Consistency Is the Key: Detecting Hallucinations in LLM Generated Text
By Checking Inconsistencies About Key Facts

Raavi Gupta'; Pranav Hari Panicker?; Sumit Bhatia®, Ganesh Ramakrishnan®
!Columbia University, IIT Bombay
3Media and Data Science Research (MDSR) Lab, Adobe
raavi.g@columbia.edu, {pranavhp, ganesh}@cse.iitb.ac.in, sumit.bhatia@adobe.com

Abstract

Large language models (LLMs), despite their
remarkable text generation capabilities, often
hallucinate and generate text that is factually
incorrect and not grounded in real-world knowl-
edge. This poses serious risks in domains like
healthcare, finance, and customer support. A
typical way to use LLMs is via the APIs pro-
vided by LLM vendors where there is no ac-
cess to model weights or options to fine-tune
the model. Existing methods to detect hallu-
cinations in such settings where the model ac-
cess is restricted or constrained by resources
typically require making multiple LLM API
calls, increasing latency and API cost. We in-
troduce CONFACTCHECK, an efficient halluci-
nation detection approach that does not lever-
age any external knowledge base and works on
the simple intuition that responses to factual
probes within the generated text should be con-
sistent within a single LLM and across different
LLMs. Rigorous empirical evaluation on mul-
tiple datasets that cover both the generation of
factual texts and the open generation shows that
CONFACTCHECK can detect hallucinated facts
efficiently using fewer resources and achieves
higher accuracy scores compared to existing
baselines that operate under similar conditions.
Our code is available here.

1 Introduction

Large Language Models (LLMs) are the go-to tools
for NLP applications given their excellent text
generation capabilities (Zhao et al., 2023). How-
ever, despite recent developments in model archi-
tecture and training, even state-of-the-art models
such as GPT-4 (Achiam et al., 2023) and PALM-
540B (Chowdhery et al., 2023) often generate text
that appears plausible, but is factually incorrect or
non-sensical — a phenomenon termed hallucina-
tion (Huang et al., 2023). A formal analysis by
Xu et al. (2024) shows that LLLMs cannot learn all

*Equal contribution.

possible computational functions, and hence, by
design, will always hallucinate, albeit to different
degrees. Consequently, detecting when the LLM
hallucinates is imperative to take corrective action
and minimize misinformation from reaching users.
Such model hallucinations can be either intrinsic
or extrinsic (Ji et al., 2023). Intrinsic hallucinations
arise when model outputs contradict the input or
in-context instructions and can often be detected
by checking input-output consistency (Huang et al.,
2023). Extrinsic hallucinations, on the other hand,
occur when the model output is factually incorrect
and is not grounded on the pre-training data (Huang
et al., 2023). Given the volume of pre-training data
and that it is typically inaccessible by the users,
extrinsic hallucinations pose a greater challenge
due to their unverifiable nature (Ji et al., 2023).
Hallucinations in LLMs are typically addressed
by either (i) improving factual accuracy via train-
ing or fine-tuning (Tian et al., 2023; Azaria and
Mitchell, 2023a; Chuang et al., 2023), or (ii) ver-
ifying model outputs using external knowledge
sources (Cheng et al., 2024). However, in many
practical cases, end-users or developers lack access
to model weights or external verification sources.
Recent approaches circumvent this by repeatedly
querying the LLM (Manakul et al., 2023; Zhang
et al., 2023a; Liu et al., 2022) to thoroughly verify
responses or sample large number of outputs to
estimate output probability distributions, leading to
significantly increased cost and latency. To address
these limitations, we propose CONFACTCHECK,
a lightweight method for hallucination detection
that relies solely on the LLM’s internal knowl-
edge. CONFACTCHECK is based on a simple idea:
an LL.M’s understanding of a topic can be eval-
uated by asking related questions and measuring
consistency. This recursive probing strategy has
also been used in testing question-answering sys-
tems (Chen et al., 2021). As illustrated in Fig-
ure 1, CONFACTCHECK identifies key entities/tags

2053

Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics, pages 2053-2068
December 20-24, 2025 ©2025 Association for Computational Linguistics


https://github.com/decile-team/languagemodels/tree/main/ConFactCheck

Original Output: Argentina won the World Cup in the years 1978, 1986
and 2006.
Step 1: |
NER to extract the key
factual tokens [ L 1

{ Argentina

££— Finetuned T5-based model: Generates a Question given “Fact i” and
==35 “Original Output” such that “Fact i” is the answer.

World Cup 1978, 1986 and 2006

eeeeeeeeee

Question 1: Who won the World Cup in 1978, 1986 and 20227
Question 2: What did Argentina win in the years 1978, 1986 and 20227
Question 3: In which years did Argentina win the World Cup?

e

LLM Prompt:
==37  “Generate the specific answer for <Question i>"

[ Argentina

Step 4: Alignment check for the fact list using
Fact Alignment Check LLM-as-a-judge

Atomic Fact Answer l

FIFAWorld Cup 1978, 1986 and 2022

Alignment Result: [0,0,1]

Figure 1: Key fact-based hallucination detec-
tion through the Fact Alignment check of our
CONFACTCHECK pipeline. Each fact is used to gener-
ate a question, and the fact is regenerated by prompting
the question to the LLM. The regenerated facts are com-
pared with the original extracted key facts to check for
their consistency.

(using NER/POS tagging) in the generated output
and then formulates contextually relevant questions
around these entities. We term these entities/tags as
‘key facts’, as these contain essential factual infor-
mation in sentences. The LLM’s answers to these
questions are checked for consistency with the orig-
inal response, with high consistency indicating that
the output is grounded in the model’s pre-training
data (reflective of the world knowledge).

We evaluate CONFACTCHECK on four dif-
ferent datasets spanning question-answering
(NQ_Open (Kwiatkowski et al., 2019), Hot-
potQA (Yang et al., 2018), WebQA (Berant et al.,
2013)) and open-ended generation tasks where
inputs to the LLM lack any additional context (Wik-
iBio (Manakul et al., 2023)). CONFACTCHECK
outperforms recent state-of-the-art self-check or
self-consistency-based baselines (Manakul et al.,
2023; Zhang et al., 2023a; Liu et al., 2022) along
with baselines relying on the internal states of
models (Chen et al., 2024) for LLMs of different
model families. CONFACTCHECK achieves this
outperformance while being significantly faster
and requiring a lower number of LLM calls (c.f,,
Table 2). We also report the results of various
ablation studies guiding our design choices
and conclude by discussing the strengths and
limitations of CONFACTCHECK.

2 Related Work

LLMs are inherently prone to hallucinations (Xu
et al., 2024; Ji et al., 2023), a phenomenon also
observed in visual and multi-modal models (Bai
et al., 2024; Liu et al., 2024). This has led to ex-

tensive research on hallucination detection and mit-
igation (Huang et al., 2023; Zhang et al., 2023b;
Tonmoy et al., 2024). Existing methods fall broadly
into two categories: self-checking, prompt-based
approaches and those that require access to model
weights or external knowledge sources.

Methods Requiring Access to Model Weights
and External Sources: Tian et al. (2023) demon-
strate that fine-tuning with factuality preferences
improves output correctness. Azaria and Mitchell
(2023b) use internal LLM activations passed
through a classifier to estimate truthfulness. IN-
SIDE (Chen et al., 2024) uses internal sentence
embeddings and analyzes their covariance eigen-
values to detect hallucinations. Various decoding
strategies (Chuang et al., 2023; Shi et al., 2024)
have also been developed that utilize token proba-
bilites at various layers to detect and mitigate hal-
lucinations. Some approaches such as HaluAgent
(Cheng et al., 2024) use additional tools such as
web search engines, code interpreters etc for text
and code-based detection of hallucinations respec-
tively.

Self-Checking and Prompt-Based Methods:
Zhang et al. (2023a) propose Semantic-Aware
Cross-Check Consistency (SAC?), a sampling-
based method that checks for self-consistency
across multiple generations. Similarly, SelfCheck-
GPT (Manakul et al., 2023) samples diverse out-
puts and scores their similarity to the original to es-
timate confidence. InterrogateL.LM (Yehuda et al.,
2024), focuses on regenerating the original query
for a generated answer by reversing few-shot QA
pairs to few-shot AQ pairs to self-check for model
confidence during regeneration. These self-refining
approaches often rely on the target LMs them-
selves, which is also demonstrated in Self-Refine
(Madaan et al., 2023), an iterative mitigation-based
approach for hallucinations. Miindler et al. (2023)
explore self-contradictions using two LLMs — one
for generation and one for contradiction analysis.
TRUE (Honovich et al., 2022) evaluates factual
consistency using a range of metrics (n-gram, NLI,
model-based) on the FEVER dataset (Thorne et al.,
2018). Liu et al. (2022) propose a reference-free,
token-level method for detecting hallucinations and
also present the Hallucination Detection dataset
(HaDes), with raw web text being perturbed and
then annotated by humans to design it for hallu-
cination detection as a classification task. Cohen
et al. (2023) present a cross-checking prompt-based
method with 2 LLMs in a dialogue setting for

2054



evaluating hallucinations. Yang et al. (2023) em-
ploy a reverse validation method for self-checking
via "databases" (i.e the same LLMs), by prompt-
ing specific fact-based information to the models.
FactScore (Min et al., 2023) breaks outputs into
atomic facts, and verifies them using reliable exter-
nal knowledge sources. We also utilize the notion
of atomic facts in CONFACTCHECK , however, in-
stead of leveraging external sources, we check for
consistency in LLM outputs about the atomic facts.

3 The CONFACTCHECK Approach

Figure 2 summarizes our proposed hallucination
detection approach comprising of two main steps
— (i) a fact alignment check where key facts in the
output are compared with facts obtained by targeted
probing of the LLM; and (ii) a uniform distribution
check that filters out the low confidence predictions.
We now describe the overall pipeline in detail.

3.1 Fact Alignment Check

Extracting Key Facts: To check whether a piece
of text, A, generated by an LLM M is hallucinated,
we start with the assumption that the generated text
is correct. We then generate questions targeting
each key fact in A, such that they can be answered
solely using the content of 4. Subsequently, we
employ the LLM to answer the questions and see
if the answers match the information in .4, a mis-
match indicating hallucinations. The initial step
is to identify the factual components within a sen-
tence. According to Kai et al. (2024), factual infor-
mation in a sentence is typically conveyed through
specific parts of speech, viz., nouns, pronouns, car-
dinal numbers, and adjectives. We highlight tags
with such information as key facts that are to be
extracted. Min et al. (2023) use a similar concept,
where they classify short sentences in text (obtained
by InstructGPT generation and human annotation)
as atomic facts. However, the key facts we discuss
are extracted NER/POS tags containing factual in-
formation, and hence are different. Key facts can be
extracted by performing part-of-speech (POS) tag-
ging or Named Entity Recognition (NER) on the
sentence. Given an LLM output A, we perform
coreferencing and decompose A into sentences
S1,82,...,8N, where N is the total number of
sentences, such that A = {57, 55...,Sy}. Each
sentence is tagged to extract key facts a;;, where
i € {1,...,N}, and j depends on the number
of tagged entities in a sentence. The tagging can

be either POS-based or NER-based, as discussed
in Section 5.4.3. For example, given the origi-
nal sentence “Argentina won the World Cup in the
years, 1978, 1986 and 2006.”, in Figure 1, the
key facts consist of a = [a11 = Argentina, a1 =
World Cup, a3 = 1978, 1986 and 2006).
Targeted Question Generation: After identify-
ing key facts, the next step involves verifying
whether each fact is hallucinated within the context
of the sentence. Unlike previous methodologies
that assign a hallucination score to each sentence,
CONFACTCHECK focuses on key facts, thereby
enhancing explainability by pinpointing the ex-
act parts of a sentence that are hallucinated and
providing reasons for this determination, as de-
tailed in Section 5.5. Specifically, for each key
fact a;; given sentence S;, a corresponding ques-
tion g;; is generated (using a T5-based model that
is specifically finetuned for this task of question
regeneration), with a;; as the target answer and
S; as the context, expressed as ¢;; = Q(a;;]S5;),
where Q represents the question generation module.
In Figure 1, each key fact provides one question
q = [q11 = Question 1, q12 = Question 2, ¢13 =
Question 3]. LLM M’ is then used to evaluate
these questions at a low temperature to ensure re-
sponse consistency, as it enables the LLM to gen-
erate high-quality and deterministic outputs. Each
individual key fact-based question is answered by
the LLM with greater precision and therefore helps
to better identify whether the fact is correct or incor-
rect (Dhuliawala et al., 2024). Note that M’ may
or may not be the same as M, as another LLM can
be used to evaluate the responses of LLM M.
Consistency Checking The responses from M’
yield regenerated facts f;;, which are subsequently
checked for consistency with a;;. To check for
the similarity between f;; and a;;, we follow the
LLM-as-a-judge paradigm (Zheng et al., 2023),
by querying GPT4.1-mini using few-shot prompt-
ing to assess whether each pair is aligned or not.
For instance, the set f for Figure 1 being f =
[fi1 = Argentina, fio = FIFA World Cup, f13 =
1978, 1986 and 2022.], and original key facts be-
ing a = [a11 = Argentina, a2 = World Cup, a3
= 1978, 1986 and 2006]. In this case, facts
fi3 and a13 are non-aligned; whereas, the pairs
< fi1,a11 > and < fi9,a10 > are aligned as
per the judge’s output. For each aligned and non-
aligned pairs, we assign the score of 0 and 1 re-
spectively. Note that since the number of extracted
facts varies based on the sentence, the number of

2055



[y —
pr—— NER Extract Key
Tagging Facts

l

Original Regenerated
facts facts

Question
Generation

—

Original Output

Compare

If aligned, Tag Non-
Hallucination (0), else
Hallucination (1)

Fact Alignment Check }

For each set of facts, if
N F i ion

Non-F

~~~~~~~~~~~~~~~

K-S Test

Regenerated output

sampled from N-U?

No | Yes
Hallucination Non-Hallucination
-
-------- Score = Avg.(tags)

[ Uniform Distribution Check }

Figure 2: Pipeline of the CONFACTCHECK approach, with NER tagging of outputs followed by the first comparison-
based check (Fact Alignment Check) and the secondary KS test-based probability check (Uniform Distribution
Check) for rechecking the classfied non-hallucinations, result in the final tagging of hallucinations.

questions generated per sentence also varies. The
consistency checking step, thus, enables the de-
composition of sentence-level information into dis-
crete factual elements and leverages and operates
under the assumption that the LLM’s responses
will remain consistent for factual information when
sampled at a low temperature.

3.2 Uniform Distribution Check

After the fact-alignment step, we perform a subse-
quent step to check if the facts were regenerated
with high confidence. The underlying intuition be-
hind this step is that if the LLM is confident in
regenerating a fact correctly, the probability dis-
tribution of the generated tokens will be skewed,
with the selected tokens having significantly higher
probabilities than the other possible tokens. This
results in a non-uniform distribution of token prob-
abilities. Conversely, if the LLM is uncertain, even
though the generated tokens may have the highest
relative probability, their values will be closer to
those of alternative tokens (closer to a uniform dis-
tribution) and indicating less confidence in LLM
prediction. To quantify this effect, we apply the
Kolmogorov—Smirnov (K-S) test to the top five to-
kens associated with each regenerated fact f;;. The
test is conducted using a standard significance level
of 0.05. A p-value below this threshold leads to the
rejection of the null hypothesis (i.e., the top tokens
are drawn from a uniform distribution) implying
that the LLM exhibits confidence in its generation.
If the test indicates a non-uniform distribution, the
LLM is deemed confident in regeneration, and orig-
inal fact a;; is classified as non-hallucinated. How-
ever, if the token probabilities follow a uniform

distribution, it is concluded that the particular fact
is hallucinated, reflecting the LLM’s lack of confi-
dence. The final hallucination score for a sentence
S; is calculated by averaging the individual scores
of a;; present in it to give a probability of how
likely a sentence has been hallucinated.

4 Experimental Protocol

4.1 Task and Datasets

We consider two common task settings — question
answering (QA) and text summarization. In the QA
setting, LLMs are particularly susceptible to factual
hallucinations, especially when no external context
or information is provided with the input questions.
The summarization task is a representative of the
long-form text generation tasks where the output
is not limited to be a short answer (a phrase or a
sentence), and hence enables us to evaluate the abil-
ity of various methods to detect hallucinations in
longer pieces of text. Further, this setting also tests
the ability of the LLM to generate text that is faith-
ful to the input context (text to be summarized).
We use the following datasets for evaluation,
(with the validation/test sets for QA):
1. Natural Questions (NQ)-open (Kwiatkowski
et al., 2019) is an open-domain QA benchmark
derived from the Natural Questions dataset (Lee
et al., 2019). The validation split of this dataset
consists of 3,610 open-domain question-answer
pairs covering a wide range of topics..
2. HotpotQA (Yang et al., 2018) is a QA dataset
that features complex questions requiring multi-
hop reasoning.
3. WebQA (Berant et al., 2013) dataset is a factoid

2056



QA dataset where the questions are derived from
the Freebase knowledge base.

4. WikiBio (Manakul et al., 2023) is a halluci-
nation detection dataset derived from Wikipedia
biographies. It consists of 238 randomly selected
articles from among the longest 20% Wikipedia
articles. It also provides synthetic text generated by
GPT-3 for each of the original articles, along with
labels for factual correctness of the sentences.

4.2 Baselines

We use following four representative self-check
and self-consistency based hallucination detection
methods as baselines.

HaDes (Liu et al., 2022) is an external reference-
free method that leverages various token-level fea-
tures such as POS tags, average word probability,
mutual information, and TF-IDF scores to identify
if a token is hallucinated or not.

SelfCheckGPT (Manakul et al., 2023) is a sam-
pling based approach built upon the intuition that
for hallucinated responses, stochastically sampled
responses for the same input are likely to diverge.
SAC? (Zhang et al., 2023a), another sampling-
based approach that generates responses to multiple
semantically similar inputs to the original input and
checks for consistency in the generated outputs.
INSIDE (Chen et al., 2024) detects hallucinations
using the EigenScore metric, calculated using the
eigenvalues of the covariance matrix of the re-
sponses to measure the semantic consistency/diver-
sity in the dense embedding space of the generated
outputs.

4.3 Implementation details

Models Used. We use LLaMA3.1-8B-Instruct
and Qwen2.5-7B-Instruct as the base LLMs for
comparing CONFACTCHECK and various base-
lines. For the QA task, initial responses are also
generated using these base LLMs, with a tempera-
ture of 1. Further, we use different models of Phi-3
family to study how well CONFACTCHECK per-
forms with LLMs of varying scale (Section 5.3).
We present ablations that guided our design choices
in Sections 5.4.2 and 5.4.3. We use the official
implementation of HaDes' for our experiments.
For SAC? (Zhang et al., 2023a), we compute the
question-level consistency SAC3-Q score and em-
ploy predetermined thresholds to discern the pres-
ence of hallucinated outputs.

"https://github.com/microsoft/HaDes

Metrics for Analysis: We consider hallucina-
tion detection as a binary classification task where
the text generated by the LLM is either halluci-
nated or not. For QA datasets, we assign labels of
1 for hallucination and O for non-hallucination to
the original outputs by comparing them with the
golden answers in the QA datasets using GPT4.1-
mini as a judge LLM. For WikiBio, each sentence-
level golden label is provided in the dataset itself.
We compare the baselines with our approach (see
Table 1) and report the AUC-PR scores on the 3
open-domain QA datasets, as well as the WikiBio
summarization dataset. Note that the SelfCheck-
GPT baseline is applicable on the WikiBio dataset,
as the others deal with only the QA task and require
questions as part of their input.

S Empirical Results

5.1 CONFACTCHECK for Hallucination
Detection

Table 1 summarizes the results of different meth-
ods for the four datasets and across two LLM
backbones (LLaMA3.1-8b and Qwen2.5-7B). We
observe that CONFACTCHECK outperforms most
baselines on the QA datasets and the two LM
backbones. Only the Selfcheck-Prompt base-
line outdoes our approach in few settings, and
even in all such cases, CONFACTCHECK is the
second-best performing method (the second-best
approach in each column is underlined). Selfcheck-
Prompt achieves the second-best performance on
three other QA settings, while SAC? and INSIDE
achieve the second-best performance in 2 different
settings. Thereby, CONFACTCHECK demonstrates
consistency by either being the best or second-best
performing method in all settings. Further, only
SelfCheckGPT can be used for detecting halluci-
nations in free-form text (WikiBio dataset), as the
other baselines are designed for detecting halluci-
nations in QA tasks and need questions as part of
their input. CONFACTCHECK, on the other hand,
can detect hallucinations in QA as well as free-
form text settings and achieves strong performance
across all settings. Such strong performance of
CONFACTCHECK can be attributed to the fact that
it identifies the key factual tokens in the generated
text and probes the LLM regarding its knowledge
around these tokens.

2057


https://github.com/microsoft/HaDes

Model NQ Open HotpotQA WebQA WikiBio
LLaMA3.1 Qwen2.5 LLaMA3.1 Qwen2.5 LLaMA3.1 Qwen2.5 LLaMA3.1 Qwen2.5
HaDes (Liu et al., 2022) 0.54 0.67 0.68 0.69 0.46 0.48 N/A N/A
SAC? (Zhang et al., 2023a) 0.59 0.71 0.68 0.59 0.63 0.55 N/A N/A
SelfCheck-MQAG (Manakul et al., 2023) 0.58 0.75 0.76 0.78 0.50 0.62 0.83 0.83
SelfCheck-Prompt (Manakul et al., 2023) 0.76 0.80 0.86 0.82 0.54 0.68 0.92 0.90
INSIDE (Chen et al., 2024) 0.61 0.54 0.56 0.60 0.58 0.68 N/A N/A
CONFACTCHECK 0.73 0.80 0.83 0.84 0.66 0.71 0.86 0.85

Table 1: AUC-PR scores for NQ Open, HotpotQA, WebQA, and WikiBio datasets. We compare ConFactCheck in
the same settings as the baselines, using LLaMA3.1-8B-Inst and Qwen2.5-7B-Inst as the base models. Settings
for CONFACTCHECK results use beam decoding on the whole pipeline (this yields best possible scores). The best
performing method in a given column is in bold and the second best performing model is underlined.

5.2 Computational Efficiency of Different
Methods

Recall from discussions in Section 1 that self-check
or self-refinement style methods suffer from high
latencies due to the need to query the LLM repeat-
edly to estimate the output probability distributions
or for a thorough verification of the generated out-
put. CONFACTCHECK, on the other hand, identi-
fies key facts in the generated output and gener-
ates targeted questions around these facts, thereby
greatly reducing the number of LLM calls. Fur-
ther, CONFACTCHECK relies on lightweight com-
parisons and statistical operations (Section 3) to
check if the answers to targeted questions align
with the original output. Table 2 presents the
average number of LLM calls made and the av-
erage inference time for different methods. We
note from the table that CONFACTCHECK achieves
fast inference times for both the LLaMA3.1 and
Qwen2.5 backbones. INSIDE is slightly faster
than CONFACTCHECK, however our pipeline of-
fers up to ~1.4x speedup compared to SelfCheck-
Prompt (Manakul et al., 2023) (9.51s vs. 13.35s
for LLaMA3. 1) and ~1.5x and ~3x when compared
to SAC? (on the 2 LLMs respectively). Note also
that in the case of CONFACTCHECK the number
of calls being made to the LLM is equivalent to
the average number of key facts extracted per input
in the dataset plus one additional call to the judge-
LLM for Fact Alignment. In Table 2), we report the
latency numbers for SelfCheckGPT and SAC? with
20 and 5 LLM samples per question, and INSIDE
with 10 LLM samples as recommended by the re-
spective papers. Also note that the performance
numbers for SelfCheckGPT and SAC? in Table 1
are with these optimal number of LLM calls (20
and 5 respectively, while they can be lower) to ex-
hibit their best performance with efficiency. All

experiments on CONFACTCHECK and the base-
lines as reported were run using NVIDIA A6000
GPUs, using the mentioned open-source LLMs for
querying and execution.

Method #LLM calls/samples LLaMA3.1 Qwen2.5
SelfCheck-MQAG 20 589s 4794 s
SelfCheck-Prompt 20 13.35s 12.16 s
SAC3 5 15465  29.37s
INSIDE 10 4.89s 5.68s
CONFACTCHECK 3.8 9.51s 9.03s

Table 2: Average inference time (in seconds) for
CONFACTCHECK and the baselines (which have con-
figurable amount of LLM calls) over the samples of the
NQ_Open dataset while using LLaMA3.1 and Qwen2.5
models. CONFACTCHECK offers significant speedups
over the self-checking baselines.

5.3 CoNFACTCHECKwith LLMs of Varying

Scale
We now study how the performance of
CONFACTCHECK varies with the scale of

the underlying LLM. We use the Phi-3-Instruct
family (Abdin et al., 2024) of models for this
purpose and chose models of 3 sizes — 3.8B, 7B,
and 13B. Table 3 summarizes the results for the
three Phi-3 models on the three QA datasets. In
addition to the AUC-PR of hallucination detection,
we also report the percentage of hallucinated
outputs in each setting to understand the severity
of hallucinations at different model scales. We
note from the table that for these datasets, there
is a decent amount of hallucinated outputs,
which wavers from the 3.8B to 13B models.
This shows that just increasing the model size
may not eliminate hallucinations. We also note
that the ability of CONFACTCHECK to detect
hallucinations is similar and consistent across
different model sizes. While the Phi3-7B slightly

2058



outperforms on NQ-open, the increasing model
sizes show moderate gains for the HotpotQA and
WebQA datasets.

NQ Open HotpotQA WebQA
AUC %Hall. AUC %Hall. AUC %Hall.
Phi-3-4b  0.69 0.65 0.74 0.69 0.63 0.49

Phi-3-7b 073 058 074 060 062 046
Phi-3-13b  0.71 054 076 064 0.65 050

Model

Table 3: Performance of CONFACTCHECK for different
size models of the Phi-3 family. We report AUC-PR of
hallucination detection and percentage of hallucinated
outputs (Hall.) for the 3.8B, 7b, and 13B models for the
three QA datasets.

5.4 Ablation Studies

We now describe different ablation stud-
ies that guided different design choices for
CONFACTCHECK. We report the impact of
fact-alignment and uniform distribution check
steps in the pipeline (Section 3). We also describe
the effects of different decoding strategies and
methods for detecting key facts in the input.

5.4.1 Role of Different Components in
CONFACTCHECK

Recall that there are two main steps in
CONFACTCHECK - fact alignment and uniform
distribution check. The fact alignment step at-
tempts to regenerate the key facts in the generated
output by querying the LLM with targeted ques-
tions. The regenerated facts are then compared
with the original output for consistency. The sub-
sequent uniform distribution check acts as another
verification layer by relying on the model’s confi-
dence in the generation of regenerated key facts. Ta-
ble 4 summarizes the hallucination detection scores
achieved by just the fact-alignment step along with
the improvements achieved by performing the sub-
sequent uniform distribution check (the complete
pipeline). We note from the table that the uniform
distribution step plays a crucial role in the overall
performance of CONFACTCHECK with maximum
gains of up to 18%.

5.4.2 Effect of Decoding Strategies

Regardless of how the original response, subject to
hallucination assessment, was generated, we exam-
ine the variations in regenerated factual responses
when decoding strategies are varied. The following
decoding strategies were utilized:

Component LLM NQ Open HotpotQA WebQA
Fact Alignment LLaMA3.1 0.66 0.79 0.56
+ Distribution Check LLaMA3.1 0.73 0.83 0.66
% gain 11% 5% 18%
Fact Alignment Qwen2.5 0.79 0.82 0.68
+ Distribution Check Qwen2.5 0.8 0.84 0.71
% gain 1% 2% 5%

Table 4: AUC-PR scores achieved by the two major com-
ponents of CONFACTCHECK. A uniform distribution
check after the fact alignment step leads to significant
performance gains.

* Greedy Decoding: Greedy decoding involves
selecting the token from the vocabulary V
with the highest conditional probability. This
suggests prioritizing key facts for which the
model has the highest immediate confidence.

* Beam Decoding: Beam decoding repre-
sents an enhancement over greedy decoding.
In Beam decoding, a parameter known as
beam_size determines the number of tokens
with the highest conditional probabilities con-
sidered at each time step t. For our experi-
ments, we considered the beam size to be 5.

Model NQ Open HotpotQA WebQA  WikiBio
LLaMA3.1 (Greedy) 0.70 0.81 0.62 0.86
LLaMA3.1 (Beam) 0.73 0.83 0.66 0.86
Qwen2.5 (Greedy) 0.79 0.82 0.66 0.85
Qwen2.5 (Beam) 0.80 0.84 0.71 0.85

Table 5: The AUC-PR scores of CONFACTCHECK with
LLaMA3.1-8B-Inst and Qwen2.5-7b-Inst models us-
ing different decoding strategies for fact regeneration
on the QA datasets. Beam decoding (beam size = 5)
outperforms Greedy Decoding in most of the settings.

Beam decoding improves the detection of hal-
lucinations during fact regeneration compared to
greedy search. This advantage likely arises because
beam decoding explores multiple possible answer
paths before selecting the most likely one. Beam
decoding also implicitly mitigates hallucinations
by preferring sequences with higher cumulative
confidence, which are more likely to reflect con-
sistent factual patterns across generations. As a
result, when regenerating key facts, beam decoding
ensures a more informed selection of entities, and
the results in Table 5 show its improvements. Chen
et al. (2018) further corroborate this by indicating
that beam decoding generally outperforms greedy
decoding. By maintaining multiple candidate gen-
erations, beam decoding reduces the likelihood of

2059



factual errors, ensuring the correct regeneration of
facts. However, this decoding strategy does involve
a trade-off with computational efficiency compared
to greedy decoding.

5.4.3 Tagging of key-facts

Identifying of key facts in the generated text is a
crucial step in CONFACTCHECK as they are used
to probe the LLM in a targeted fashion. Hence,
the choice of method used for identifying key facts
in the generated text can have significant impact
on the overall performance. Kai et al. (2024) sug-
gests that factual information in a sentence can be
identified using POS tagging, specifically "'NNP’
or ’NNPS’. Building on this, we selected the tags
"NNP’, ’NNPS’, °’CD’, and 'RB’ to be considered
key facts. As an alternative, we also evaluated us-
ing NER tagging and considering identified named
entities as key facts. We used Stanford’s Stanza (Qi
et al., 2020) library for NER and POS tagging. Ad-
ditionally, we also sampled random tokens from
the sentence and used them as key facts, ensur-
ing that the number of sampled tokens equaled the
number of NER tags present. Table 6 summarizes
the results for the three strategies and reveals that
though the results are similar, NER outperforms
both POS tagging and random token sampling in
more settings to identify which tokens contribute
to the factuality of a sentence or paragraph.

Tagging NQ Open HotpotQA WebQA
LLaMA3.1 Qwen2.5 LLaMA3.1 Qwen2.5 LLaMA3.1 Qwen2.5
Random 0.72 0.78 0.82 0.83 0.68 0.69
POS 0.71 0.81 0.82 0.83 0.66 0.7
NER 0.73 0.8 0.83 0.84 0.66 0.71

Table 6: The AUC-PR scores while using different tag-
ging strategies on LLaMA3.1-8B-Inst and Qwen2.5-7B-
Inst for identifying key facts in the sentence. NER is
observed to perform slightly better in more cases over
these three QA datasets.

5.5 Key Strengths of CONFACTCHECK

We now discuss the major strengths of
CONFACTCHECK which are summarized as
follows.

Training-Free Operation: Our generic approach
requires only the LLM-generated output for fact-
alignment check stage of the pipeline and does not
necessitate dataset- or task-specific training. The
number of generated questions is determined by
the factual content within the generated sentence,
avoiding heuristic selection. During fact regenera-
tion, CONFACTCHECK leverages the output token

probabilities for the probability check, which is
provided by most open-source LLMs. However, in
few cases of LLMs accessed via APIs it is possible
that the access to output probabilities is not avail-
able (see Limitations). Even in cases where such
API-based LLMs are used for generation, their out-
puts can be passed through open-source LLMs to
perform both checks with token probabilities.
Ease of Implementation: CONFACTCHECK does
not require access to model weights or underlying
training data. Requiring only the model’s output
and the LLM used for response generation, our
method can be deployed on the same device as
the response generation process, whether through
a web interface, API, or a locally executed model.
Even for the use of KS test, we require only the
output token probabilities of the top-5 generations,
which can be directly stored during LLM genera-
tion.

Consistent Sample Scoring: Unlike stochastic
hallucination detection methods such as SelfCheck-
GPT (Manakul et al., 2023), CONFACTCHECK op-
erates deterministically by probing factual tokens
at temperature 0. While similar consistency can
be achieved in other methods using fixed seeds,
CONFACTCHECK offers this behavior by default,
resulting in stable sample scoring without addi-
tional tuning. This also modestly reduces computa-
tional overhead by avoiding multiple generations
per query.

Interpretability: CONFACTCHECK provides key-
fact-level scoring, enabling users to identify
specific hallucinated facts. For instance, in
the running example of Figure 1, in addition
to classifying the output text as hallucinated,
CONFACTCHECK explicitly identifies that the fact
a1 = {1978, 1986 and 2006} is hallucinated
(non-aligned). Operating on fine-grained facts
rather than entire sentences, our pipeline offers
a greater degree of explainability than previous ap-
proaches like SAC (Zhang et al., 2023a), clarifying
the rationale behind a hallucination classification.

6 Conclusions

We presented CONFACTCHECK, a novel fact-
based hallucination detection pipeline evaluated
it using four factuality measurement datasets and
compared with multiple strong baselines. Our
findings reveal that despite being less computa-
tionally expensive and not requiring any training,
CONFACTCHECK performs on par with other ap-

2060



proaches while being significantly faster.

7 Limitations

Despite the high performance, ease of use, and
efficiency offered by CONFACTCHECK, it is not
without limitations. We analyze and present repre-
sentative examples of failure cases to highlight its
shortcomings and possible future areas of improve-
ment.

Effect of incorrect tags on correct outputs:
Consider the following example from HotpotQA:
Which of the office buildings used to staff the White
House used to be known as the State, War, and Navy
Building ? For this question, the answer provided
by an LLM is the following. The office building
used to staff the White House that was once known
as the State, War, and Navy Building is now known
as the Eisenhower Executive Office Building. This
building was constructed in 1952 and was named
after President Dwight D. Eisenhower.

Although Eisenhower Executive Office Building
is factually correct, our pipeline categorizes the
paragraph as hallucinated. This discrepancy arises
because our model identifies the fact ‘1952’ as hal-
lucinated because of the building’s actual construc-
tion period between 1871 and 1888. This contrasts
with the golden output from HotpotQA, which does
not flag the answer as hallucinated (when the judge
LLM is used on the original output and golden an-
swer to get the golden label). However, due to the
presence of other hallucinated facts, our pipeline as-
signs a hallucinated tag to the paragraph. Similarly,
while the model correctly identifies the building as
the Eisenhower Executive Office Building, it erro-
neously states the construction year as 1952 (actual:
1871-1888). As a result, CONFACTCHECK tags
this factual mismatch, leading to a hallucination
score for the entire paragraph.

Inefficiency in question generation:

The generated questions extracted key facts are
done by the T5-based finetuned model. While it is
efficient in generating pinpointing questions with
the extracted fact as answer with original output as
context, some ambigious questions such as “Who
was the building named after?”” can be generated.
This ambiguity can result in inaccuracies when re-
generating facts. For this, using a much larger LLM
can be useful, however it would be computationally
expensive and time-inefficient while not providing
significant improvements.

Language-based limited usecases:

In addition, we also note that the proposed
CONFACTCHECK has only been tested for English
language and LLMs trained mostly on English data.
Although the framework is theoretically language-
agnostic, its reliance on NER/POS tools constrains
applicability in low-resource languages lacking ro-
bust NLP pipelines. Further, the performance of
CONFACTCHECK depends crucially on intermedi-
ate steps requiring NER and POS tagging, which
may not always be available for low-resource lan-
guages.

Unavailability of output token probabilities in
API-based LLMs:

While using CONFACTCHECK, fact regeneration is
performed and subsequently the output token prob-
abilities of the regenerated facts are required for the
Uniform Distribution check to gauge the LLM’s
confidence in generation. However, it is possible
that for multiple API-based LLMs or closed source
models, output generation probabilities cannot be
stored or utilized. Hence, CONFACTCHECK can-
not be accessed by such LLMs and specifically
requires open-source LLMs for the two checks in
the pipeline.

References

Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad
Awan, Jyoti Aneja, Ahmed Awadallah, Hany Has-
san Awadalla, Nguyen Bach, Amit Bahree, Arash
Bakhtiari, Harkirat Behl, Alon Benhaim, Misha
Bilenko, Johan Bjorck, Sébastien Bubeck, Martin
Cai, Caio César Teodoro Mendes, Weizhu Chen,
Vishrav Chaudhary, Parul Chopra, Allie Del Giorno,
Gustavo de Rosa, Matthew Dixon, Ronen Eldan,
Dan Iter, Abhishek Goswami, Suriya Gunasekar, Em-
man Haider, Junheng Hao, Russell J. Hewett, Jamie
Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann,
Nikos Karampatziakis, Dongwoo Kim, Mahmoud
Khademi, Lev Kurilenko, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Xi-
hui (Eric) Lin, Zeqi Lin, Piyush Madan, Arindam
Mitra, Hardik Modi, Anh Nguyen, Brandon Norick,
Barun Patra, Daniel Perez-Becker, Thomas Portet,
Reid Pryzant, Heyang Qin, Marko Radmilac, Corby
Rosset, Sambudha Roy, Olli Saarikivi, Amin Saied,
Adil Salim, Michael Santacroce, Shital Shah, Ning
Shang, Hiteshi Sharma, Xia Song, Olatunji Ruwase,
Xin Wang, Rachel Ward, Guanhua Wang, Philipp
Witte, Michael Wyatt, Can Xu, Jiahang Xu, Weijian
Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu,
Chengruidong Zhang, Cyril Zhang, Jianwen Zhang,
Li Lyna Zhang, Yi Zhang, Yunan Zhang, and Xiren
Zhou. 2024. Phi-3 technical report: A highly capable
language model locally on your phone. Technical
Report MSR-TR-2024-12, Microsoft.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

2061


https://www.microsoft.com/en-us/research/publication/phi-3-technical-report-a-highly-capable-language-model-locally-on-your-phone/
https://www.microsoft.com/en-us/research/publication/phi-3-technical-report-a-highly-capable-language-model-locally-on-your-phone/

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
ArXiv preprint, abs/2303.08774.

Amos Azaria and Tom Mitchell. 2023a. The internal
state of an LLM knows when it’s lying. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2023, pages 967-976, Singapore. Associa-
tion for Computational Linguistics.

Amos Azaria and Tom Mitchell. 2023b. The internal
state of an LLM knows when it’s lying. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2023, pages 967-976, Singapore. Associa-
tion for Computational Linguistics.

Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He,
Zongbo Han, Zheng Zhang, and Mike Zheng Shou.
2024. Hallucination of multimodal large language
models: A survey. ArXiv preprint, abs/2404.18930.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533—-1544, Seattle, Wash-
ington, USA. Association for Computational Linguis-
tics.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu,
Mingyuan Tao, Zhihang Fu, and Jieping Ye. 2024.
INSIDE: llms’ internal states retain the power of hal-
lucination detection. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Songgiang Chen, Shuo Jin, and Xiaoyuan Xie. 2021.
Testing your question answering software via ask-
ing recursively. In 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 104-116.

Yun Chen, Victor O.K. Li, Kyunghyun Cho, and Samuel
Bowman. 2018. A stable and effective learning strat-
egy for trainable greedy decoding. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 380-390, Brussels,
Belgium. Association for Computational Linguistics.

Xiaoxue Cheng, Junyi Li, Wayne Xin Zhao, Hongzhi
Zhang, Fuzheng Zhang, Di Zhang, Kun Gai, and
Ji-Rong Wen. 2024. Small agent can also rock! em-
powering small language models as hallucination
detector. ArXiv preprint, abs/2406.11277.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1-113.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon
Kim, James Glass, and Pengcheng He. 2023. Dola:

Decoding by contrasting layers improves factual-
ity in large language models. ArXiv preprint,
abs/2309.03883.

Roi Cohen, May Hamri, Mor Geva, and Amir Glober-
son. 2023. LM vs LM: Detecting factual errors via
cross examination. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 12621-12640, Singapore. Associ-
ation for Computational Linguistics.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. 2024. Chain-of-verification reduces
hallucination in large language models. In Findings
of the Association for Computational Linguistics ACL
2024, pages 3563-3578, Bangkok, Thailand and vir-
tual meeting. Association for Computational Linguis-
tics.

Or Honovich, Roee Aharoni, Jonathan Herzig, Hagai
Taitelbaum, Doron Kukliansy, Vered Cohen, Thomas
Scialom, Idan Szpektor, Avinatan Hassidim, and
Yossi Matias. 2022. TRUE: Re-evaluating factual
consistency evaluation. In Proceedings of the Second
DialDoc Workshop on Document-grounded Dialogue
and Conversational Question Answering, pages 161-
175, Dublin, Ireland. Association for Computational
Linguistics.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023.
A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions.
ArXiv preprint, abs/2311.05232.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12).

Jushi Kai, Tianhang Zhang, Hai Hu, and Zhouhan
Lin. 2024. Sh2: Self-highlighted hesitation helps
you decode more truthfully.  ArXiv preprint,
abs/2401.05930.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452-466.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 6086—-6096, Florence, Italy.
Association for Computational Linguistics.

2062


https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://arxiv.org/abs/2404.18930
https://arxiv.org/abs/2404.18930
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://openreview.net/forum?id=Zj12nzlQbz
https://openreview.net/forum?id=Zj12nzlQbz
https://doi.org/10.1109/ASE51524.2021.9678670
https://doi.org/10.1109/ASE51524.2021.9678670
https://doi.org/10.18653/v1/D18-1035
https://doi.org/10.18653/v1/D18-1035
https://arxiv.org/abs/2406.11277
https://arxiv.org/abs/2406.11277
https://arxiv.org/abs/2406.11277
https://arxiv.org/abs/2309.03883
https://arxiv.org/abs/2309.03883
https://arxiv.org/abs/2309.03883
https://doi.org/10.18653/v1/2023.emnlp-main.778
https://doi.org/10.18653/v1/2023.emnlp-main.778
https://doi.org/10.18653/v1/2024.findings-acl.212
https://doi.org/10.18653/v1/2024.findings-acl.212
https://doi.org/10.18653/v1/2022.dialdoc-1.19
https://doi.org/10.18653/v1/2022.dialdoc-1.19
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://arxiv.org/abs/2401.05930
https://arxiv.org/abs/2401.05930
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612

Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen,
Xiutian Zhao, Ke Wang, Liping Hou, Rongjun Li,
and Wei Peng. 2024. A survey on hallucination
in large vision-language models. ArXiv preprint,
abs/2402.00253.

Tianyu Liu, Yizhe Zhang, Chris Brockett, Yi Mao,
Zhifang Sui, Weizhu Chen, and Bill Dolan. 2022.
A token-level reference-free hallucination detection
benchmark for free-form text generation. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 6723—-6737, Dublin, Ireland. Association
for Computational Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Potsawee Manakul, Adian Liusie, and Mark Gales. 2023.
SelfCheckGPT: Zero-resource black-box hallucina-
tion detection for generative large language models.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
9004-9017, Singapore. Association for Computa-
tional Linguistics.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis,
Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle-
moyer, and Hannaneh Hajishirzi. 2023. FActScore:
Fine-grained atomic evaluation of factual precision
in long form text generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 12076-12100, Singa-
pore. Association for Computational Linguistics.

Niels Miindler, Jingxuan He, Slobodan Jenko, and Mar-
tin Vechev. 2023. Self-contradictory hallucinations
of large language models: Evaluation, detection and
mitigation. ArXiv preprint, abs/2305.15852.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations.

Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia
Tsvetkov, Luke Zettlemoyer, and Wen-tau Yih. 2024.
Trusting your evidence: Hallucinate less with context-
aware decoding. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (Volume 2: Short Papers), pages
783-791, Mexico City, Mexico. Association for Com-
putational Linguistics.

James Thorne, Andreas  Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809-819, New Orleans, Louisiana.
Association for Computational Linguistics.

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christo-
pher D Manning, and Chelsea Finn. 2023. Fine-
tuning language models for factuality. ArXiv
preprint, abs/2311.08401.

S. M Towhidul Islam Tonmoy, S M Mehedi Zaman,
Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha,
and Amitava Das. 2024. A comprehensive survey of
hallucination mitigation techniques in large language
models. Preprint, arXiv:2401.01313.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli.
2024. Hallucination is inevitable: An innate lim-
itation of large language models. ArXiv preprint,
abs/2401.11817.

Shiping Yang, Renliang Sun, and Xiaojun Wan. 2023.
A new benchmark and reverse validation method for
passage-level hallucination detection. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 3898-3908, Singapore. Associ-
ation for Computational Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369-2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Yakir Yehuda, Itzik Malkiel, Oren Barkan, Jonathan
Weill, Royi Ronen, and Noam Koenigstein. 2024.
InterrogateLLM: Zero-resource hallucination detec-
tion in LLM-generated answers. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9333-9347, Bangkok, Thailand. Association
for Computational Linguistics.

Jiaxin Zhang, Zhuohang Li, Kamalika Das, Bradley Ma-
lin, and Sricharan Kumar. 2023a. SAC3: Reliable
hallucination detection in black-box language models
via semantic-aware cross-check consistency. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 15445-15458, Singapore.
Association for Computational Linguistics.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei
Bi, Freda Shi, and Shuming Shi. 2023b. Siren’s song
in the ai ocean: A survey on hallucination in large
language models. Preprint, arXiv:2309.01219.

2063


https://arxiv.org/abs/2402.00253
https://arxiv.org/abs/2402.00253
https://doi.org/10.18653/v1/2022.acl-long.464
https://doi.org/10.18653/v1/2022.acl-long.464
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://arxiv.org/abs/2305.15852
https://arxiv.org/abs/2305.15852
https://arxiv.org/abs/2305.15852
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://aclanthology.org/2024.naacl-short.69
https://aclanthology.org/2024.naacl-short.69
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://arxiv.org/abs/2311.08401
https://arxiv.org/abs/2311.08401
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2401.11817
https://doi.org/10.18653/v1/2023.findings-emnlp.256
https://doi.org/10.18653/v1/2023.findings-emnlp.256
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/2024.acl-long.506
https://doi.org/10.18653/v1/2024.acl-long.506
https://doi.org/10.18653/v1/2023.findings-emnlp.1032
https://doi.org/10.18653/v1/2023.findings-emnlp.1032
https://doi.org/10.18653/v1/2023.findings-emnlp.1032
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. Preprint,
arXiv:2303.18223.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena.

A Models and Implementations

A.1 SelfCheckGPT (Manakul et al., 2023)

One of the first papers to counter zero-resource hal-
lucination detection, we compare the SelfCheck-
Prompt variant using LLaMA3.1-8B-Instruct and
Qwen2.5-7B-Instruct which is the best perform-
ing approach in their paper. Additionally we com-
pute the SelfCheck-MQAG scores as well (which
is the QA-based variant). These are presented in
Table 1. We set the number of stochastic samples
to be generated as 20 (as mentioned in the original
paper). The scoring method for SelfCheck-MQAG
selected was Bayes with Alpha. Both 3; and 2
were set to 0.95.

A.2 SAC3 (Zhang et al., 2023a)

As discussed above, for using SAC? as one of
the baselines, we evaluate it using the instruc-
tion finetuned model version of LLaMA3. 1-8B and
Qwen2.5-7B. We calculate the question-level con-
sistency score (SAC3-Q) which is highlighted in
the original study as a score describing the cross-
check consistency between 2 types of QA pairs,
1) the original question and generated answer as a
pair and ii) a number of semantically similar gen-
erated questions along with their answers as pairs.
For feasibility in accordance with our available
computational resources, we experimented with
2 generated perturbated QA pairs. This number
can be increased or varied to check for different
comparisons, but Zhang et al. (2023a) suggest that
using between 2 to 5 perturbed questions per data
sample yields similar quantitative results.

A.3 HabDes (Liu et al., 2022)

HaDeS is a novel token-free hallucination detec-
tion dataset for free-form text generation. For the
dataset creation, raw text from web data is per-
turbed with out-of-box BERT model. Human an-

notators are then employed to assess whether the
perturbed text spans are hallucinations given the
original text. The final model is a binary classifier
for detecting hallucinated/non-hallucinated text.

A4 INSIDE

(Chen et al., 2024) INSIDE is a hallucination de-
tection method which deals with the interal states
of LLMs during generation to detect for hallucina-
tions in outputs. Their approach utilizes the layer
of sentence embedding outputs and exploits the
eigenvalues of the covariance matrix of outputs to
measure consistency in the dense embedding space.
The define a particular score known as EigenScore,
which is the logarithmic determinant of the covari-
ance matrix between a certain K number of outputs’
sentence embeddings (to check for the consistency
in the relationship of those K outputs’ embeddings).
Using it as a baseline, we implement it with our
settings with LLaMA3.1-8B and Qwen2.5-7B as the
LLMs on the 3 QA datasets and calculate the AUC-
PR scores.

B Usage of ConFactCheck on datasets

B.1 Open-Domain Question Answering

Three datasets are used for this particular task, as
shown above. We use ConFactCheck on the origi-
nally generated outputs for each of the questions in
the datasets, to check for whether the LLMs gen-
erating the original answers have hallucinated or
not. ConFactCheck is applied on a sentence-level
basis, where the outputs are split into sentences,
following which key facts are extracted and Con-
FactCheck begins the checking mechanism.

B.2 Text-based Summarization

For this particular task, we use the WikiBio dataset
which contains summaries of individuals collected
from Wikipedia, along with synthetic GPT3 gen-
erated summaries of the same. ConFactCheck is
applied as a sentence-level detector on the respec-
tive sentences of each of the provided synthetic
summaries, which have be annotated with their hal-
lucination labels at the said sentence-level as part
of the dataset. We obtain sentence level halluci-
nation scores and compare those with the golden
annotate labels per sentence, and for passage-level
hallucinations, we average over the sentence-level
scores to get overall scores for passages.

2064


https://arxiv.org/abs/2303.18223

C F1-Score based Matching

In our primary pipeline, factual alignment is deter-
mined using an LLM-as-a-judge approach. Specif-
ically, we query OpenAI’s GPT-4.1-mini via the
API to compare extracted and regenerated facts and
assign binary alignment labels. While this method
yields strong performance, it requires reliable ac-
cess to the OpenAl API and incurs associated com-
putational and cost overheads.

To support use cases where API access is restricted
or an external LLM judge is unavailable, we also
explore an alternative matching strategy based on
simple lexical overlap using F1-score. In this vari-
ant, alignment between fact pairs is determined by
computing the F1-score of their token overlap, and
pairs exceeding a predefined threshold are marked
as aligned. The table below presents the AUC-
PR scores across three datasets using this heuristic
method at various F1-score thresholds, where the
M’ is LLaMA3.1-8B-Instruct (used for the fact
regeneration). For this scoring, we split the extract
and regenerated facts into lists of individual words,
and compute the F1-scores on these lists. Different
thresholds are used (as shown in Table 7 below) to
assign 0/1 labels for similar/dissimilar facts.
Although this approach is less semantically robust
than LLM-based judgment, it offers a lightweight,
fully offline alternative that still provides reason-
able scores that are close to the main scores in
our pipeline, especially in resource-constrained set-
tings.

Fl-score LLaMA3-NQopen LLaMA3-Hotpot LLaMA3-WebQA

0.4 0.640 0.791 0.550
0.5 0.648 0.795 0.556
0.6 0.659 0.796 0.556
0.7 0.662 0.798 0.562
0.8 0.664 0.800 0.570

Table 7: Fl-score based matching with different thresh-
olds in fact alignment (ranging from 0.4 to 0.8)

D Prompting Format

Prompt Templates Used in the Pipeline

1. Fact Regeneration Prompt (Manually
Constructed Chat Format):

This prompt is used to generate fact-based
questions from the given sentence. The prompt
follows a constructed chat format, to be man-
ually customized for the model in use (e.g.,

2065

LLaMA3.1, Qwen2.5). It is used for each of
the questions generated by the T5-finetuned
model on the extract key facts.

i) Example format for LLaMA3-8B-Instruct:

'""'<|begin_of_text|><]|
start_header_id|>system<|
end_header_id|>

You are a Question-answering
assistant, only answer the
question.

<|leot_id|><|start_header_id|>user<|
end_header_id|>

Question: <insert question here>

<|eot_id|><|start_header_id|>
assistant<|end_of_header_id|>"""

2. Fact Alignment Prompt (used with the
judge LLM):

Few-Shot prompt used to check for align-
ment between extract and regenerated facts
using LLM-as-a-judge. This prompt is well-
structured to give the judge LLM complete un-
derstanding of how to generate the alignment
output for the pairs of facts that it is applied
on.

”’You are a fact comparison expert. Your task
is to determine whether pairs of extracted and
regenerated facts refer to the same real-world
entity, concept, or meaning.

For each pair:

- Return ‘0¢ if the two facts refer to the
same thing, even if the wording, specificity,
or structure is different.

- Return “‘1¢ if the two facts do not refer to
the same thing, or if their meanings conflict.
Guidelines:

- Minor differences in wording, grammar, or
capitalization should be ignored.

- Partial vs full names (e.g., "Vancouver" vs
"Vancouver, British Columbia”) should match
if they refer to the same entity.

- Aliases and synonyms (e.g., "Roger Pirates”
vs "Roger crew”) should count as a match.

- Abbreviations (e.g., "UCLA" vs "University
of California, Los Angeles"”) are also matches.
- Return ‘1¢ only if clearly unrelated or
ambiguous.

Format:

Return a Python-style list of exactly {n}
binary values (@ or 1), corresponding to each
fact pair in order.

Do not output anything else. If unsure, still
return a complete list.

Examples:

e "President Donald J. Trump” vs "Donald
Trump” -+ @

e "Vancouver, British Columbia” Vs

"Vancouver"” -+ 0

e "five" vs "5 seasons” =+ 0




e "UCLA" vs "University of California, Los
Angeles” =+ @

e "Microsoft” vs "Apple” = 1

Now judge the following fact pairs: {pairs}
OQutput: 7’

Figure 3: Prompting templates used for Fact Regen-
eration and Fact Alignment in the CONFACTCHECK
pipeline. Note that the alignment prompt uses few-shot
prompting.

E Annotation Performance of
LLM-as-a-judge

To demonstrate the reliability of our LLM-based
judging, we conducted a small-scale human evalu-
ation. We engaged two human annotators to label
150 samples each across the three QA datasets.
When comparing these human annotations with
the GPT-40 labels, we observed overlap scores
(between GPT and Human annotators) ranging
from 82.6% to 93%, indicating that the LLM is
capable of reliably generating accurate labels.

Furthermore, we’ve calculated inter-annotator
agreement metrics among the human annotators as
well. The Cohen’s Kappa scores range from 0.76
to 0.91, which highlights substantial agreement
and further corroborates the quality of our labels.
We will be adding these details in the appendix of
the submitted paper.

Dataset Metric Value
GPT Overlap (with Annotator 1) 84%
GPT Overlap (with Annotator 2) 82.60%
NQOpen Inter-Annotator Overlap 96%
Inter-Annotator Cohen’s Kappa  91.17%
GPT Overlap (with Annotator 1) 93%
GPT Overlap (with Annotator 2) 91%
HotpotQA Inter-Annotator Overlap 91%
Inter-Annotator Cohen’s Kappa 78%
GPT Overlap (with Annotator 1)  89%
WebQ GPT Overlap (with Annotator 2) 84%
Inter-Annotator Overlap 88%
Inter-Annotator Cohen’s Kappa 76%

Table 8: GPT-human and inter-annotator overlap scores
for three QA datasets (150 samples).

F Cross-evaluation with different LLMs

CONFACTCHECK provides additional flexibility
when it comes to the usage of LLMs for de-
tection in the pipeline. The original LLM
used to generate the initial output can be
used for the Fact Alignment check in a self-
check-based setting. = However, while using
CONFACTCHECK on the outputs of a particular
base LLM (eg. LLaMA3.1-8b-Instruct), we
can employ usage of another LLM for cross-
evaluation during fact regeneration (eg: using
Qwen2.5-7b-Instruct on the initial LLaMA-
3.1 outputs). We provide experimental results
to demonstrate the efficacy of cross-evaluation
while using the 2 LLMs Qwen2.5-7b-Instruct
and LLaMA3.1-8b-Instruct on two of the QA
datasets.

Method NQOpen WebQ
Qwen on LLaMA3 Outputs 0.71 0.63
LLaMA3 as Self-Evaluator 0.73 0.66
LLaMA3 on Qwen Outputs 0.81 0.70
Qwen as Self-Evaluator 0.80 0.71

Table 9: AUC-PR scores comparing evaluator setups on
NQOpen and WebQ datasets.

G Comparison of Selfcheck with varying
number of samples

The SelfCheckGPT baseline methods provide con-
figurable flexibility in terms of the number of
stochastic samples that are generated to provide
their final scores. The authors suggest that the sam-
ples’ count can vary from 5 samples to 20 and
provide similarly comparable results. We have
used 20 samples for generation using Selfcheck
in the Table 1 of our paper. Here, we provide a
demonstration of results on the WebQA dataset
with LLaMA3.1-8b-Instruct as the base LLM,
when samples are varied between 5 and 20 for the
Selfcheck methods, and compare their AUC-PR
scores and computational time metrics with each
other and CONFACTCHECK.

H Judge LLM vs Human evaluation in
Fact Alignment

We evaluate the reliability of LLM-based compar-
ison in the Fact Alignment Check of the pipeline

2066



Approach Sample Size Time (s) AUC-PR
SelfCheck-MQAG 5 samples 29.15 0.51
20 samples 61.59 0.50
SelfCheck-Prompt 5 samples 8.4 0.54
20 samples 14.1 0.54
ConFactCheck 2.8 avg facts + 1 API call 8.77 0.66

Table 10: Performance comparison of Selfcheck meth-
ods with 5 and 20 samples each, along with latency
comparisons of these approaches with ConFactCheck.

using GPT-4.1-mini as the judge LLM. Each ex-
tracted and regenerated fact pair is scored (0 for
aligned, 1 for not aligned) by the LLM. To validate
its accuracy, we randomly sampled 25 instances
from each of three QA datasets (75 in total) and
obtained equivalent 0/1 judgments from a human
evaluator for each individual facts within each of
the instances. Comparing the two sets of scores
revealed strong agreement, with accuracy between
89.7%-93.2% and Cohen’s x > 0.79. These re-
sults offer strong evidence of the efficacy of the
LLM-based comparison in our use case.

Dataset Agreement (%) Cohen’s Kappa
NQ-Open 89.7 0.783
HotpotQA 93.2 0.845
WebQA 89.9 0.799

Table 11: Model (LLaMA-3) vs. human agreement
scores on the evaluation of Fact Alignment samples
across three datasets.

I Step-by-Step CONFACTCHECK
Example

Example: Question and Answer Processing

Step-by-Step

Input:

Question: Who won the FIFA World
Cup in 20227

Answer: The FIFA World Cup in 2022
was won by Argentina.

Step 1: Extract sentences from the origi-
nal answer

» The sentence splitter extracts: "The FIFA
World Cup in 2022 was won by
Argentina.”

Step 2: Extract Key facts using NER

e Named entities detected: “FIFA World
Cup”, “Argentina”, “2022”.

* Generated questions using T5-finetuned
model for each key fact:

— FIFA World Cup — Q1: Which tour-
nament did Argentina win in 20227

— Argentina — Q2: Who won the
FIFA World Cup in 20227

— 2022 — Q3: When did Argentina
win the FIFA World Cup?

Step 3: Generate pinpointed answers

» Using the LM to answer the generated

questions: Answers = ["FIFA World
Cup”, "Argentina”, “1978, 1986 and
20227]

Step 4: Compare original and regener-
ated answers

e Use Huggingface QA pipeline to
extract shortened pinpointed
answers from original and
regenerated contexts.

 Judge if answers match (0 = match, 1 =
hallucination):
Initial hallucination flags = [0,
0, 1]

Step 5: Final hallucination check with
probability

e Use token-level probabilities and
KS-test to confirm hallucination.

e Final hallucination flags remain:
o, 1, 1]

Figure 4: Hypothetical step-by-step example explaining
the methodology of CONFACTCHECK

J Pseudocode for the algorithm proposed

The hallucination detection algorithm is designed
as a two-step process applied at the sentence level
for a generated answer. Given a generated answer
A and a model M’, the goal is to produce a score
for each sentence indicating the likelihood of hal-
lucination.

In the first step as highlighted in Algorithm 1, the
generated answer is split into sentences, and each

2067



sentence is analyzed to extract atomic facts using
Named Entity Recognition (NER). For each key
fact a;; in sentence S;, a corresponding question g
is generated. The model M’ then provides an an-
swer f;; to this question. A separate Align function
(which uses a judge LLM for fact pair comparison)
evaluates whether the fact a;; is consistent with the
answer f;;. If aligned, the fact is marked as consis-
tent (score 0), otherwise as hallucinated (score 1).
This step yields an initial binary score list for all
facts.

In Algorithm 2, for each fact marked as consistent
(score 0) in Step 1, we compute the logit scores of
the top £ tokens in the model’s answer f;;. These
scores are converted into a probability distribution.
We then perform a Kolmogorov—Smirnov (KS) test
to statistically compare this empirical distribution
against a uniform distribution. If the KS test yields
a p-value less than a significance threshold (typ-
ically 0.05), the null hypothesis — that the two
distributions are the same — is rejected. This indi-
cates that the distribution is significantly different
from uniform, and the fact remains marked as con-
sistent (score 0). However, if the p-value is greater
than or equal to 0.05, the distribution is consid-
ered close to uniform, signaling high uncertainty
in the model’s response, and in such case the fact
is reclassified as hallucinated (score 1).

Algorithm 1 : Fact Alignment Check

1: Input: Generated Answer A, Model M’

2: Output: Initial Score List [s;;] for all facts a;;

3: // Step 1: Sentence splitting and fact
extraction

4: Perform coreference resolution on .4 and split
into sentences {S1, S2,..., SN}

5: for all sentence S; in A do

: Extract atomic facts {a;;} from S; using

NER

7: for all fact a;; do
8 Generate question ¢;; < Q(ai; | S;)
: Get answer f;; < M/ (q;j)

10: if Allgl’l(flj, aij) then

11: Set s;; <~ 0 > Fact is consistent
12: else

13: Set s;; <= 1 > Fact is hallucinated
14: end if

15: end for
16: end for

17: return [s;;]

Algorithm 2 : Uniformity Check Phase (via KS
Test)

1: Input: Initial Score List [s;;], Corresponding
Answer Logits s;

2: Output: Final  Sentence
[Score(S1), ..., Score(Sy)]

Scores

3: for all sentence S; do

4: Initialize Score(S;) < 0

5: for all fact a;; in S; do

6: if 5;; == 0 then

7: Compute normalized probabilities:

eSijk
p(wzjk) - an:1 oSiim

8: // Compare with uniform
distribution

9: Perform KS test between p(wj ;i)
and uniform distribution

10 if p-value > 0.05 then

11: Set s;5 < 1 > Mark as
hallucinated

12: end if

13: end if

14: Add s;; to Score(S;)

15: end for

16: Normalize: Score(S;) < ffz%ﬁ

17: end for

18: return [Score(Sy), ..., Score(Sy)]

2068



