
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 2069–2086

December 20-24, 2025 ©2025 Association for Computational Linguistics

Feather-SQL: A Lightweight NL2SQL Framework with Dual-Model
Collaboration Paradigm for Small Language Models

Wenqi Pei1, Hailing Xu1, Henry Hengyuan Zhao1, Shizheng Hou1,
Han Chen1, Zining Zhang1, Pingyi Luo2, Bingsheng He1,*

1National University of Singapore 24Paradigm

Abstract

Natural Language to SQL (NL2SQL) has seen
significant advancements with large language
models (LLMs). However, these models of-
ten depend on closed-source methods and high
computational resources, posing challenges
in data privacy and deployment. In contrast,
small language models (SLMs) struggle with
NL2SQL tasks, exhibiting poor performance
and incompatibility with existing frameworks.
To address these issues, we introduce Feather-
SQL, a new lightweight framework tailored for
SLMs. Feather-SQL improves SQL executabil-
ity and accuracy through: (i) schema pruning
and linking, (ii) multi-path and multi-candidate
generation. Additionally, we introduce 1+1
Model Collaboration Paradigm, which pairs
a strong general-purpose chat model with a fine-
tuned SQL model, combining strong analytical
reasoning with high-precision SQL generation.
Experimental results on BIRD demonstrate that
Feather-SQL improves NL2SQL performance
on SLMs, with around 10% boost for models
without fine-tuning. The proposed paradigm
raises the accuracy ceiling of SLMs to 54.76%,
highlighting its effectiveness. Our implemen-
tation is available at https://github.com/
CedricPei/Feather-SQL.

1 Introduction

Natural Language to SQL (NL2SQL) is the task of
converting natural language questions into corre-
sponding SQL queries, allowing users to retrieve
structured data from databases without requiring
proficiency in SQL. In recent years, the field has
seen significant advancements with the emergence
of large language models (LLMs) such as GPT-4
(OpenAI et al., 2024), enabling frameworks like
CHASE-SQL (Pourreza et al., 2024) and XiYan-
SQL (Gao et al., 2025b) to achieve state-of-the-
art (SOTA) performance. However, two limita-
tions hinder their practical adoption. First, main-

*Corresponding author.

Figure 1: NL2SQL performance on the BIRD DEV
dataset. EXE (Executability) measures successful query
executions, while ACC (Accuracy) measures correct
result matches.

stream methods depend on closed-source models,
and their reliance on external APIs introduces data
privacy risks in sensitive domains like healthcare
and finance (Liu et al., 2024). Second, most open-
source research focuses on models with 7B–30B
parameters, leaving small language models (SLMs)
with 4B or fewer parameters relatively underex-
plored. Meanwhile, many relational databases are
deployed on high-performance systems with lim-
ited GPU resources.

In this paper, we focus on enhancing NL2SQL
performance using SLMs. As shown in Figure
1, SLMs face two key challenges: (i) one crit-
ical issue is their sharp decline in executability.
Unlike LLMs, which can effectively handle long-
context dependencies, SLMs struggle with complex
database schema and verbose prompts, often lead-
ing to hallucinated outputs (Nguyen et al., 2024; Qu
et al., 2024) (Figure 2); (ii) existing frameworks for
NL2SQL with LLMs are incompatible with SLMs,
as they rely on strong instruction-following capabil-
ities to produce intermediate results, which SLMs
lack. As illustrated in Figure 3, SLMs’ outputs
frequently violate imposed requirements: they of-
ten fail to conform to JSON or array specifications
and do not meet predefined constraints. Directly

2069

https://github.com/CedricPei/Feather-SQL
https://github.com/CedricPei/Feather-SQL

Figure 2: Examples of typical syntax errors produced by
small language models (SLMs) in an NL2SQL scenario.

applying these frameworks to SLMs may further
degrade executability.

To address these challenges, we propose
Feather-SQL, a lightweight framework tailored
for SLMs to enhance both executability and accu-
racy. It consists of six key components: schema
pruning, schema linking, multi-path generation,
multi-candidate generation, correction, and selec-
tion. Designed for SLMs, schema pruning discards
irrelevant tables, allowing models to concentrate
on essential database elements. Schema linking im-
proves alignment between questions and database
schema, ensuring accurate column selection. To
mitigate errors from linking and pruning, multi-
path generation explores diverse query formulation
strategies, enhancing robustness. Multi-candidate
generation further improves the model’s executabil-
ity and accuracy by enhancing the variety of gener-
ated SQL queries, thereby increasing the likelihood
of producing correct candidates. The best candidate
is then selected through execution validation and
ranking. Complementing these components, we
introduce extraction and simplification prompting
strategies. Extraction selectively retrieves key infor-
mation, while simplification removes extraneous
prompt details to lower computational overhead.
By integrating these techniques, Feather-SQL en-
ables SLMs to generate SQL queries more reliably
despite their inherent limitations.

A common approach to enhancing SLMs is fine-
tuning. However, while fine-tuned SLMs for SQL
generation tasks (e.g., Prem-SQL (Anindyadeep,
2024), CodeS (Li et al., 2024)) outperform general-
purpose chat models on SQL generation, they suf-
fer from catastrophic forgetting (Luo et al., 2025;
Kotha et al., 2024) on auxiliary tasks—where task-
specific fine-tuning erodes their foundational rea-
soning abilities. To counter this, we propose
1+1 Model Collaboration Paradigm, in which
a general-purpose chat model handles reasoning-
intensive auxiliary tasks (e.g., schema linking and

Figure 3: Experiments on CHESS-provided BIRD sub-
set for schema linking. Models are required to output a
JSON-formatted response containing no more than five
relevant columns related to the question.

candidate selection), while a fine-tuned SQL model
focuses on SQL generation. This collaboration
leverages both models’ strengths: the chat model
provides broad reasoning ability, while the SQL
model delivers domain-specific precision. Experi-
ments confirm that the paradigm improves overall
performance. Our main contributions are as fol-
lows:

• We introduce Feather-SQL, an NL2SQL frame-
work for SLMs to address their unique challenges
of low executability and incompatibility with ex-
isting LLM-based frameworks.

• We propose a novel 1+1 Model Collaboration
paradigm that mitigates catastrophic forgetting
in fine-tuned SLMs by delegating reasoning-
intensive tasks to a general-purpose chat model.

• Experiments on Spider and BIRD demonstrate
that Feather-SQL consistently achieves strong per-
formance with various SLMs and yields SOTA
results on BIRD within the scope of SLMs when
paired with the paradigm.

2 Related Work

2.1 Conventional Methods

Early NL2SQL methods were rule-based or
template-based (Zelle and Mooney, 1996; Li and
Jagadish, 2014; Saha et al., 2016). Although effec-
tive on small datasets, these approaches demanded
extensive manual engineering and did not gener-
alise well. The arrival of sequence-to-sequence
(Seq2Seq) models marked a shift to data-driven
methods. Models such as Seq2SQL (Zhong et al.,
2017), SQLNet (Xu et al., 2017), IRNet (Guo
et al., 2019), RyanSQL (Choi et al., 2021), and
RESDSQL (Li et al., 2023a) jointly encode the

2070

Figure 4: An overview of Feather-SQL for small language models (SLMs) in NL2SQL. The 1+1 Model Col-
laboration Paradigm pairs a general-purpose chat model with a SQL fine-tuned model: the chat model conducts
the multi-path and selection stages (upper dashed links), while the SQL model performs the multi-candidate and
correction stages (lower dashed links).

natural-language question and database schema be-
fore decoding the corresponding SQL query. Fine-
tuning pretrained language models (PLMs) includ-
ing BERT (Devlin et al., 2019) and T5 (Raffel et al.,
2020) further improves robustness, yet still requires
substantial annotated data and struggles with highly
complex schemas.

2.2 LLM and SLM Approaches

Instruction-tuned large language models (LLMs)
now achieve state-of-the-art performance by de-
composing NL2SQL into subtasks. Methods such
as DIN-SQL (Pourreza and Rafiei, 2023), TASQL
(Qu et al., 2024), MAC-SQL (Wang et al., 2024),
and CHESS (Talaei et al., 2024) exceed earlier
accuracy, but their multi-stage prompting incurs
significant computation, and potential privacy risks
when queries leave the user’s environment.

To alleviate these drawbacks, researchers have
turned to small language models (SLMs). Ap-
proaches such as CodeS (Li et al., 2024), DTS-
SQL (Pourreza and Rafiei, 2024), Prem-SQL
(Anindyadeep, 2024), and SQLCoder (Defog) fine-
tune SLMs on NL-to-SQL datasets. However, train-
ing makes them susceptible to catastrophic for-
getting, diminishing their compositional-reasoning
ability. MSc-SQL (Gorti et al., 2025) trains sepa-
rate around 10B models for different subtasks to
preserve capabilities, but at the expense of extra
memory and storage, limiting practical deployment.
Therefore, a lightweight framework that empowers
SLMs to perform NL2SQL effectively remains an
open and important research goal.

3 Methodology

3.1 Feather-SQL

As shown in Figure 4, we propose Feather-SQL
to enhance the performance of SLMs in NL2SQL.
We will elaborate on its six components in the fol-
lowing sections.

Schema Pruning. This step reduces schema com-
plexity by filtering out tables irrelevant to the ques-
tion. Only the Data Definition Language (DDL)
statements of tables judged pertinent advance to
later stages, preventing SLMs from being over-
whelmed by lengthy inputs while preserving es-
sential information. Although it was previously
explored by Jose and Cozman (2023) who applied
it as a training-time preprocessing driven by statisti-
cal analysis, our approach performs it at inference-
time using one SLM.

Schema Linking. This step aligns the question
with the database schema by identifying relevant
columns (Guo et al., 2019). As a commonly
adopted practice, schema linking extracts pertinent
columns from complete schema (Wang et al., 2020;
Talaei et al., 2024). By establishing precise map-
pings between questions and database elements,
this process significantly enhances SQL generation
accuracy.

Multi-Path Generation. This step employs four
distinct prompt types: (1) with both schema link-
ing and pruning, (2) linking only, (3) pruning only,
and (4) without either operation. The multi-path
design mitigates the risk of information loss caused
by pruning errors and reduces potential misunder-

2071

Figure 5: Accuracy gain and executability gain by candidate size. Gains are measured as the percentage-point
difference from each model’s performance with a single candidate. For both metrics, a set of candidates is counted
as correct or executable if at least one candidate in the set meets the criterion.

standings arising from linking inaccuracies.

Multi-Candidate Generation. This step generates
multiple SQL queries in parallel to increase the
likelihood of producing a correct result (Pourreza
et al., 2024; Gorti et al., 2025). To ensure diver-
sity, beam search is employed alongside carefully
tuned temperature and top-p parameters. Each path
consistently generates a fixed number of candidate
queries, maintaining a balanced exploration of pos-
sible solutions.

As shown in Figure 5, increasing candidate size
yields consistent improvements in both accuracy
and executability for SLMs, with notably larger
gains compared to LLMs. Larger models are al-
ready robust with a single candidate and show only
marginal improvements when more candidates are
provided. (Details in Appendix B.)

Correction. This step executes each generated
query and handles it based on the outcome (Wang
et al., 2024; Pourreza and Rafiei, 2023). If a query
executes successfully, it is directly added to the ar-
ray of executable SQL queries. For failed queries,
error feedback is used to revise the query through a
self-correction approach, generating two new can-
didate queries. If any of these revised queries are
executable, they are also stored in the set of exe-
cutable SQL queries.
Selection. This step applies a selection-ranking
method to assess all executable queries according
to their alignment with the expected answers (Pour-
reza et al., 2024; Gao et al., 2025b; Talaei et al.,
2024). If a query yields a limited number of results,
the evaluation considers both the query and its exe-
cution outcome. In contrast, the evaluation focuses
solely on the query itself. The selection process is

Method Stage Words

CHESS

Information Retrieval 423
Schema Selection 2522
Candidate Generation 4888
Revision 1835

MAC-SQL
Selection 552
Decomposition 836
Revision 174

Feather-SQL

Schema Pruning 267
Schema Linking 287
Generation 190
Correction 106
Selection 271

Table 1: Prompt length comparison.

repeated three times, and the mode of the rankings
is returned as the final result.

3.2 Prompting Strategies

Extraction. We propose an extraction strategy to
avoid rigid structural outputs by allowing SLMs to
freely generate responses. We have two methods to
achieve that: (i) Lexical Matching: identify schema
elements by matching table/column names in the
response. For instance, when the SLM outputs
"required tables include customer and orders", the
framework extracts customer/orders if they exist in
the schema. (ii) Pattern Matching: extract the final
answer by identifying predefined patterns in the
model’s output, such as "answer is" or "Answer:".
For example, if the model generates “The answer
is 128", the framework extracts "128" as the final
result.

2072

Method Qwen2.5-0.5B Yi-Coder-1.5B DeepSeek-Coder-1.3B
EX (%) EP (%) EX (%) EP (%) EX (%) EP (%)

DR 6.71 26.99 15.84 54.82 29.27 64.41
FEQ 9.65 29.14 18.71 73.60 30.38 67.67
MAC-SQL 2.54 26.40 7.63 59.52 29.99 77.64
CHESS 0.91 4.82 2.48 7.82 18.12 32.97
Feather-SQL (Ours) 12.52 30.46 25.23 90.61 36.64 83.70

Method MiniCPM3-4B Prem-SQL-1.3B CodeS-3B
EX (%) EP (%) EX (%) EP (%) EX (%) EP (%)

DR 27.57 69.30 47.07 88.14 24.19 59.32
FEQ 29.34 63.89 51.63 92.70 25.03 57.50
MAC-SQL 37.35 81.68 8.67 (8.87*) 17.01 (19.23*) 10.10 (13.23*) 40.87 (56.26*)
CHESS 28.42 54.43 24.64 43.22 26.53 56.91
Feather-SQL (Ours) 40.09 87.02 49.28 98.04 33.96 85.31

Table 2: Comparison of EX (Execution Accuracy) and EP (Execution Proportion) across different methods on the
BIRD DEV dataset. The best and second-best results are highlighted by bold and underline, respectively. ∗ denotes
results with the extraction strategy.

Simplification. We reduce computational overhead
by minimizing prompt verbosity while keeping the
task unambiguous. In Feather-SQL, we achieve
this by removing superfluous details and using con-
cise instructions with the fewest effective examples.
This approach refines the input by eliminating un-
necessary complexity, avoiding the need for SLMs
to process lengthy inputs while maintaining the
clarity of the task.

As shown in Table 1, CHESS uses instruction-
heavy prompts, and MAC-SQL also exceeds 500
words in 2 stages. Only Feather-SQL stays concise
across all stages, balancing context and complexity
without burdening SLMs with lengthy inputs.

3.3 1+1 Model Collaboration Paradigm

Our paradigm categorizes NL2SQL pipeline tasks
into two types: reasoning-intensive tasks and SQL
generation tasks. Reasoning tasks require contex-
tual understanding and adaptability, while SQL gen-
eration demands precision in query synthesis. We
employ two specialized models to leverage comple-
mentary strengths: the general-purpose chat model
for reasoning tasks and the SQL fine-tuned model
for SQL generation.

General-purpose Chat Model. This model lever-
ages broad linguistic and contextual comprehen-
sion without domain-specific fine-tuning, which
helps prevent catastrophic forgetting. Compared to
the SQL fine-tuned model, it is more effective in
schema linking and candidate evaluation, ensuring
that the generation process is guided by accurate
and well-structured contextual information.

SQL Fine-tuned Model. Optimized exclusively
for SQL generation, this model is extensively
trained on large-scale NL2SQL datasets, allowing
it to achieve superior performance on SQL-specific
tasks. Its focused training reduces hallucinations
and enhances both query executability and accu-
racy.

4 Experiments

4.1 Settings

4.1.1 Datasets
BIRD (Li et al., 2023b) encompasses databases
over 37 professional domains. Due to the propri-
etary nature of the BIRD TEST dataset, we con-
duct our experiments using the publicly accessible
BIRD DEV subset, which contains 1,534 unique
question-SQL pairs.

Spider (Yu et al., 2019) is another large-scale
benchmark dataset for cross-domain SQL gener-
ation, covering 138 different domains. Our ex-
periments utilize the Spider TEST set, comprising
2,147 question-SQL pairs.

4.1.2 Evaluation Metrics
Execution Accuracy (EX) (Li et al., 2023b) is
a widely adopted metric in NL2SQL evaluations,
measuring whether the result of executing the gen-
erated query matches the result of the ground-truth
query. This metric allows for different query for-
mulations that yield the same result. It is calculated
as:

EX =
|{n ∈ N | E(Qgen) = E(Qgt)}|

N
× 100%

2073

Method Qwen2.5-0.5B Yi-Coder-1.5B DeepSeek-Coder-1.3B
EX (%) EP (%) EX (%) EP (%) EX (%) EP (%)

DR 28.50 56.45 45.23 87.24 49.28 90.68
FEQ 36.53 67.35 48.30 86.77 45.46 89.89
MAC-SQL 29.06 89.61 13.04 21.70 52.12 93.62
CHESS 15.42 29.16 3.68 10.29 30.18 46.30
Feather-SQL (Ours) 36.98 75.08 49.56 92.04 51.19 94.13

Method MiniCPM3-4B Prem-SQL-1.3B CodeS-3B
EX (%) EP (%) EX (%) EP (%) EX (%) EP (%)

DR 55.10 93.71 60.92 85.79 47.74 64.23
FEQ 55.75 89.52 64.23 85.75 49.60 64.65
MAC-SQL 25.01 38.47 0.14 (67.91*) 0.14 (100*) 0 (74.48*) 0 (100*)
CHESS 56.73 89.99 63.86 92.08 66.65 88.54
Feather-SQL (Ours) 58.92 94.18 66.60 92.78 63.25 88.96

Table 3: Comparison of EX (Execution Accuracy) and EP (Execution Proportion) across different methods on the
Spider TEST dataset. The best and second-best results for EX are highlighted by bold and underline, respectively. ∗

denotes results with the extraction strategy.

where N denotes the number of questions. Qgen

represents the SQL query generated by the model,
while Qgt is the ground-truth query. E is the execu-
tion function.

Execution Proportion (EP) is an auxiliary metric
we proposed, evaluating the proportion of gener-
ated SQL queries that can be executed on the cor-
responding database without syntax errors. This
metric reflects the model’s upper-bound capability
by assuming that any executable query is poten-
tially correct. It is defined as:

EP =
|{n ∈ N | E(Qgen) ̸= error}|

N
× 100%

4.1.3 Baselines
Direct Response (DR) directly generates an SQL
query from the natural language question without
applying any refinement techniques. The process
follows a single-turn interaction.

First Executable Query (FEQ) leverages the
model’s ability to generate multiple SQL candi-
dates. Among candidates, the first executable query
is selected without any refinement. This approach
simulates multi-turn query generation.

MAC-SQL (Wang et al., 2024) is an LLM-based
multi-stage framework, featuring a core Decom-
poser agent for SQL generation supported by auxil-
iary agents for sub-database acquisition and query
refinement. It also utilizes few-shot chain-of-
thought reasoning to enhance generation processes.

CHESS (Talaei et al., 2024) comprises four special-
ized agents: Information Retriever, Schema Selec-

tor, Candidate Generator, and Unit Tester. Notably,
it employs locality-sensitive hashing and vector
databases to efficiently retrieve relevant data from
extensive database values and catalogs.

4.1.4 Implementation Details
Backbone Models. Our implementation leverages
both general-purpose chat models and SQL fine-
tuned models. The chat models include Qwen2.5-
0.5B, Qwen2.5-1.5B, Qwen2.5-Coder-1.5B (Hui
et al., 2024), Yi-Coder-1.5B (Young et al., 2025),
DeepSeek-Coder-1.5B (DeepSeek-AI, 2024) and
MiniCPM3-4B (Hu et al., 2024), while the SQL
models consist of Prem-SQL-1.3B (Anindyadeep,
2024) and CodeS-3B (Li et al., 2024).

Candidate Size. In the multi-candidate generation
stage, we generate 4 candidates per path, resulting
in a total candidate pool of 16. During the correc-
tion stage, the candidate size is reduced to 2.

Selection Rounds. During the selection stage, we
perform 3 rounds for each selection. The final
choice is the majority vote across the three rounds,
ensuring consistency of the selected candidate.

4.2 Main Results

4.2.1 Feather-SQL
To validate the general effectiveness of Feather-
SQL for SLMs, we conducted experiments on two
datasets across a range of models (all results here
were obtained using a unified model without adopt-
ing the collaboration paradigm).

BIRD Results. As shown in Table 2, Feather-

2074

Chat Model SQL Model EX (%) EP (%)

– Prem-SQL 49.28 98.04
Qwen Prem-SQL 52.44 ↑ 94.08
Qwen Coder Prem-SQL 52.83 ↑ 98.31
Yi Coder Prem-SQL 54.76 ↑ 93.94

– CodeS 33.96 83.31
Qwen CodeS 35.79 ↑ 80.05
Qwen Coder CodeS 37.03 ↑ 81.10
Yi Coder CodeS 39.43 ↑ 80.44

(a) Feather-SQL

Chat Model SQL Model EX (%) EP (%)

– Prem-SQL 24.64 43.22
Qwen Prem-SQL 49.28 ↑ 82.07
Qwen Coder Prem-SQL 49.61 ↑ 79.60
Yi Coder Prem-SQL 47.65 ↑ 79.79

– CodeS 26.53 56.91
Qwen CodeS 28.55 ↑ 56.19
Qwen Coder CodeS 28.88 ↑ 63.04
Yi Coder CodeS 27.44 ↑ 55.22

(b) CHESS

Table 4: Paradigm performance on the BIRD DEV dataset. When no chat model is specified, the SQL model is used
as the chat model. Qwen refers to Qwen2.5-1.5B, Qwen Coder refers to Qwen2.5-Coder-1.5B, Yi Coder refers to
Yi-Coder-1.5B, Prem-SQL refers to Prem-SQL-1.3B, and CodeS refers to CodeS-3B.

SQL demonstrates superior performance across all
general-purpose chat models, achieving the highest
scores in both EX and EP, with EX showing an
average increase of approximately 10% and EP ex-
ceeding a 20% improvement compared to FEQ. For
SQL fine-tuned models, Feather-SQL combined
with CodeS achieves substantial gains in both EX
and EP, while Prem-SQL shows notable improve-
ments specifically in EP, with an average increase
of around 5% compared to FEQ. Besides, we ex-
plored the upper bound of Feather-SQL on this
dataset (Appendix C).

Moreover, we observe that CHESS and MAC-
SQL do not perform effectively on SLMs, with
their results on Qwen2.5 and Yi-Coder showing
even lower EX and EP scores compared to DR.
Their performance also falls behind that of FEQ.

Spider Results. Table 3 highlights the results on
Spider TEST. Although MAC-SQL and CHESS
show inconsistent performance across models,
MAC-SQL generally performs well. Notably, for
SQL fine-tuned models, MAC-SQL could achieve
the best EX if extraction is applied, highlighting
the necessity of this step. This may be attributed
to MAC-SQL’s Selector mechanism, which also
employs schema pruning. Unlike our table prun-
ing approach, MAC-SQL adopts column pruning,
which may be more effective for Spider’s relatively
simple schema structures.

4.2.2 1+1 Model Collaboration Paradigm

As observed in Table 2, although Feather-SQL im-
proves the EP of Prem-SQL, its EX shows a 2%
decrease compared to FEQ. This decline is primar-
ily due to Prem-SQL’s inability to handle auxiliary

reasoning tasks. To address this limitation, we pro-
pose a division of tasks where the general-purpose
chat model handles auxiliary reasoning, while the
SQL fine-tuned model focuses on SQL generation.

As shown in Table 4a, our 1+1 collaboration
paradigm under Feather-SQL achieves a 3–6% im-
provement in EX for both Prem-SQL and CodeS.
However, we observe a decline in EP when paired
with a chat model. This is because when the SQL
model is also used as the chat model during schema
pruning, it returns a query instead of the expected
answer. But our extraction strategy still retrieves
table names from the output, often resulting in an
overly pruned schema containing only one or two
tables. While a simplified schema can occasionally
boost EP, it frequently leads to lower overall EX.

Additionally, Table 4b shows that our paradigm
improves both Prem-SQL and CodeS in CHESS,
with EX increasing by ~20% and EP by over ~35%
for Prem-SQL, while CodeS sees a smaller but
consistent EX gain with no clear trend in EP.

However, the two models benefit differently due
to their handling of auxiliary tasks. Prem-SQL at-
tempts to answer linking questions but often does
so incorrectly, whereas CodeS, due to severe catas-
trophic forgetting, fails to provide valid responses.
As a result, CHESS defaults to using the original
schema with CodeS, reducing linking errors.

Furthermore, since CHESS constructs long
prompts without schema pruning, introducing a
chat model increases input length and complexity.
While this improves reasoning, it does not fully
offset CodeS’s limitations in processing extended
inputs, restricting its EX improvement.

SOTA within SLMs. To contextualize our re-

2075

Figure 6: Accuracy (%) versus model size (billions of parameters) on BIRD DEV for small language models.
Fine-tuned SQL models are shown in yellow, general-purpose chat models in blue, and ours (Feather-SQL + 1+1
Model Collaboration) is marked with a red star.

sults, we further compare against widely used open-
source SLMs beyond our backbones—namely
Granite-3.1B (Mishra et al., 2024), SmolLM2-1.7B,
Llama3.2-3B (Dubey et al., 2024), Falcon-3B (Gao
et al., 2025a), and Nemotron-4B (Nvidia et al.,
2024). Figure 6 shows that combining Feather-
SQL with the 1+1 Model Collaboration paradigm
yields state-of-the-art accuracy among small lan-
guage models.

4.3 Ablation Studies

4.3.1 Component Contribution

Framework EX (%) EP (%)

Full Model 31.81 88.33
–w/o Schema Pruning -4.63 ↓ -20.34 ↓
–w/o Schema Linking -3.45 ↓ -20.92 ↓
–w/o Multi-Candidate -2.47 ↓ -17.99 ↓
–w/o Correction -0.20 ↓ -12.58 ↓
–w/o Selection -2.21 ↓ -10.36 ↓

Table 5: Ablation Study on Framework Components.

We conducted an ablation study to quantify the
impact of each framework component by removing

them one at a time and measuring changes in EX
and EP on the BIRD DEV dataset, using Qwen2.5-
1.5B (Table 5).

We can see from the ablation results that remov-
ing any of the components causes a drop in both
EX and EP. This underscores that each step in our
pipeline contributes to overall performance, and
omitting even one module leads to noticeably re-
duced accuracy or executability.

Among these, schema pruning is shown to be
the most critical: when it is removed, EX falls
from 31.81% to 27.18%, the single largest drop in
our study. This highlights how focusing on only
the relevant tables and columns helps the model
concentrate on essential schema elements, thereby
yielding more accurate SQL generation. In contrast,
removing correction only reduces EX by 0.20%,
indicating that it has a relatively minor impact on
the framework’s effectiveness.

4.3.2 Path Contribution
We analyzed origins of SQL answers from four
models to understand how each processing path
affects the final output. As shown in Figure 7, our
multi-path strategy includes four paths: one using
both schema linking and pruning, one using only
schema linking, one using only schema pruning,

2076

Figure 7: Distribution of correct SQL answers con-
tributed by each path across four different SLMs.

and one without either.
For all four models, the path Full Schema & Link-

ing is consistently the largest contributor, followed
by Pruned Schema & Linking. Additionally, we
find that schema pruning collectively accounts for
over 25%. These observations further underscore
the critical roles of schema linking and pruning.

Figure 8: Effect of candidate size on EX performance.

4.3.3 Candidate Size
We further investigated the impact of different can-
didate sizes. Figure 8 presents the results based on
our four paths. In our experiments, the total candi-
date size increases from 4 to 24, which corresponds
to the number of candidates generated per path in-
creasing from 1 to 6. The figure illustrates how EX
changes as the overall candidate size grows from 4
to 24.

We observe a concave trend, consistent with Fig-
ure 5: EX steadily increases as the candidate size
rises from 4 to 16 but then plateaus from 16 to
24. Once the model reaches its approximate upper
bound, further increases in candidate size result in
only a marginal difference in performance. There-
fore, we select a candidate size of 16, as it is the

earliest point at which EX saturates, thus balancing
computational efficiency and model performance.

4.3.4 Selection Rounds

Rounds R EX (%)

1 29.40
3 31.81
5 31.23
7 31.49

Table 6: Effect of selection rounds on EX.

We repeat the selection step multiple times and
choose the SQL that appears the most frequently
(mode). As shown in Table 6, EX improves from a
single round to three rounds, after which it largely
plateaus. Accordingly, we use three rounds by
default.

5 Conclusion

Small language models (SLMs) are appealing for
NL2SQL because they are easier to deploy and
safer for data privacy. However, they are under-
explored and often struggle with low executabil-
ity and incompatibility with existing LLM-based
frameworks. To address these limitations, we pro-
pose Feather-SQL, a lightweight framework for
SLMs that includes six key components: schema
pruning, schema linking, multi-path generation,
multi-candidate generation, correction, and selec-
tion. We further introduce a 1+1 Model Collabo-
ration Paradigm that pairs a general-purpose chat
model for reasoning tasks with an SQL fine-tuned
model for SQL generation, leveraging complemen-
tary strengths.

We conduct extensive experiments to evalu-
ate our method. Across multiple models on
BIRD DEV and Spider TEST, Feather-SQL alone
yields consistent gains in Execution Accuracy (EX)
and Execution Proportion (EP). Compared to the
second-best method, EX improves by about 10%
and EP by more than 20%. Furthermore, with the
1+1 Model Collaboration Paradigm, Feather-SQL
attains state-of-the-art (SOTA) within SLMs on
BIRD DEV, with EX reaching 54.76%.

Together, these results demonstrate the effective-
ness of our method for NL2SQL with SLMs. Our
work also provides a robust foundation for applying
SLMs to other structured tasks and domains.

2077

Limitations

Despite the promising performance gains achieved
by Feather-SQL, our current framework does not
yet reach very high absolute accuracy on datasets.
For instance, the best cumulative accuracy on
BIRD DEV is around 74% (Gao et al., 2025b;
Pourreza et al., 2024). In fact, many LLM-based
NL2SQL methods typically report accuracy in the
60+% range, while the SOTA results achieved by
SLMs remain below 55%. However, our approach
is the first to surpass all previous methods at the
1B-parameter scale. Feather-SQL with the Model
Collaboration Paradigm lays a strong foundation
for promoting the broader adoption of NL2SQL in
real-world applications.

References
Anindyadeep. 2024. Premsql: End-to-end local-

first text-to-sql pipelines. https://github.com/
premAI-io/premsql. Accessed: 2024-12-10.

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim,
and Dong Ryeol Shin. 2021. Ryansql: Recursively
applying sketch-based slot fillings for complex text-
to-sql in cross-domain databases. Computational
Linguistics, 47(2):309–332.

DeepSeek-AI. 2024. Deepseek llm: Scaling open-
source language models with longtermism. Preprint,
arXiv:2401.02954.

Defog. Sqlcoder. https://github.com/defog-ai/
sqlcoder. Accessed: 2024-12-10.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien
Rodriguez, and Austen Gregerson. 2024. The llama
3 herd of models. Preprint, arXiv:2407.21783.

Xiangxiang Gao, Weisheng Xie, Yiwei Xiang, and Feng
Ji. 2025a. Falcon: Faster and parallel inference
of large language models through enhanced semi-
autoregressive drafting and custom-designed decod-
ing tree. Preprint, arXiv:2412.12639.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi,
Yin Zhu, Yiming Wang, Shiqi Li, Wei Li, Yun-
tao Hong, Zhiling Luo, Jinyang Gao, Liyu Mou,
and Yu Li. 2025b. A preview of xiyan-sql: A
multi-generator ensemble framework for text-to-sql.
Preprint, arXiv:2411.08599.

Satya Krishna Gorti, Ilan Gofman, Zhaoyan Liu, Ji-
apeng Wu, Noël Vouitsis, Guangwei Yu, Jesse C.
Cresswell, and Rasa Hosseinzadeh. 2025. Msc-
sql: Multi-sample critiquing small language mod-
els for text-to-sql translation. In Proceedings of the
Conference of the Nations of the Americas Chapter
of the Association for Computational Linguistics,
pages 2145–2160.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-sql in cross-domain database
with intermediate representation. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4524–4535.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu
Cui, Xiang Long, Zhi Zheng, Yewei Fang, and Yux-
iang Huang. 2024. Minicpm: Unveiling the poten-
tial of small language models with scalable training
strategies. Preprint, arXiv:2404.06395.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayi-
heng Liu, Lei Zhang, Tianyu Liu, and Jiajun Zhang.
2024. Qwen2.5-coder technical report. Preprint,
arXiv:2409.12186.

Marcelo Archanjo Jose and Fabio Gagliardi Cozman.
2023. A multilingual translator to sql with database
schema pruning to improve self-attention. Preprint,
arXiv:2306.14256.

Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghu-
nathan. 2024. Understanding catastrophic forget-
ting in language models via implicit inference. In
The Twelfth International Conference on Learning
Representations.

Fei Li and Hosagrahar V Jagadish. 2014. Nalir: an
interactive natural language interface for querying re-
lational databases. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management
of Data, page 709–712.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings of
the Thirty-Seventh AAAI Conference on Artificial
Intelligence.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024. Codes: Towards
building open-source language models for text-to-sql.
Preprint, arXiv:2402.16347.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi
Yang, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guo-
liang Li, Kevin C. C. Chang, Fei Huang, Reynold
Cheng, and Yongbin Li. 2023b. Can llm already
serve as a database interface? a big bench for large-
scale database grounded text-to-sqls. In Advances in
Neural Information Processing Systems.

2078

https://github.com/premAI-io/premsql
https://github.com/premAI-io/premsql
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://github.com/defog-ai/sqlcoder
https://github.com/defog-ai/sqlcoder
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2412.12639
https://arxiv.org/abs/2412.12639
https://arxiv.org/abs/2412.12639
https://arxiv.org/abs/2412.12639
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/2411.08599
https://doi.org/10.18653/v1/2025.naacl-long.107
https://doi.org/10.18653/v1/2025.naacl-long.107
https://doi.org/10.18653/v1/2025.naacl-long.107
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2409.12186
https://doi.org/10.1007/s41870-023-01342-3
https://doi.org/10.1007/s41870-023-01342-3
https://openreview.net/forum?id=VrHiF2hsrm
https://openreview.net/forum?id=VrHiF2hsrm
https://doi.org/10.1145/2588555.2594519
https://doi.org/10.1145/2588555.2594519
https://doi.org/10.1145/2588555.2594519
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2402.16347
https://papers.nips.cc/paper_files/paper/2023/file/83fc8fab1710363050bbd1d4b8cc0021-Paper-Datasets_and_Benchmarks.pdf
https://papers.nips.cc/paper_files/paper/2023/file/83fc8fab1710363050bbd1d4b8cc0021-Paper-Datasets_and_Benchmarks.pdf
https://papers.nips.cc/paper_files/paper/2023/file/83fc8fab1710363050bbd1d4b8cc0021-Paper-Datasets_and_Benchmarks.pdf

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi
Jiang, Yuyu Luo, Yuxin Zhang, Ju Fan, Guoliang Li,
and Nan Tang. 2024. A survey of nl2sql with large
language models: Where are we, and where are we
going? Preprint, arXiv:2408.05109.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou,
and Yue Zhang. 2025. An empirical study of catas-
trophic forgetting in large language models during
continual fine-tuning. Preprint, arXiv:2308.08747.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang
Shen, Aditya Prasad, Adriana Meza Soria, Michele
Merler, Parameswaran Selvam, Saptha Surendran,
Shivdeep Singh, Manish Sethi, Xuan-Hong Dang,
Pengyuan Li, Kun-Lung Wu, Syed Zawad, and An-
drew Coleman. 2024. Granite code models: A fam-
ily of open foundation models for code intelligence.
Preprint, arXiv:2405.04324.

Chien Van Nguyen, Xuan Shen, Ryan Aponte, Yu Xia,
Samyadeep Basu, Zhengmian Hu, Jian Chen, Mihir
Parmar, Sasidhar Kunapuli, Joe Barrow, Junda Wu,
Ashish Singh, Yu Wang, Jiuxiang Gu, Franck Der-
noncourt, Nesreen K. Ahmed, Nedim Lipka, Ruiyi
Zhang, Xiang Chen, Tong Yu, Sungchul Kim, Hanieh
Deilamsalehy, Namyong Park, Mike Rimer, Zhehao
Zhang, Huanrui Yang, Ryan A. Rossi, and Thien Huu
Nguyen. 2024. A survey of small language models.
Preprint, arXiv:2410.20011.

Nvidia, :, Bo Adler, Niket Agarwal, Ashwath Aithal,
Dong H. Anh, Pallab Bhattacharya, Annika Brun-
dyn, Jared Casper, Bryan Catanzaro, Sharon Clay,
Jonathan Cohen, Sirshak Das, Ayush Dattagupta,
Olivier Delalleau, Leon Derczynski, Yi Dong, Daniel
Egert, Ellie Evans, Aleksander Ficek, and Denys
Fridman. 2024. Nemotron-4 340b technical report.
Preprint, arXiv:2406.11704.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agar-
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam
Altman, Shyamal Anadkat, Red Avila, and Igor
Babuschkin. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O. Arik. 2024. Chase-sql: Multi-path reason-
ing and preference optimized candidate selection in
text-to-sql. Preprint, arXiv:2410.01943.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Preprint, arXiv:2304.11015.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Dts-sql: Decomposed text-to-sql with small large
language models. Preprint, arXiv:2402.01117.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,
Chenhao Ma, and Reynold Cheng. 2024. Before
generation, align it! a novel and effective strategy
for mitigating hallucinations in text-to-sql generation.
Preprint, arXiv:2405.15307.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Diptikalyan Saha, Avrilia Floratou, Karthik Sankara-
narayanan, Umar Farooq Minhas, Ashish R. Mittal,
and Fatma Özcan. 2016. Athena: an ontology-driven
system for natural language querying over relational
data stores. Proceedings of the VLDB Endowment,
9(12):1209–1220.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
Chess: Contextual harnessing for efficient sql synthe-
sis. Preprint, arXiv:2405.16755.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. Rat-
sql: Relation-aware schema encoding and link-
ing for text-to-sql parsers. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7567–7578.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2024. Mac-sql: A
multi-agent collaborative framework for text-to-sql.
Preprint, arXiv:2312.11242.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet:
Generating structured queries from natural language
without reinforcement learning. arXiv:1711.04436.

01.AI: Alex Young, Bei Chen, Chao Li, and Chengen
Huang. 2025. Yi: Open foundation models by 01.ai.
Preprint, arXiv:2403.04652.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2019. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-sql task. Preprint, arXiv:1809.08887.

John M. Zelle and Raymond J. Mooney. 1996.
Learning to parse database queries using induc-
tive logic programming. In Proceedings of
the Thirteenth National Conference on Artificial
Intelligence, pages 1050–1055.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
Preprint, arXiv:1709.00103.

2079

https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2405.04324
https://arxiv.org/abs/2405.04324
https://arxiv.org/abs/2410.20011
https://arxiv.org/abs/2406.11704
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://doi.org/10.14778/2994509.2994536
https://doi.org/10.14778/2994509.2994536
https://doi.org/10.14778/2994509.2994536
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2403.04652
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103

A Experimental Settings

All experiments were conducted on 4 NVIDIA A6000 GPUs using the vLLM inference acceleration
framework to improve model efficiency. For stages that produce multiple answers, such as candidate
generation and selection, we primarily used a temperature of 0.2 and a top_p of 0.8 to balance diversity
and accuracy. In contrast, for tasks requiring a single answer, such as schema pruning and schema linking,
we employed greedy search to ensure deterministic outputs.

B Multi-Candidate Motivation

Top-N Yi-Coder-1.5B MiniCPM3-4B Prem-SQL-1.3B
ACC (%) EXE (%) ACC (%) EXE (%) ACC (%) EXE (%)

1 15.65 46.26 26.53 65.31 55.78 92.52
3 24.49 70.75 35.37 76.87 59.86 97.28
5 30.61 78.91 36.05 82.31 62.59 97.96
7 33.33 82.31 37.41 84.35 65.31 97.96

Top-N CodeS-3B GPT-4o Claude-3.5-Sonnet
ACC (%) EXE (%) ACC (%) EXE (%) ACC (%) EXE (%)

1 24.49 61.90 51.70 93.20 40.82 86.39
3 27.21 68.71 53.74 94.56 41.50 87.76
5 29.93 72.11 56.46 94.56 42.18 88.44
7 29.93 73.47 56.46 94.56 42.18 88.44

Table 7: Comparison of Accuracy (ACC) and Execution (EXE) on the BIRD DEV Subset from CHESS using
multi-candidate generation strategy.

The results demonstrate that SLMs exhibit a performance gap between TOP-1 and TOP-7 results. This
indicates that employing a multi-candidate generation strategy can effectively improve the accuracy and
execution rates by selecting the best result. In contrast, larger models already perform robustly with TOP-1
outputs, and therefore, the additional benefit from multi-candidate generation is limited. Additionally, the
fine-tuned SQL model CodeS-3B shows some improvement, but the gains are not as pronounced as those
observed in the other SLMs.

C Framework Upper Bound

To explore the upper bound of the Feather-SQL framework, we also evaluated its performance using
cumulative accuracy, which measures whether the correct SQL query is present within the Top-n generated
results. Specifically, we retained the top 4 candidates after the selection ranking in this experiment, rather
than solely selecting the top 1 candidate in default.

As indicated in Table 8, Top-3 is approximately 10% higher than Top-1 (EX). This suggests that there
is room for further improvement in the selection mechanism. If the selection can be refined to accurately
identify the optimal SQL query, the performance gap between Top-N and Top-1 could be considerably
reduced.

Model Top-1(%) Top-2(%) Top-3(%)

Qwen 31.8 39.0 40.5

Yi Coder 25.2 32.6 34.5

Prem-SQL 49.2 60.2 62.6

Table 8: Cumulative Accuracy on BIRD DEV.

2080

D Prompts

D.1

Schema Pruning Prompt

prompt_pruning_system = """
You are an agent designed to find all related tables to generate SQL query
for question based on the database schema and hint.

Requirements
1. You don't need to answer the question, your task is only finding all related tables .
2. Consider all constraints of each table, including primary keys, foreign keys, and data

types.
3. You can generate chain of thoughts, but ensure all tables mentioned truly exist.
4. Successfully answer related columns could help you win $100000 dollars.
"""

prompt_pruning = """
Instructions
1. Prioritize the table that most directly contains the information needed to answer the

question, considering:
- Table relationships such as foreign keys.
- Whether the table has columns directly related to the entities or actions in the
question.

2. Reasoning like two shown examples.

----------Example----------
Database Schema
CREATE TABLE Employees (

employee_id INT PRIMARY KEY,
name VARCHAR(100),
department VARCHAR(100),
salary DECIMAL(10, 2)

);

CREATE TABLE Departments (
department_id INT PRIMARY KEY,
department_name VARCHAR(100),
location VARCHAR(100)

);

Question
What is the salary of the employee named 'Alice'?

Relevant Tables
This table directly contains the columns name and salary, which are the only necessary fields

to answer the question.
The name column is used to locate the specific employee named 'Alice', and the salary column

provides the required
salary information. The Departments table is irrelevant because it does not store employee-

level data like salaries
or names, and its information is unrelated to this specific query.
The relevant table is Employees.

----------Task----------
Database Schema
You are provided with the structure of the database "{database_name}":
{database_schema}

Question
{question}

Hint
{hint}

Among the following tables: {tables}, which tables are relevant for addressing the question?
Relevant Tables

2081

"""

D.2

Schema Linking Prompt

prompt_linking_system="""
You are an agent designed to find all related columns to generate SQL query for question based

on the database schema and the hint.

Requirements
1. You don't need to answer the question, your task is only finding all related columns.
2. Hint could help you to find the correct related columns.
3. Consider all constraints of each table, including primary keys, foreign keys, and data

types.
4. You can generate chain of thoughts, but ensure all columns mentioned truly exist.
7. Successfully answer related columns could help you win $100000 dollars.
"""

prompt_linking="""
Instructions
1. Select columns that relates to information requested by the question, considering:

- Whether the column is key to filtering results (used in WHERE clauses).
- Whether the column should be part of the SELECT statement to fulfill the user query.
- The relationship of the column to other parts of the question, such as groupings,
aggregations, or direct match to entities mentioned.

2. Reasoning like two shown examples.

----------Example----------
Database Schema
CREATE TABLE Employees (

employee_id INT PRIMARY KEY,
name VARCHAR(100),
department VARCHAR(100),
salary DECIMAL(10, 2)

);

CREATE TABLE Departments (
department_id INT PRIMARY KEY,
department_name VARCHAR(100),
location VARCHAR(100)

);

Question
What is the salary of the employee named 'Alice'?

Relevant Columns
The name column is essential to filter the employee named 'Alice' in the WHERE clause,

ensuring we identify the correct individual. The salary column is needed to extract the
requested information, which is the employee's salary. Since the question does not
involve departments, the Departments table and its columns are irrelevant.

The related columns are Employees.name and Employees.salary.

----------Task----------
Database Schema
You are provided with the structure of the database "{database_name}":
{schema}

Question
{question}

Hint
{hint}

Among the columns, which are relevant for addressing the question?
Relevant Columns

2082

"""

D.3

Multi-path Generation Prompt

system_prompt_sql_generation = """
You are an expert SQL assistant tasked with generating precise SQL queries based on given

database schemas, questions, and hint.

Responsibilities
1. Analyze the **database schema** and **hint** to determine relationships, including **

primary keys, foreign keys, data types, and constraints**.
2. Generate a single, valid **SQLite SQL query** to answer the question, using provided schema

linking information for table and column selection.
3. Your response should contain only the **SQL query**, using standard SQL syntax with correct

use of table/column names and SQL clauses.

Requirements
- Respond with only one SQL query, formatted as ```SQL```.
- Use clauses like **SELECT**, **FROM**, **WHERE**, **JOIN**, **GROUP BY**, **ORDER BY**, etc.
- Ensure SQL is efficient and respects **Important Columns**, table relationships, and

relevant constraints.
"""

prompt_generation_with_linking = """
You are given a database schema, question, important columns and hint. Generate a valid SQLite

query that answers the question.

Instructions
1. Your response should only contain one SQL query, in standard SQL syntax.
2. Consider all **table relationships**, **primary/foreign keys**, **data types**, and **

Important Columns** while generating the query.

Database Schema
Database "{database_name}":
{database_schema}

Important Columns
{schema_linking}

Question
{question}

Hint
{hint}

Output Requirement
Format the response as:
```sql
[SQL query]
```
"""

prompt_generation_without_linking = """
You are given a database schema, question, and hint. Generate a valid SQLite query that

answers the question.

Instructions
1. Your response should only contain one SQL query, in standard SQL syntax.
2. Consider all **table relationships**, **primary/foreign keys**, **data types** while

generating the query.

Database Schema
Database "{database_name}":
{database_schema}

2083

Question
{question}

Hint
{hint}

Output Requirement
Format the response as:
```sql
[SQL query]
```
"""

D.4
Correction Prompt

prompt_answer_correction_system ="""
Suppose you are an expert in SQLite and database management.

Instructions
1. Based on the database structure provided, previous answer and its error messages, generate

one SQL query that answers the question.
2. You should try to fix the error of the previous answer and avoid it from happening again.

Requirements
1. Your response should consist of only one SQL query, don't generate anything else.
3. Consider all constraints of each table, including primary keys, foreign keys, and data

types.
4. Provide your query in standard SQL format with appropriate use of SQL functions, joins, and

conditions.
"""

prompt_answer_correction = """
Database Schema
Given the structure of database:
{schema}

Question
{question}

Hint
{hint}

Previous answer
{prev_ans}

Error
{errorMsg}

New Answer
"""

D.5
Selection Prompt

system_prompt_query_selection = """
You are an expert in analyzing SQL queries and determining their relevance to a given question.

Your task is to evaluate multiple SQL queries and select the one that best answers the
question based on the provided database schema and context.

Responsibilities

2084

1. Analyze the given question: Understand the intent of the question and its expected output.
2. Evaluate each SQL query: Consider the correctness, relevance, and completeness of each

query in relation to the question.
3. Select the best query: Choose the query that most accurately answers the question, while

considering database structure, table relationships, and query efficiency.

Requirements
- Respond with the most relevant SQL query, and nothing else.
- Ensure the selected query is valid for the given database schema and directly addresses the

question.
"""

query_selection_prompt = """
You are given a question, a database schema, and multiple SQL queries. Your task is to select

the SQL query that is most relevant and best answers the question.

Instructions
1. Analyze the Question: Understand what the user is asking and identify the information that

needs to be extracted from the database.
2. Evaluate SQL Queries: For each provided SQL query, determine its relevance based on:

- Accuracy: Does the query correctly match the question's intent?
- Completeness: Does the query retrieve all the necessary information without omitting
important details?
- Efficiency: Is the query optimized for the task, avoiding unnecessary joins or
conditions?

3. Select the Most Relevant Query: Choose the query that is the best match for the question.

Database Schema
Database "{database_name}":
{database_schema}

Question
The question is:
{question}

Hint
{hint}

SQL Queries
{queries}

Output Requirement
Reply the query Index in the format of "Index: ".

Output
"""

query_with_response_selection_prompt = """
You are given a question, a database schema, multiple SQL queries, and their execution results.

Your task is to select the SQL query that best answers the question based on the query
and its result.

Instructions
1. Understand the Question: Determine what the user is asking and identify the specific

information that needs to be retrieved.
2. Evaluate Each Query and Response Pair: For each provided SQL query and its result,

determine:
- Query Accuracy: Does the query correctly represent the user's intent?
- Result Relevance: Does the result contain the data needed to answer the question
completely and correctly?
- Efficiency: Is the query optimized, avoiding unnecessary complexity?

Database Schema
Database "{database_name}":
{database_schema}

Question
{question}

2085

Hint
{hint}

SQL Queries and Execution Results
{queries}

Output Requirement
Only reply the query Index in the format of "Index: ".
"""

2086

