.0 85.5
North Africa 31.9 54.3 78.9
Central Africa 11.8 57.0 68.2
Southern Africa 20.4 74.2 74.2
Overall 27.7 63.1 76.1

Table 2: Region-wise averaged accuracy across models.
There are consistent disparities in performance across
different regions, regardless of the prompting method.

clearly contrasting nature of the distractors used.
However, many central African nations still face a
recognition bias likely due to low representation in
training data. This was observed across all VLMs
that were tested, as show in Figure 18.

4.3 MCQA with similar distractors

Similar to the prior experiments with MCQs using
random distractors, in this setting we use similar
nations as distractors. These were chosen from
among the bordering nations. Any countries with
high similarity in culture ,if any, were added manu-
ally. (e.g. : Spain -> Mexico). This led to the av-
erage of accuracies dropping considerably due the
challenging nature of the options presented to the
models. However, the drops were observed for only
a few countries where choosing similar distractors
led to these countries’ images being classified as
belonging to one of their popular neighbors. This
can be observed in Figure 18 and Figure 19.

5 Results

The results for experimental setting over countries
of each region can be seen in Table 2.
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5.1 Effect of Prompt Language on Accuracy

The average of country level accuracies compared
to each prompt language can be seen in Figure 3.
The language used in the prompt had a minor effect
i.e. <2% for all languages. However, at a country
level, most countries remained unaffected by lan-
guage of the prompt, with the change in accuracy
<0.1%. The only cases with a noticeable change
in accuracy are (some but not all of the) countries
that speak the target language predominantly. For
example, changing the input language from En-
glish to Spanish improved accuracy for Spain but
the change to Latin-American countries was neg-
ligible. Similarly, while switching to Portuguese
had improved the accuracy for Brazil, it lead to a
drop in accuracy for Portugal. Overall, the input
language improves performance for some countries
primarily associated with the language used. The
results also partially contradict prior findings that
prompting in culturally similar languages reduces
western bias (Ananthram et al., 2025).

Category-wise Accuracy for Normal, Greyscale, and Rotated Augmentations
0.35

0.30

°
&

°
1)

32.6%

Average Accuracy
o
G

27.5%

0.00 —

Figure 4: Model-wise averaged accuracy across the
nine image categories, as a function of the image per-
turbations. There is a clear trend of models performing
better with the original images (left), compared to the
grayscale images (middle) , or rotated images (right).

5.2 Effect of Image Perturbations

Figure 4 and Figure 7 show the changes in accuracy
due to gray-scaling and rotating the images. Input
image perturbations can have a large impact on
the country-level biases in VLMs. Further, it can
be assumed that the VLMs tested are not robust
enough to image perturbations, with each country
being affected at a different scale between each
model/perturbation. The overall averages can also
be seen in Figure 10, Figure 11 and Figure 12.
Figure 18 shows how perturbations affect model
performance across different semantic image cate-
gories. For all nine categories, models perform best
on the original images, with decreasing accuracy

for gray-scaled and rotated versions. The exterior
architecture, text/scripts/posters, and attire/patterns
categories are especially impacted by perturbations.
We hypothesize that it is likely because they con-
tain fine-grained, orientation-sensitive, or highly
color-dependent details.

We also look at geographical disparities of these
changes in orientation in Figure 5 and Figure 6.
We also observe the disparity in model robustness.
For example, models such as Aya Vision 32B, GPT-
40-mini and Gemini 3 12B show very different sen-
sitivity across both a) perturbations and b) regions
which were affected. We hypothesize that architec-
tural and training differences might be influencing
how models process image orientation and color.
While gray-scaling may reduce performance due
to the loss of visual detail or color-dependent cues,
rotation disrupts spatial reasoning and object orien-
tation, which are critical for geographic or cultural
recognition.

These findings highlight the importance of eval-
uating model performance under realistic image
distortions, especially for applications where im-
ages may not be clean or consistently formatted as
image characteristics can vary widely.

5.3 Effect of Input Variations on Confidence

Despite the drop in overall accuracy due to the im-
age perturbations, the model-estimated confidence
of the open-weight models did not significantly
change, whereas there was a larger drop in con-
fidence for the proprietary models. Compared to
rotation of images, gray-scaling had a larger impact
on the response accuracies. The average confidence
of each VLM with each adversarial setting com-
pared to the original can be seen in Figure 7. The
models with closed-weights exhibited a drop in
confidence when a perturbed image was provided,
in contrast to the tested open-weight models.

5.4 Image Feature categories VS accuracy

Apart from the experiments, the original 21.1k im-
ages were also labeled multi-way based on the
key features they contain using larger VLMs like
Gemini-2.5-Pro, o4-mini, Grok-2-Vision. Later a
majority vote of each label was considered. The
quality was later manually verified over a subset by
multiple people.® We have used 9 sub-categories

®Feature category labels were verified on a subset of 10%
samples equally distributed over all countries, with 2 people
verifying labels, in cases with no consensus between the two,
the third annotator was used.
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Category Description

Appearance (Attire)
Appearance (People)

Architecture (Exterior)
ments visible in the scene.

Architecture (Interior)
Landscape (Water)
Landscape (Air)
Landscape (Vegetation)

Texts/Scripts/Posters
graphic messaging.

Patterns/Designs
repetitive graphical elements.

Attires of some people from the image, clothes being hung in the background, etc.
Appearance / visual perception of people’s ethnicity, presence of any celebrities, etc.

Building facades, monuments, bridges, outdoor structures, and any external architectural ele-

Indoor environments e.g. rooms, corridors, staircases, furniture, and interior design details.
Bodies of water such as oceans, rivers, lakes, waterfalls, ponds, and any aquatic scenery.
Aerial / bird’s-eye views, landscapes captured from above, clouds, sky scenes, and horizon vistas.
Forests, grasslands, gardens, crops, shrubs, foliage patterns, plant life, or visible greenery.

Signs, banners, billboards, labels, handwritten or printed text, posters, and any other written or

Decorative motifs, surface textures, fabric prints, wallpaper or tile patterns, abstract designs, and

Table 3: Overview of the image categories used to analyse model performance as a function of the type of image.

100

85.40
85.45
85.12
88.84
88.62
88.27
87.11
87.02
85.70
86.02
85.36
84.07

Aya32B AyasB GPT40Mini GeminiFlash Gemmal2B Gemma27B

Figure 7: Average model confidence, given the original
images (left), grayscale images (middle), and rotated
images (right). GPT40, Gemini-Flash, and Gemma-27B
are most sensitive to image perturbations.

Misclassifications: North Africa to Other Regions

ed from North Africa

Figure 8: Mis-classification map for North African coun-
tries. There is a clear trend of models predicting USA,
India, Australia, or geographically close countries in
Europe and the Middle East.

for this categorization. The descriptions of each of
these categories can be seen in Table 3. A large vari-
ance was observed between each feature category
and the country level accuracies obtained. Addi-
tionally there was also a large variation between
how accuracy was affected for each country/fea-
ture based on model/perturbation used. This can
be also be seen in Figure 15. The extent to which
each category’s images were recognized by VLMs
can be seen in Figure 4. External architecture and

native language texts’ presence in the background
helped VLMs recognize culture better compared to
the other features.

5.5 Distribution of Predicted countries

The distribution of responses in an open ended
approach can be seen in Figure 9. The output dis-
tributions varied largely among models, even those
within the same family (i.e between Gemma-3-27B,
Gemma-3-12B and Aya-vision-32B, Aya-vision-
8B). The results obtained contradict the usual as-
sumption about western biases in generative mod-
els, and was observed over a few nations with likely
high training data proportion.

Notably, all models consistently over-predict cer-
tain countries,particularly USA, India, and Brazil,
regardless of the actual ground truth. We hypothe-
size that these countries are likely overrepresented
in the models’ pretraining data or benefit from more
visually distinctive cues. Biases seem to cluster
around a few highly represented or visually salient
countries rather than reflecting broader geopolitical
landscape.

These results show that model predictions are
likely to be influenced by data availability and im-
age characteristics rather than a generic global bias.
It also underscores the need for better interpretabil-
ity regarding the geographic composition of VLM
training datasets to fully understand such biases.

5.6 Misclassification Analysis

The mapping of misclassification of samples was
not limited to similar or neighboring nations. This
can be observed in Figure 20 to Figure 34. These
misclassifications varied by each individual feature
and provide a better fine-grained insights of cul-
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Figure 9: Country-wise response distribution in the open-ended prompt format. There is a consistent trend of
models predicting USA, but otherwise, no clear bias towards predicting Western countries. (Higher contrast
over a country indicates higher proportion of responses from a model)

tural biases. For instance, apart from neighboring
or similar countries, most images from Africa and
rural regions of South America were classified as
India. A specific example is shown in Figure 8
where out of the 600 images, roughly 80-120 be-
long to this category for most countries, while many
countries had most of their misclassified samples
as originating from India.

6 Discussion

Our study presents a comprehensive analysis of cul-
tural biases in Vision-Language Models (VLMs)
using a geographically balanced dataset across 211
countries. We evaluated popular models across
multiple prompting strategies, e.g. open-ended,
multiple-choice (random and similar distractors),
and multilingual settings. Open-ended formats
showed the greatest disparities in country-level ac-
curacy, particularly in underrepresented regions
such as Central Africa and parts of South Amer-
ica. The use of culturally similar distractors proved
to be the most effective in revealing fine-grained
errors, highlighting limitations in models’ cultural
discrimination abilities.

We further assessed the models’ robustness to
image perturbations like gray-scaling and rotation.
While gray-scaling affected only a few specific
countries, rotation led to a broad and uniform drop

in performance, confirming that VLMs rely heav-
ily on image orientation. We further observed that
performance also varied by semantic image con-
tent—categories like architecture, textual cues, and
attire were more predictive of cultural origin, espe-
cially in unaltered images. Language variation in
prompts had minimal impact on average accuracy,
though countries closely tied to the input language
(e.g., Spain with Spanish, Brazil with Portuguese)
showed slight gains. However, this trend was incon-
sistent and did not generalize across all culturally
linked regions. Finally, our misclassification anal-
ysis shows that models frequently confuse images
from low-resource or visually ambiguous countries
with a few dominant nations, reinforcing the role
of training data bias.

7 Conclusion

Our findings show that biases are not uniformly
Western but instead reflect over representation of
certain countries in training data. Model perfor-
mance varied across prompt types, languages, im-
age features, and perturbations, highlighting lim-
itations in robustness and cultural generalization.
These results call for greater transparency in dataset
composition and the need for more culturally inclu-
sive evaluation methods to ensure fairer and more
globally representative VLMs.
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Limitations

Our study has an important limitations. The use of
country-level labels as a proxy for culture, while
common for large-scale analysis, inherently over-
looks intra-country cultural diversity and multi-
cultural populations, potentially obscuring sub-
national or regional nuances. The country labels
used don’t account for political complexities like
disputed territories.
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A Opverall Accuracies Before and After
Image Perturbations

Figure 10, Figure 11, Figure 12 display the ac-
curacy obtained for each image perturbation used
compared to the original through each of the VLMs
tested.

B Overall Accuracy VS Models used : In
each MCQ setting

Figure 13, Figure 14 display the accuracy obtained
through each model in each MCQ experiment.

C Reproducibility

Inference was done through Cohere’s API for Aya-
Vision-8B and Aya-Vision-32B through the default
hyperparameters with a seed value of 1024. The
rest of the models were used through OpenRouter’s
API through the default hyper-parameters with a
seed value of 1024. The experiments were repeated
thrice and the overall accuracy varied between 1-
1.2%, with some countries’ accuracy varying up
to 1.5%. The costs associated with all experi-
ments combined were 850$ through OpenRouter
and 250$ Cohere API credits. The experiments
were run on TPUs costing 0.35%/hr with the costs
reaching 608.

D Prompt Usage

The prompts used for each experiment setting can
be seen below.

## OPEN ENDED
Respond in the following format :

{

"Country": {

"type": "string”,

"description”: "Just Country Name, Nothing
else.”

}Y

"Reasoning”: {

"type": "string",

"description”: "Why you feel the image is
from that particular country. Explain
what features/objects/items/visuals
of the image made you think so.
Should be fine-grained and clear, but
in just 2-3 sentences.”

}?

"Confidence”: {

"type": "integer",

"description”: "A integer score on a scale
of @ to 100 on how confident you are
about the classification.”

}?

"Features”: {

"type": "string”,

"description”: "Which of the features of
the image were primarily used for
determining the country labels,
separated by commas, ordered with
primary feature in the beginning.”

}

}
## MCQ

prompt_header="Respond with a label from the
choices : What country is this image
likely from ?\n"

for 1,c in
zip(labels,choices):prompt_header+=f"{13})
: {c}\n"

fixed_prompt=prompt_header+"""Respond in the
following format :

{
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Figure 12: Overall Accuracy : Open Ended (Grayscale)
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Figure 13: Overall Accuracy : MCQ-Random : Model
wise
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Figure 14: Overall Accuracy : MCQ-Similar : Model
wise

"Label”: "Uppercase Alphabet”,

"Country”: "The chosen label's country
name exactly as it was”,

"Confidence”: "Integer between @ to 100 in
numeric format"

}n nn

E Other Plots
F Mis-Classification Map : Region-wise

The mis-classifications from one region to coun-
tries outside the region can be seen fro each region
in Figure 20 to Figure 34 respectively.

G Country wise accuracies in each
experimental setting

The accuracies obtained over samples of each coun-
try through each experimental setup can be seen in
Table 4 to Table 8.

H Chord Diagrams of Mis-classifications

The chord diagrams representing the mis-
classifications between each region can be seen in
Figure 36. The mis-classifications between coun-
tries of each region can be seen in Figure 37 to
Figure 52 respectively.

Country name Open-Ended MCQs with MCQs with

Similar choices Random choices
Afghanistan 41.33 68.90 81.56
Albania 20.00 42.80 67.64
Algeria 10.50 29.73 65.71
Andorra 12.00 59.63 72.41
Angola 4.67 48.07 58.83
Anguilla 2.00 15.27 58.51
Antarctica 34.83 84.80 83.57
Antigua and Barbuda 7.67 31.67 70.64
Argentina 30.67 84.17 71.39
Armenia 42.33 66.23 80.07
Aruba 17.67 55.67 78.96
Australia 44.50 87.90 69.58
Austria 18.83 42.13 80.69
Azerbaijan 20.00 46.83 66.45
Bahamas 24.83 69.47 78.13
Bahrain 21.00 63.00 73.94
Bangladesh 42.50 59.30 87.48
Barbados 17.67 39.50 72.07
Belarus 1333 45.60 72.98
Belgium 21.00 44.93 7221
Belize 11.67 59.13 68.49
Benin 7.50 51.47 78.75
Bermuda 20.67 62.63 67.61
Bhutan 59.17 66.03 90.70
Bolivia 26.33 76.13 78.26
Bonaire, Sint Eu... 3.50 36.47 69.24
Bosnia ... 2333 44.43 73.23
Botswana 22.83 82.13 80.00
Brazil 47.67 83.37 74.70
Brunei Darussalam 8.67 21.73 48.78
Bulgaria 25.33 46.47 77.12
Burkina Faso 7.50 60.83 74.72
Cabo Verde 10.17 67.23 55.22
Cambodia 62.83 81.02 92.15
Cameroon 4.67 67.20 70.02
Canada 41.50 69.43 81.16
Cayman Islands 6.67 28.07 68.78
Central African Rep.. 0.83 16.67 50.21
Chile 20.83 65.90 67.78
China 58.83 78.73 81.48
Colombia 23.83 75.73 69.25
DRC 6.83 40.70 56.60
Cook Islands 3.83 22.23 68.28

Table 4: Country wise accuracies through various exper-
imental settings : Part 1/5
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Accuracy by Region and Transformation
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Figure 18: Accuracy over each country’s images through MCQ Experiments with random distractors

GPT 40 Mini
iiling-h!

o= -

Countryise Accuracy

Country-wss Accuracy

| e st —

Figure 19: Accuracy over each country’s images through MCQ Experiments with similar distractors

GPT 40 Migi Rp——

Misclassifications: Caribbean to Other Regions

g
o

g

2000

Count misclassified from Caribbean

,_.
o
S
o

Figure 20: Mis-classification map : Caribbean
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Misclassifications: Western Europe to Other Regions

Figure 21: Mis-classification map : Western Europe

Misclassifications: Northern Europe to Other Regions

Figure 22: Mis-classification map : North Europe

Misclassifications: Eastern Europe to Other Regions

Figure 23: Mis-classification map : Eastern Europe
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Misclassifications: East Asia to Other Regions
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Figure 24: Mis-classification map : East Asia
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Figure 25: Mis-classification map : Central Asia
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Figure 26: Mis-classification map : South East Asia
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Misclassifications: South Asia to Other Regions
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Figure 28: Mis-classification map : Middle East
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Figure 29: Mis-classification map : Southern Africa
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Misclassifications: Central Africa to Other Regions

Figure 30: Mis-classification map : Central Africa

Misclassifications: North America to Other Regions

Figure 31: Mis-classification map : North America

Misclassifications: Central America to Other Regions

Figure 32: Mis-classification map : Central America
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Misclassifications: South America to Other Regions
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Figure 33: Mis-classification map : South America

Misclassifications: Oceania to Other Regions
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Figure 34: Mis-classification map : Oceania

Figure 35: Examples from ours (1st,4th) as well as other works : GIMMICK (2nd), CVQA (3rd) : The 1st and 4th
image have the key features required for classifying the image accurately, occupying a tiny portion of the image
making it relatively difficult i.e the flag patch in image 1 ,and name of mountain in image 4’s signboard. While, in
Image 2 and image 3 , the key features i.e the text on attire or the (car, city name signboard, multilingual texts on
left) make the samples relatively easier to classify
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Country name Open-Ended MCQs with MCQs with
Country name Open-Ended MCQs with MCQs with
Similar choices Random choices
Similar choices Random choices

India 78.33 90.03 90.10

Costa Rica 26.00 73.23 72.16
Indonesia 48.83 67.76 84.97

Croatia 47.83 72.83 83.92
Iran 50.83 70.40 83.27

Cuba 47.50 76.83 77.92
Iraq 28.67 60.60 76.84

Curagao 20.83 61.07 80.96
Ireland 48.33 74.57 87.63

Cyprus 13.67 59.33 69.19
Isle of Man 6.17 52.03 77.91

Czechia 40.50 66.07 83.90
Israel 35.67 76.33 73.99

Cbote d’Ivoire 13.33 60.00 71.47
Italy 60.00 82.30 85.40

Denmark 32.50 66.93 78.54
Jamaica 28.17 60.20 70.58

Dominica 15.17 61.17 67.04
Japan 81.17 88.92 91.75

Dominican Republic 15.00 56.37 70.43
Jersey 3.67 50.37 71.69

Ecuador 21.50 76.10 73.05
Jordan 44.00 79.03 89.04

Egypt 60.50 77.07 83.84
Kazakhstan 18.33 4473 71.73

El Salvador 4.83 65.93 63.40
Kenya 56.00 88.57 88.15

Estonia 21.83 43.90 70.30
North Korea 4733 25.64 81.26

Eswatini 0.50 28.70 53.07
South Korea 47.83 67.23 79.90

Ethiopia 41.00 80.93 80.24
Kuwait 12.83 52.30 68.70

Falkland Islands 8.83 92.13 90.35
Kyrgyzstan 20.17 37.30 69.48

Faroe Islands 30.33 71.30 90.66
Laos 26.50 38.53 80.25

Fiji 22.83 64.10 76.93
Latvia 17.00 41.63 7247

Finland 3233 67.80 76.31
Lebanon 27.00 73.63 78.09

France 40.83 73.77 83.70
Liberia 9.33 50.97 65.37

French Guiana 3.00 64.73 53.93
Libya 6.67 22.87 73.10

French Polynesia 24.67 81.90 83.97
Liechtenstein 6.17 34.03 72.29

Gabon 5.33 56.00 66.67
Lithuania 24.00 54.43 74.40

Gambia 3.33 41.40 53.16
Luxembourg 1333 21.90 62.29

Georgia 32.00 71.40 83.37
Macao 17.00 66.42 85.38

Germany 54.83 71.30 87.54
Madagascar 24.17 81.20 65.40

Ghana 26.33 70.53 67.80
Malawi 8.33 54.80 66.39

Gibraltar 19.00 62.27 79.48
Malaysia 28.33 73.28 83.65

Greece 66.67 91.00 91.06
Maldives 39.33 80.20 82.08

Greenland 27.00 65.43 84.90
Mali 13.83 65.43 80.11

Grenada 3.50 37.77 63.75
Malta 47.67 79.57 90.95

Guadeloupe 1.50 48.80 71.09
Martinique 4.33 53.60 72.85

Guam 11.33 7043 55.57
Mauritania 12.00 76.77 80.28

Guatemala 19.67 75.50 74.38
Mauritius 38.33 92.00 79.52

Guernsey 1.83 66.50 81.14
Mexico 53.17 79.77 79.69

Guyana 8.83 52.33 52.66
Moldova 7.67 35.23 63.57

Haiti 27.83 71.23 65.98
Monaco 30.17 54.83 69.69

Vatican City State 8.67 43.77 74.31
Mongolia 50.83 82.41 81.39

Honduras 4.67 64.13 66.98
Montenegro 22.17 44.37 81.00

Hong Kong 22.67 65.23 86.70
Morocco 67.83 85.40 93.75

Hungary 24.83 49.00 78.44
Mozambique 5.17 66.57 63.78

Iceland 69.00 8227 89.04
Myanmar 61.50 76.56 92.62

Table 5: Region wise accuracies through various experi-

mental settings : Part 2/5 Table 6: Region wise accuracies through various experi-

mental settings : Part 3/5
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Country name Open-Ended MCQs with MCQs with

Similar choices Random choices

Namibia 0.00 $3.40 85.35 Country name Open-Ended MCQs with MCQs with
Nepal 65.00 72.53 89.72 Similar choices Random choices
Netherlands 46.00 74.63 86.86 South Africa 38.50 94.43 8291
New Caledonia 7.50 55.03 64.98 South Georgia and the 717 80.70 77.99
New Zealand 53.83 76.40 82.58 South Sandwich Is..
Nicaragua 6.83 69.87 69.64 South Sudan 25.83 65.83 82.31
Nigeria 4733 79.13 73.78 Spain 51.00 83.13 84.71
North Macedonia 10.17 4427 74.44 Sri Lanka 37.00 61.40 82.72
Norway 32.50 48.17 79.45 Sudan 2533 70.63 81.25
Oman 31.67 71.40 77.59 Svalbard & Jan Mayen 0.00 74.13 89.45
Pakistan 30.33 53.57 79.32 Sweden 35.50 54.63 81.22
Palau 15.83 71.23 71.97 Switzerland 42.17 62.53 76.40
Palestine, State of 9.00 73.53 83.59 Syria 13.00 51.63 64.82
Panama 433 80.17 60.86 Taiwan 23.00 51.01 80.16
Papua New Guinea 13.50 61.87 63.38 Tajikistan 10.83 44.43 81.04
Paraguay 6.17 52.23 54.29 Tanzania 24.83 84.37 84.89
Peru 54.83 85.73 83.61 Thailand 64.17 84.49 89.08
Philippines 43.67 74.82 85.94 Timor-Leste 7.83 41.77 69.67
Poland 28.83 62.00 79.17 Togo 233 31.67 65.98
Portugal 4350 58.60 84.39 Tonga 1.33 19.60 44.73
Puerto Rico 16.67 68.97 72.52 Trinidad and Tobago 8.00 56.23 53.62
Qatar 19.50 56.63 66.04 Tunisia 20.33 40.00 75.53
Romania 31.50 56.43 79.02 Turkmenistan 22.67 48.73 82.83
Russian Federation 52.67 73.13 77.18 Tiirkiye 56.33 86.10 92.24
Rwanda 29.50 71.73 73.72 Uganda 26.83 79.90 80.27
Réunion 5.33 90.87 69.21 Ukraine 22.83 67.63 72.82
Saint Helena, Ascension 333 71.40 57.44 United Arab Emirates 53.00 85.30 85.30
and Tristan da Cunha United Kingdom 50.17 92.17 89.05
Saint Kitts and Nevis 14.17 41.23 64.61 United States 67.17 91.03 87.76
Saint Lucia 16.83 61.40 79.33 Uruguay 14.17 46.33 61.10
Saint Martin (French) 4.00 45.43 69.48 Uzbekistan 47.17 68.63 83.07
Samoa 23.33 68.43 71.19 Vanuatu 5.50 18.00 57.04
San Marino 10.17 35.00 54.01 Venezuela 11.17 57.63 53.41
Saudi Arabia 26.00 65.53 74.69 Viet Nam 55.50 78.74 89.77
Senegal 21.83 78.73 78.20 Virgin Islands, UK 6.83 38.00 79.60
Serbia 2433 58.70 79.14 Virgin Islands, U.S. 9.67 46.73 81.72
Seychelles 26.33 92.87 76.83 Kosovo 6.50 28.70 65.53
Sierra Leone 8.83 56.53 75.23 Yemen 27.17 69.80 76.46
Singapore 51.33 74.91 80.15 Zambia 9.50 54.80 73.29
Saint Martin (Dutch) 7.17 50.77 75.14 Zimbabwe 11.67 71.03 76.05
Slovakia 12.33 3233 67.41 Aland Islands 0.17 29.00 62.02
Slovenia 24.00 5340 75.09 Overall 25.14 61.92 75.06
Solomon Islands 3.33 22.53 69.22
Somalia 24.67 75.30 78.46 Table 8: Region wise accuracies through various experi-

mental settings : Part 5/5

Table 7: Region wise accuracies through various experi-
mental settings : Part 4/5
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Figure 39: Chord Diagram of Mis-classifications among

Figure 37: Chord Diagram of Mis-classifications among
each region’s countries : Caribbean

each region’s countries : North America
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Figure 40: Chord Diagram of Mis-classifications among

Figure 38: Chord Diagram of Mis-classifications among
each region’s countries : South America

each region’s countries : Central America
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Figure 41: Chord Diagram of Mis-classifications among  Figure 43: Chord Diagram of Mis-classifications among
each region’s countries : Oceania each region’s countries : Central Africa

Figure 42: Chord Diagram of Mis-classifications among  Figure 44: Chord Diagram of Mis-classifications among
each region’s countries : North Africa each region’s countries : Southern Africa
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Figure 45: Chord Diagram of Mis-classifications among  Figure 47: Chord Diagram of Mis-classifications among
each region’s countries : Middle East each region’s countries : South Asia
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Figure 46: Chord Diagram of Mis-classifications among  Figure 48: Chord Diagram of Mis-classifications among
each region’s countries : Central Asia each region’s countries : South East Asia
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Figure 49: Chord Diagram of Mis-classifications among  Figure 51: Chord Diagram of Mis-classifications among
each region’s countries : East Asia each region’s countries : Western Europe

Figure 50: Chord Diagram of Mis-classifications among  Figure 52: Chord Diagram of Mis-classifications among
each region’s countries : Northern Europe each region’s countries : Eastern Europe
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