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Abstract

Multiple Choice Question (MCQ) answering
is a widely used method for evaluating the per-
formance of Large Language Models (LLMs).
However, LLMs often exhibit selection bias
in MCQ tasks, where their choices are influ-
enced by factors like answer position or option
symbols rather than the content. This bias un-
dermines the reliability of MCQ as an evalua-
tion framework. Most existing selection bias
metrics require answer labels and measure di-
vergences between prediction and answer dis-
tributions, but do not fully capture the consis-
tency of a model’s predictions across different
orderings of answer choices. Existing selec-
tion bias mitigation strategies have notable lim-
itations: majority voting, though effective, is
computationally prohibitive; calibration-based
methods require validation sets and often fail
to generalize across datasets. To address these
gaps, we propose three key contributions: (1) a
new unsupervised label-free Permutation Bias
Metric (PBM) that directly quantifies incon-
sistencies in model predictions across answer
permutations, providing a more precise mea-
sure of selection bias, (2) an efficient majority
voting approach called Batch Question-Context
KV caching (BaQCKV), to significantly reduce
computational costs while preserving bias mit-
igation effectiveness, and (3) an unsupervised
Low-Rank Adaptation (LoRA)-1 fine-tuning
strategy based on our proposed metric and the
BaQCKV that mitigates selection bias, provid-
ing a computationally efficient alternative that
maintains model generalizability. Experiments
across multiple MCQ benchmarks demonstrate
that our approaches reduce bias, increasing con-
sistency in accuracy while minimizing compu-
tational costs.

1 Introduction

Selection bias in Large Language Models (LLMs)
has been increasingly recognized as a significant
challenge, particularly in multiple-choice question

(MCQ) answering tasks (Wei et al., 2024a; Zheng
et al., 2024; Zong et al., 2023). This bias occurs
when models exhibit a preference for certain an-
swer choices based on factors like their position
or symbolic representation, rather than the option
content (Wei et al., 2024a). For instance, LLMs
may disproportionately favor the last option or op-
tion “A” across different questions. Such biases
are especially problematic in evaluation settings,
where multiple-choice formats are widely used for
example, in standardized testing, professional certi-
fication exams, and educational assessments. These
biases undermine the fairness and reliability of
model evaluations, as they can lead to inconsistent
answers across equivalent permutations, eroding
trust in LLM-based decision systems.

The presence of selection bias in LLMs was high-
lighted by (Zheng et al., 2024), demonstrating how
factors like answer position and symbolic represen-
tation can lead to systematic errors in MCQ answer-
ing. Effectively addressing selection bias requires a
well-defined metric for bias quantification. Several
metrics have been proposed to measure the selec-
tion bias such as the Choice Kullback-Leibler Di-
vergence (CKLD) (Choi et al., 2024), Standard De-
viation of Recalls (RStd) (Zheng et al., 2024), and
Relative Standard Deviation (RSD) (Croce et al.,
2021; Reif and Schwartz, 2024), which primarily
evaluate bias in terms of divergence from ground
truth distributions (i.e., CKLD) or variability in
class-wise performance (i.e., RStd and RSD). How-
ever, they do not adequately capture the bias exhib-
ited by models to option permutations. Also, the
Fluctuation Rate proposed by (Wei et al., 2024b)
only considers two permutations of the options,
which may not capture the full permutation bias.
We therefore introduce a new permutation bias met-
ric (PBM) that evaluates selection bias in LLM
without requiring ground truth distributions while
considering all possible option permutations. The
primary intuition behind our metric is that logically,
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an answer’s correctness does not change based on
its position in a list of options and we therefore
want language models to possess this behaviour.

Addressing the problem of bias requires not just
quantifying but also mitigating bias. Prior miti-
gation strategies like majority voting (Zong et al.,
2023) that aggregates predictions across all per-
mutations of answer choices - has been shown to
reduce bias. However, its computational cost in-
creases factorially with the number of choices, mak-
ing it impractical for real-time inference. Thus, a
key challenge is to develop an efficient method for
bias quantification and bias mitigation that can be
integrated into real-world systems. We therefore
propose Batch Question-Context KV caching
(BaQCKV), an efficient implementation of major-
ity voting that reduces computational cost consid-
ering all permutations. Additionally, we introduce
an unsupervised Low-Rank Adaptation (Hu et al.,
2021) finetuning strategy that optimizes the model
on our proposed metric.
Our contributions can be summarized as follows:

• We propose a novel, unsupervised, and label-
free Permutation Bias metric (PBM) that cap-
tures inconsistencies in model predictions
across all permutations of answer choices. Un-
like prior metrics, it requires no access to
ground-truth labels and directly measures per-
mutation sensitivity.

• We introduce BaQCKV (Batch Question-
Context KV caching), a computationally ef-
ficient variant of majority voting that signifi-
cantly reduces the overhead associated with
evaluating all permutations of multiple-choice
questions.

• We develop a LoRA-based fine-tuning strat-
egy that leverages our proposed bias metric as
a differentiable objective, enabling parameter-
efficient debiasing without the need for la-
beled data or full model retraining.

Our efficient BaQCKV method achieves token sav-
ings of up to 54.4%, while our lightweight unsu-
pervised LoRA-1 (LoRA Rank = 1) fine-tuning
reduces the PBM bias by an average of 58% and
improves standard deviation of accuracy by 27%,
outperforming existing approaches. BaQCKV
is particularly well-suited for evaluation or de-
ployment scenarios where deterministic and fully
permutation-invariant responses are required, as

it can achieve 0 bias but with additional compute
and latency. In contrast, LoRA-1 fine-tuning offers
a lightweight, one-pass inference alternative for
practical large-scale LLM deployments or latency-
sensitive settings. Together, these contributions can
lead to a unified framework for quantifying and mit-
igating selection bias in LLMs, particularly in the
context of multiple-choice question answering.

2 Related Work

Large Language Models (LLMs) exhibit system-
atic selection biases in multiple-choice question
answering (MCQA), favoring options by position
(e.g., last choice) or by identifier (e.g., option “A”)
rather than semantic content. In this review, we fo-
cus on existing approaches for bias quantification
and mitigation.

2.1 Bias Evaluation in LLMs

Bias quantification typically measures divergence
between predicted and ground-truth answer dis-
tributions. Choice Kullback–Leibler Divergence
(CKLD) (Choi et al., 2024) measures the KL di-
vergence between the model’s predicted answer
frequency and the ground-truth (i.e, how often the
correct answer is A, B., etc.). Other metrics fo-
cus on variability in per-option accuracy and recall.
The Relative Standard Deviation (RSD) (Reif and
Schwartz, 2024) and the Standard Deviation of
Recall (RStd) (Zheng et al., 2024) assess variabil-
ity in per-option accuracy or recall, respectively,
revealing positional preference, but ignore how pre-
dictions change under option reordering. While
useful, such label-dependent metrics fail to cap-
ture inconsistency across permutations They do
not consider if a model would answer the same
question differently when choices are presented in
a different option permutation, since they only eval-
uate against the single correct label in the original
ordering.

To capture such inconsistency, Wei et al. (2024a)
introduced Fluctuation Rate (FR), a label-free met-
ric that measures answer changes when options
are reversed. While FR highlights instability, it
is limited to two permutations and only detects
discrete flips, ignoring confidence shifts and be-
ing non-differentiable, which limits its use in fine-
tuning.

In summary, current metrics are either label-
dependent (CKLD, RSD/RStd) or permutation-
limited (FR), offering incomplete views of bias. To
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address this, we propose a permutation-sensitive,
label-agnostic metric that captures prediction con-
sistency across all answer orderings. Our approach
enables broad applicability on unlabeled datasets
and introduces a differentiable objective for debi-
asing during fine-tuning (section 3.3.2).

2.2 Bias Mitigation Strategies
Several research works have explored various
strategies to mitigate selection bias in LLMs, rang-
ing from calibration, voting, to finetuning-based
approaches.

Calibration-based methods aim to adjust the
model’s output probabilities to compensate for the
skewed bias distributions. Most of these meth-
ods target recalibration to improve accuracy and
not directly to reduce bias. CalibraEval (Li et al.,
2024) reweights predictions to reduce positional
bias during evaluation, while label bias calibration
(Reif and Schwartz, 2024) improves accuracy us-
ing known statistics. PriDe (Zheng et al., 2024)
estimates prior probabilities over option IDs to
normalize predictions, effectively reducing RStd.
These methods, however, typically need labeled
data and apply the same calibration across permu-
tations, thus failing to ensure consistency under
reordering. Prompt-based fixes like Auxiliary Op-
tion Injection (AOI) (Choi et al., 2024) are simple
and model-agnostic but offer limited and prompt-
sensitive improvements.

Majority voting aggregates predictions over
option permutations to reduce bias (Zong et al.,
2023; Wei et al., 2024b). Though effective, it
scales poorly to k! permutations for k options mak-
ing it impractical. Efficient variants include batch
prompting (Zhou et al., 2024) and random subset
voting (Guda et al., 2024). Self-consistency (Wang
et al., 2024; Kim et al., 2024) improves stability
by sampling varied reasoning paths, akin to vot-
ing. However, all such methods incur significant
inference-time cost. Our BaQCKV approach re-
duces this by reusing computation across permuta-
tions.

Instead of repeatedly querying a biased model
at inference time, another strategy is to adjust the
parameters that induce bias within the model itself.
Teacher–student distillation (Liusie et al., 2024)
transfers debiased behavior from a teacher model
into compact models. Bias Node Pruning (BNP)
(Choi et al., 2024) identifies a bias vector in the
final decoder layer and prunes parameters in the
LLM’s final linear head projection matrix based on

their interactions with this vector. While such meth-
ods reduce metrics like FR, they may negatively
impact the model’s performance on other tasks due
to irreversible weight pruning or overfitting to spe-
cific bias patterns.

In summary, training-time debiasing techniques
including knowledge distillation, fine-tuning, and
structural pruning aim to internalize bias mitigation
and reduce the need for repeated inference-time in-
terventions. However, these often require labeled
datasets and can compromise generalization. In
contrast, our approach introduces a fully differen-
tiable, label-free bias objective that enables debias
fine-tuning to reduce permutation sensitivity. This
allows for unsupervised debiasing that generalizes
across datasets.

3 Methodology

In this section, we define our bias quantification
metric, which accounts for all option permuta-
tions and also describe the mitigation strategies
- BaQCKV and LoRA-1 fine-tuning.

3.1 Permutation Bias Metric (PBM)

PBM is based on the intuition that, logically, a
model’s confidence in an option should be invariant
to the permutation of the options. Also, we argue
that this quantification should be label-free because
the confidence for each option content across all
permutations should be constant regardless of op-
tion correctness. Let Q represent a question, and
O = {o1, o2, . . . , on} represent a set of n options
for the question. A model processes the sequence
Sπ = Q ⊕ Oπ for a permutation π of the options
O, where ⊕ denotes the concatenation operator.
Passing a permutation of the options Sπ through
the model assigns probabilities P (oπ(i) | Q,Oπ)
to each option content oi. Similarly, for a differ-
ent permutation π

′
it assigns P (oπ′ (i) | Q,Oπ′ ).

We define our selection bias metric mathematically
for a model in Equation (1) as the variance of the
probabilities for each option content across all per-
mutations. This will capture how much the model’s
confidence fluctuates due to reordering.

Definition 1 (Permutation Bias Metric – PBM).
Given a question Q and a set of answer options
O = {o1, o2, . . . , on}, the selection bias B(Q,O)
is defined as:

B(Q,O) =
1

n

n∑

i=1

Varπ
(
P (oπ(i) | Q,Oπ)

)
, (1)
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We refer to this selection bias score as the Permu-
tation Bias Metric (PBM), where:

Varπ
(
P (oπ(i) | Q,Oπ)

)
=

1

n!

∑

π

(
P (oπ(i) | Q,Oπ)

−Eπ

[
P (oπ(i) | Q,Oπ)

])2

,

(2)

and the expectation over all permutations π is:

Eπ[P (oπ(i) | Q,Oπ)] =
1

n!

∑

π

P (oπ(i) | Q,Oπ).

By defining the PBM to be proportional to the
variance of a model’s prediction across all permu-
tations, the metric captures the inconsistency in
the predictions. A lower variance indicates more
stable and consistent predictions across permuta-
tions. Therefore, lower values of the PBM are
preferred. PBM is label-free compared to previ-
ously proposed metrics like RStd (equation (4)),
FR (equation (3)) and CKLD (equation (5)) which
capture some form of divergence from the answer
distribution, requiring the ground truth answers.
The RStd and CKLD do not capture any informa-
tion about the option permutations because they
only use the original permutations of the options.
This assumes the original permutation corresponds
to the fixed answer order provided in the dataset,
which is often arbitrary (i.e, randomly assigned dur-
ing test construction). Also, while PBM goes into
the granular confidence level by considering option
probabilities, the FR does not capture granular in-
formation of the changes in confidence but only
checks if the chosen answer (argmax) is the same
in the forward and reverse permutations. By con-
sidering only 2 permutations, it does not capture
information from other permutations. The Fluctua-
tion Rate (FR) is expressed as:

FR =
1

N

N∑(
argmax

i

(
P (O | Q,Oπ)

)

̸= argmax
i

(
P (O | Q, reverse(Oπ))

))
(3)

where the reverse(Oπ) function is the reverse per-
mutation of Oπ and N is the total number of ques-
tions.

RStd (Rσ) is expressed as:

Rσ =

√√√√ 1

n

n∑

i=1

(ri − µr)2 (4)

where n represents the number of option classes, ri
is the recall for the i-th option symbol (e.g. recall
for option A, B....), and µr denotes the average
recall across all option symbols.

CKLD =
n∑

i

pi log
pi
qi

(5)

where pi is the ratio of ground truth choice label
for option ID i and qi is the ratio for predictions.

3.2 Investigation into the cause of Selection
Bias in LLMs

In the decoder-only transformer architecture, which
is prevalent in most large language models (LLMs),
each token is generated based on causal attention.
This causal attention mechanism ensures that pre-
dictions are conditioned only on previously gener-
ated tokens. To preserve the sequential structure
of the input, positional encodings are applied dur-
ing attention computation. When a question and
its permuted-option variant are provided as input,
the set of unique tokens remains unchanged. How-
ever, the reordering alters the positional encodings
assigned to each option token. Since positional
encodings influence attention scores, this modifica-
tion can lead to differences in the model’s output,
even if the semantic token content remains the same
(see Appendix A.1 and Appendix A.2).

3.3 Bias Mitigation Methodology
In the following sections, we explain our efficient
BaQCKV approach and the unsupervised LoRA-1
debiasing. BaQCKV, an efficient majority voting
variant that enforces permutation invariance (zero
bias) with reduced compute via batched inference,
ideal for critical evaluations requiring strict con-
sistency; and LoRA-1, a lightweight adaptation
method trained using our unsupervised bias metric
to debias models for single-pass inference, suitable
for large-scale deployments. BaQCKV trades com-
putational overhead for robustness, while LoRA-1
prioritises scalability with minimal latency. This
can enable users to balance bias mitigation against
operational constraints.

3.3.1 Efficient Majority Voting with BaQCKV
The majority voting is an effective mitigation strat-
egy for selection bias (Zong et al., 2023). It passes
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all option permutations of a question through the
model and chooses the option with the highest av-
erage score across the permutations. This scheme
enforces permutation invariance (0 bias on our met-
ric) by ensuring that an option has the same confi-
dence across all permutations, making it an ideal
selection bias mitigation strategy. Mathematically,
majority voting calculates

i∗ = argmax
i∈O

Eπ

[
P (oπ(i) | Q,Oπ)

]
, (6)

where O = {o1, . . . , on} is the set of answer op-
tions, π denotes a permutation of the options, and
Eπ represents the average over all n! permutations
(as defined in Section 3.1).

In spite of its effectiveness in mitigating bias, the
majority voting has not been widely adopted, as the
computational complexity of making predictions
on all possible permutations is n! for an MCQ with
n options. This can be easily reduced by defining
a fixed number k and considering only k permu-
tations instead of n!, reducing the computational
cost (Guda et al., 2024). Thus, pi = 1

k

∑k
j=1 pji.

However, this scheme can be made even more ef-
ficient, without a corresponding loss in bias, by
employing a KV cache. To do so, we leverage the
insight that while an MCQ consists of a question
Q (with or without a context), and a set of options,
O, the question, Q, remains the same across all
possible option permutations.
For k permutations of the options, the original for-
mulation of majority voting (Guda et al., 2024)
requires k passes through the LLM, resulting in
an additional overhead of (k − 1)× |Questions ⊕
Context ⊕ Options| tokens per question. We how-
ever, note that the set of Questions⊕Context to-
kens remains constant across all k passes for each
question in a batch. To eliminate the redundant
computation of these tokens across the batch, we
are motivated by the KV cache in (Pope et al., 2023)
to introduce the BaQCKV, which caches and reuses
the KV states of the Questions ⊕ Context tokens
for a set of k permutations. This cached KV state
is prepended to the KV states of the k permuted
options. The attention mask of the permuted op-
tions is then expanded based on the length of the
Questions ⊕ Context tokens to ensure that the
LLM’s attention is correctly computed. We show in
Appendix A.3 that the percentage of tokens saved
by using the BaQCKV is defined by Equation (7),
where C is the optional set of context tokens for

Algorithm 1 Efficient Majority Inference with
BaQCKV
1: procedure BAQCKVINFERENCE(QC , Ok,M)
2: Input: QC - Question ⊕ Context tokens, Ok - k permutations of

options,M - Language Model, Output: Yk - Model outputs
3:
4: Step 1: Cache Question-Context KV States
5: KVQC

←M.encode(QC)

6: Step 2: Compute KV States for Permuted Options
7: for i = 1 to k do
8: KVOi

, maski ←M.encode(Oi)

9: end for
10: Step 3: Merge and Adjust KV States
11: for i = 1 to k do
12: KVi ← KVQC

⊕ KVOi
, maski ← 1|QC | ⊕ maski

13: end for
14: Step 4: Compute Batch Outputs
15: Yk ← {M.decode(KVi, maski) | i = 1, 2, . . . , k}
16: return Yk

17: end procedure

the Question Q.

Token savings (%) =
(k − 1)× |Q⊕ C|
k × |Q⊕ C ⊕O| × 100

(7)
In Equation (7), the savings are maximized when
|C| is large, as in Retrieval-Augmented Genera-
tion (RAG), where redundant computation is min-
imized. Even when |C| = 0, savings persist due
to the shared |Q| tokens. Larger permutation sizes
k further amplify savings because of the increased
redundancy in |Q⊕ C| across permutations. Thus,
BaQCKV is most effective in tasks with substantial
shared context, multiple options, and large permu-
tation sizes.

3.3.2 Unsupervised LoRA-1 Bias Mitigation
We introduce an unsupervised fine-tuning of PBM,
our permutation-based bias metric, to mitigate the
selection bias. This is because PBM is fully differ-
entiable unlike the Fluctuation Rate (FR) and the
Standard Deviation of Recalls (RStd). In addition,
it is also label-free, unlike all the other metrics in-
cluding the CKLD. We make two adjustments to
the metric when using it as a loss for fine-tuning
(equation (8)). Firstly, to ensure that there is an
adequate flow of information from the gradients
we take the variance of the log of the probabilities
(Equation (9)). When obtaining the option proba-
bilities from the model, we only consider the logits
that correspond to the option IDs instead of logits
for the entire vocabulary. Secondly, we observe
that a model can learn to minimize the bias by sim-
ply predicting a uniform probability for all options
IDs across all permutations. In that case, the mean
probability for all option IDs would be the same as
the uniform probabilities assigned to all option IDs
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for all permutations. To prevent this, we regular-
ize the bias with the entropy across the option IDs
(Equation (10)). This helps in making the model
maintain its confidence in the chosen answer while
also minimizing the bias across different permu-
tations. λ is a hyper-parameter that balances the
model’s confidence in an answer and minimizing
the bias. Computing the loss defined in Equation
(8) can be computationally expensive, since each
example must be expanded to all possible permu-
tations. To reduce this cost, first, we apply the
BaQCKV to compute the loss and only sample a
maximum of 24 permutations for questions with
more than 4 options.

Loss = B(Q,O)log + λH(Q,O) (8)

where

B(Q,O)log =
∑

π

(
log

(
P (oπ(i) | Q,Oπ)

)

− log
(
Eπ

[
P (oπ(i) | Q,Oπ)

]))2

(9)

H(Q,O) = −
∑

π

∑

i

(P (oπ(i) log(P (oπ(i)))

(10)
As LLMs are desired to be used for a wide variety
of tasks and not just answering MCQs, we adopt
the LoRA fine-tuning (Hu et al., 2021) to preserve
the original performance of the LLM on non-MCQ
tasks while avoiding expensive training. The LoRA
debiasing weight adapters can be connected when
the model is used for MCQ.

3.3.3 Complexity Analysis
We present a comparison of the computational re-
quirements of various bias metrics in Table 1, focus-
ing on the number of permutations each metric con-
siders and the effective token cost passed through
the model. Existing metrics such as RStd, CKLD,
and FR operate over one or two fixed permutations
and require ground-truth labels, limiting both their
expressiveness and flexibility. In contrast, our pro-
posed PBM evaluates how model confidence varies
across different permutations of answer options, of-
fering a more comprehensive and label-free assess-
ment of positional bias. While full PBM evaluation
over all n! permutations is computationally expen-
sive, we use both two permutation sampling and

BaQCKV to make PBM scalable. Sampling allows
us to approximate the metric using only m ≪ n
permutations, and BaQCKV further reduces cost
by reusing the shared context Q⊕C, resulting in a
total complexity of O(|Q⊕C|+m|O|) tokens per
query. This approach strikes an effective balance
between computational efficiency and expressive
power.

Metric Labels? Perms O(·)
RStd Yes 1 |Q⊕ C ⊕O|
CKLD Yes 1 |Q⊕ C ⊕O|
FR No 2 2|Q⊕ C ⊕O|
PBM (full) No n! n!|Q⊕ C ⊕O|

+ sampling No m ≪ n! m(|Q⊕ C ⊕O|)
+ BaQCKV No m ≪ n! |Q⊕ C|+m|O|

Table 1: Computational comparison of bias metrics.

4 Results

Datasets and Models : For our experiments, we
employed three small language models of compa-
rable size: Qwen2.5-3B-Instruct (Bai et al., 2023),
Phi-2 (Javaheripi et al., 2023), and Llama3.2-3B
(Grattafiori et al., 2024). We experiment with these
models on four diverse datasets across different
domains: TeleQnA (Maatouk et al., 2023), MedM-
CQA (Pal et al., 2022), QASC(Khot et al., 2020)
and ARC Challenge(Clark et al., 2018). ARC Chal-
lenge and MedMCQA have 4 options and TeleQnA
has 2-5 options, while QASC has 8. A full de-
scription of these datasets and their statistics can
be found in Appendix C.4

Experiments: We conduct experiments to eval-
uate both the accuracy and bias of various mod-
els across all datasets, and to assess the effective-
ness of different selection bias mitigation strate-
gies. First, we demonstrate that majority voting not
only reduces or eliminates selection bias (quanti-
fied by PBM) but also improves model accuracy.
Furthermore, by introducing BaQCKV, we show
that majority voting can be made significantly more
efficient, yielding substantial savings in both com-
putation time and token usage. In addition, we
assess the impact of our proposed LoRA-1 fine-
tuning method, which, on average, reduces the
variation of accuracy, PBM and Fluctuation Rate
and increases accuracy across all datasets/models
and exhibits strong transferability across datasets.

We compare our approach against three
alternative bias mitigation methods: (1)
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GRAY (Wei et al., 2024b), a gray-box tech-
nique that leverages both forward and
backward predictions to reduce bias; (2)
BNP (Bias Node Pruning) (Choi et al., 2024),
which prunes parameters in the final projec-
tion layer that contribute to bias; and (3)
PRIDE (Zheng et al., 2024), which normalizes
model predictions using prior probabilities
estimated from the dataset.

However, these prior methods do not achieve
the consistency of majority voting, a technique
well-established for mitigating selection bias
(Zong et al., 2023; Wang et al., 2024). The prompt
templates and hyperparameter configurations used
in our experiments are documented in Appendix
C.

Our unsupervised bias metric (PBM) corre-
lates with the difficulty of the MCQ: The results
in Table 2 show that all models exhibit varying de-
grees of bias, correlating with the difficulty of the
problem. Across all models, the bias is seen to be
highest with the MedMCQA benchmark due to its
difficulty (having the lowest accuracy). This con-
firms that selection bias is present and measurable
using our proposed metric (PBM). This also means
that PBM may be used to compare the difficulty of
different MCQ datasets without having access to
the labels. Notably, after applying majority voting
(MV) with the help of BaQCKV, the PBM value
consistently drops to 0.00. Additionally, applying
majority voting shows substantial improvements
in accuracy, particularly in QASC, where scores
increase significantly (e.g., from 0.630 to 0.9329
for Phi-2 and 0.4892 to 0.837 for Llama), validat-
ing the effectiveness of our metric in capturing and
mitigating bias.

Efficiency of the BaQCKV: Beyond bias reduc-
tion, the BaQCKV enhances real-world applica-
bility by significantly reducing the computational
costs of applying majority voting. As shown in
Table 2, our efficient BaQCKV approach for the
majority voting results in significant time savings
of up to 84% (Qwen on QASC) and 89% ( Phi
on TeleQnA) and over 90% across token savings
across all models and datasets. This efficiency gain
is crucial for deploying bias-mitigation strategies
at scale during inference, making our approach
feasible for real-world applications where compu-
tational cost is a limiting factor.

The unsupervised LoRA-1 Bias Mitigation
demonstrates the best performance in maintain-
ing consistency:

The scatter plot in Figure 1a illustrates that,
overall, the LoRA-1 fine-tuning approach exhibits
greater consistency in accuracy, characterised by
a smaller standard deviation and lower selection
bias (PBM) compared to other mitigation strate-
gies. Ideally, an effective model should have its
corresponding points converge near the origin of
the plot, indicating minimal variability and bias.
Moreover, as shown in Table 3, when evaluat-
ing the percentage change relative to the undebi-
ased models, LoRA-1 fine-tuning achieves the great-
est average reduction in both standard deviation
of accuracy (−27%), PBM bias (−58%) and FR
(−52%) across all evaluated models and datasets.
These results highlight the effectiveness of LoRA-1
in mitigating variability and bias simultaneously.
It also, on average, improves the accuracy of the
models by 20% even though this is not up to the
41.92% demonstrated by PriDe. Also, PriDe shows
the highest reduction in the RStd (−24%) and the
smallest increase in CKLD (43.2%). However,
PriDe is not helpful in reducing the PBM bias, it
rather increases PBM bias (180%). It also hardly
offers any improvements in the standard deviation
of accuracy (−0.4%). We show a training graph
of the unsupervised finetuning for the TeleQnA
dataset process in Figure 1b.

The transferability of the unsupervised
LoRA-1 Bias Mitigation: We investigate the trans-
ferability of the unsupervised LoRA-1 fine-tuning
approach by training a model on a single dataset
and evaluating the resulting checkpoint on all other
datasets. The average performance across each
model/dataset pair is reported in Table 4, with com-
plete results provided in Appendix B.2. As shown
in Table 4, the unsupervised fine-tuning generally
transfers well: it consistently reduces our permu-
tation bias metric (PBM), fluctuation rate, and the
standard deviation of accuracy across option per-
mutations. In many cases, it also yields modest
improvements in accuracy. However, similar to
the non-transfer setting, this approach does not
improve the CKLD metric. Notably, for the Qwen-
MEDCQ model, CKLD actually increases signifi-
cantly, accompanied by a more than 200% rise in
RStd. This may be due to the model shifting toward
greater consistency across permutations, which can
lead to more uniform confidence distributions that
diverge from dataset-specific label frequencies. Im-
portantly, this behavior aligns with our objective
of reducing positional sensitivity. However, future
studies will need to be done to properly analyse

2025



Model Name TeleQnA MedMCQA QASC ARC

Acc PBM TimeS (%) TokS (%) Acc PBM TimeS (%) TokS (%) Acc PBM TimeS (%) TokS (%) Acc PBM TimeS (%) TokS (%)
Qwen2.5-3B 0.5464 0.021 - - 0.479 0.058 - - 0.737 0.011 - - 0.804 0.029 - -
Qwen2.5-3B + MV 0.5710 0.000 0.9513 0.4583 0.487 0.000 0.9306 0.5328 0.947 0.000 0.8432 0.5377 0.839 0.00 0.9292 0.3600

Phi-2 0.2568 0.0303 - - 0.359 0.082 - - 0.630 0.024 - - 0.552 0.0269 - -
Phi-2 + MV 0.328 0.000 0.8919 0.3596 0.369 0.000 0.9351 0.551 0.9329 0.000 0.9333 0.543 0.4547 0.000 0.9316 0.366

Llama3.2-3B 0.4536 0.0053 - - 0.370 0.017 - - 0.4892 0.005 - - 0.5179 0.0091 - -
Llama3.2-3B + MV 0.516 0.000 0.9340 0.4618 0.384 0.000 0.9352 0.533 0.837 0.000 0.9482 0.545 0.537 0.00 0.9142 0.3639

Table 2: Accuracy and bias values for different models across multiple datasets, along with computational efficiency
improvements using Majority Voting (MV) with BaQCKV. TimeS is the percentage of inference time speedup as
measured, and TokS is the token saved, respectively.

Method PBM ↓ RStd ↓ CKLD ↓ FR ↓ Acc ↑ AccStd ↓

LoRA-1 -0.586 -0.076 0.928 -0.525 0.200 -0.276
Gray -0.364 -0.045 0.677 – 0.077 0.940
BNP -0.119 0.000 0.653 -0.250 0.064 -0.131
PriDe 1.880 -0.240 0.432 -0.137 0.419 -0.040

Table 3: Comparison of mitigation methods on all
datasets and models. The values are the average percent-
age change of biases, accuracy and standard deviation
(std) of accuracy of the debiased model over the original
models. The Acc here is the change in accuracy using
the original permutation while the AccStd measures the
std of accuracy across different permutations.

Model-Dataset-Train PBM ↓ RStd ↓ CKLD ↓ FR ↓ Acc ↑ AccStd ↓

QWEN-MEDCQ -0.497 -0.411 207.74 -0.150 0.028 -0.279
QWEN-TeleQNA -0.509 0.710 4.01 -0.160 0.029 -0.206
QWEN-ARC -0.413 1.017 4.63 -0.126 0.026 -0.234
QWEN-QASC -0.319 1.168 5.06 -0.006 -0.000 -0.153
Phi2-ARC -0.640 -0.712 -0.90 -0.764 0.423 -0.371
Llama3.2-TeleQNA -0.687 -0.425 -0.60 -0.760 0.282 -0.479
Llama3.2-ARC -0.799 -0.314 0.18 -0.651 0.220 -0.300
Llama3.2-QASC -0.863 0.213 0.54 -0.627 -0.085 -0.073

Table 4: The average percentage change in bias metrics
and accuracy for transferability experiments. For each
row, the model-dataset is evaluated on all other datasets
excluding the one used for finetuning

and understand this behaviour.
We compare the computational efficiency of the

different bias mitigation strategies in Appendix D.

5 Conclusion

In this work, we address a critical yet underex-
plored challenge in Multiple-Choice (MCQ) Ques-
tion Answering—selection bias in Large Language
Models (LLMs). We introduced a novel unsuper-
vised, label-free bias metric (PBM) that directly
quantifies inconsistencies in predictions across per-
muted answer choices, offering a more faithful
measure of selection bias than existing methods.
To mitigate this bias without incurring prohibitive
computational costs, we proposed BaQCKV, an
efficient majority voting strategy, and LoRA-1, a
lightweight fine-tuning method grounded in our
bias metric. Our experiments across diverse MCQ
datasets and models demonstrate that these tech-
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Figure 1: Visualization of bias-related behaviors across
models and strategies.

niques not only reduce bias and improve accuracy
but also significantly cut down inference time and
token usage, making them scalable and practical
for real-world deployment. Ultimately, our work
provides both a theoretical and practical framework
for more reliable and efficient MCQ with LLMs.

6 Limitations

This work only focuses on decoder only trans-
former language models and did not investigate
bias in other language models such as encoder-
decoder models. Also, we only investigate MCQs
where the model has to choose one option and do
not consider other types of MCQs.

In practice, multiple-choice questions typically
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have only 2–5 options. Thus, we fix the maximum
at 24 permutations, which we believe balances com-
putational costs with practical applicability. MCQs
with more options are rarer. This ensures that the
metric remains both meaningful and efficient in
real-world MCQ settings. Also, we show that us-
ing these 24 permutations is sufficient, because it
does well on the QASC dataset that has 8 options
and the TeleQnA that has 2-5 options. However,
future works may consider more permutations and
larger LLM models.
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A Appendix

A.1 Positional Encoding and Sensitivity of Transformers to Option Permutations

In decoder-only transformers, token generation is conditioned on causal self-attention, where each token
attends to prior tokens using both content-based embeddings and positional encodings. When a question
Q and its associated options O = {o1, o2, . . . , on} are presented, the model processes the sequence:

S = Q⊕O.

For a permutation π of the options, the modified sequence becomes:

Sπ = Q⊕Oπ.

While the token set remains unchanged, the reordering affects positional encodings, altering attention
computations. The self-attention mechanism computes attention scores between tokens at positions i and
j as:

Attentioni,j =
Q(oi + pi) · (K(oj + pj))

T

√
d

.

For the permuted sequence Sπ, the updated scores are:

Attentionπi,j =
Q(oi + pπ(i)) · (K(oj + pπ(j)))

T

√
d

.

Since pi ̸= pπ(i), the attention patterns for S and Sπ differ, resulting in distinct contextual representations
for the same token set.

As attention weights directly influence token representations, these changes propagate through the
network, modifying the sequence representation and ultimately affecting the model’s output distribution.
Let P (y | S) and P (y | Sπ) denote the probability distributions over possible answers. Then,

P (y | S) ̸= P (y | Sπ).

A.2 Impact of option permutations on attention scores

The impact of the permutations owing to the positional encoding on the attention scores is illustrated in
Figure 2. The figure shows that there are more fluctuations in the attention scores on the option tokens
(later parts of the x-axis) compared to the question tokens (earlier tokens on the x-axis).

Figure 2: Attention scores for the last token in the last layer of the Llama model across different prompt permutations,
shown for two transformer heads.
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A.3 Proof of Token Savings in BaQCKV
In the original Majority Voting (MV) framework, each question undergoes k passes through the LLM,
processing the full sequence of Q⊕ C ⊕O each time. The total token cost per question is:

CostMV = k × |Q⊕ C ⊕O| (11)

In BaQCK, the shared Q⊕C tokens are processed only once, while the O tokens are processed k times.
Thus, the total token cost per question is:

CostMV = |Q⊕ C|+ k × |O| (12)

The token savings is computed as:

Savings = CostMV − CostBaQCK (13)

= k × |Q⊕ C ⊕O| − (|Q⊕ C|+ k × |O|) (14)

= k × |Q⊕ C|+ k × |O| − |Q⊕ C| − k × |O| (15)

= (k − 1)× |Q⊕ C| (16)

Expressing this as a percentage of the original cost:

Token savings (%) =
(k − 1)× |Q⊕ C|
k × |Q⊕ C ⊕O| × 100 (17)

This result shows that BaQCK significantly reduces token computations, particularly when |C| is large
(e.g., in Retrieval-Augmented Generation). Even for small or zero-context cases (|C| = 0), savings persist
due to shared |Q| tokens. Increasing k further amplifies efficiency by reducing redundant recomputation
across shuffled options.

B Experimental Results

B.1 Bias Mitigation Results on all models and datasets

Table 6: Phi-2 Performance across Datasets (Raw Scores)

Metric PBM RStd CKLD Fluct. Rate Accuracy Perm Acc Std

ARC Dataset

Baseline 0.0269 0.2207 0.2853 0.6334 0.5520 0.0110
LoRA FineTuning 0.0214 0.2102 0.2501 0.6225 0.5589 0.0082
Gray-Box Weighting 0.0187 0.1965 0.2394 – 0.5661 0.0071
BNP 0.0276 0.2251 0.2923 0.6881 0.5498 0.0104
Pride 0.1507 0.2769 0.2933 0.6987 0.5512 0.0107

TeleQNA Dataset

Baseline 0.0303 0.3559 1.5208 0.8114 0.2568 0.0216
LoRA FineTuning 0.0255 0.3471 1.4801 0.8041 0.2642 0.0173
Gray-Box Weighting 0.0196 0.3432 1.4273 – 0.2697 0.0152
BNP 0.0388 0.3674 1.5404 0.7463 0.2553 0.0201
Pride 0.1301 0.3865 1.4311 0.7522 0.2374 0.0214

MedMCQ Dataset

Baseline 0.0512 0.3981 1.4585 0.9369 0.3409 0.0194
LoRA FineTuning 0.0418 0.3907 1.4132 0.9286 0.3467 0.0168
Gray-Box Weighting 0.0356 0.3849 1.4017 0.0000 0.3523 0.0150
BNP 0.0542 0.4072 1.4682 0.8624 0.3397 0.0175
Pride 0.1489 0.4138 1.4425 0.8796 0.3402 0.0189

QASC Dataset

Baseline 0.0314 0.3232 2.9914 0.9676 0.1577 0.0122
LoRA FineTuning 0.0249 0.3014 2.7412 0.9548 0.1643 0.0103
Gray-Box Weighting 0.0221 0.2876 2.6785 – 0.1671 0.0094
BNP 0.0327 0.3357 3.0141 0.9251 0.1552 0.0109
Pride 0.1273 0.3428 2.8345 0.9387 0.1499 0.0118
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Table 5: QWEN Performance across Datasets (Raw Scores)

Metric PBM RStd CKLD Fluct. Rate Accuracy Perm Acc Std

ARC Dataset

Baseline 0.0268 0.0158 0.0003 0.1997 0.8038 0.0088
LoRA FineTuning 0.0151 0.0101 0.0004 0.1869 0.808 0.0073
Gray-Box Weighting 0.0129 0.0083 0.0002 – 0.8283 0.0048
BNP 0.0270 0.0169 0.0004 0.2550 0.7994 0.0074
Pride 0.1629 0.0261 0.0007 0.2374 0.8039 0.0083

TeleQNA Dataset

Baseline 0.0214 0.0564 0.0070 0.5874 0.5464 0.0189
LoRA FineTuning 0.0182 0.0879 0.0223 0.6093 0.5437 0.0141
Gray-Box Weighting 0.0149 0.0179 0.0070 – 0.5492 0.1144
BNP 0.0384 0.0881 0.0145 0.2158 0.5546 0.0143
Pride 0.1271 0.0778 0.0040 0.3389 0.4186 0.0188

MedMCQ Dataset

Baseline 0.0577 0.0179 0.0006 0.8964 0.4805 0.0057
LoRA FineTuning 0.0363 0.0771 0.0082 0.9031 0.4798 0.0055
Gray-Box Weighting 0.0313 0.0087 0.0062 0.0000 0.4867 0.0038
BNP 0.0578 0.0096 0.0056 0.2421 0.4797 0.0000
Pride 0.1517 0.0238 0.0078 0.2476 0.4801 0.0057

QASC Dataset

Baseline 0.0110 0.0547 0.0117 0.2062 0.8952 0.0068
LoRA FineTuning 0.0031 0.0101 0.0003 0.1188 0.9698 0.0040
Gray-Box Weighting 0.0123 0.0324 0.0146 – 0.8801 0.0076
BNP 0.0119 0.0573 0.0129 0.1619 0.8866 0.0087
Pride 0.0942 0.0594 0.0060 0.1690 0.8729 0.0072

Table 7: LLama 3.2 Performance across Datasets (Raw Scores)

Metric PBM RStd CKLD Fluct. Rate Accuracy Perm Acc Std

ARC Dataset

Baseline 0.0091 0.1082 0.1050 0.5171 0.5179 0.0097
LoRA FineTuning 0.0034 0.1780 0.1144 0.1373 0.5339 0.0092
Gray-Box Weighting 0.0065 0.0239 0.0999 0.0000 0.5957 0.0083
BNP 0.0083 0.0500 0.0230 0.3279 0.5392 0.0108
Pride 0.0318 0.0911 0.0125 0.4789 0.5615 0.0102

TeleQNA Dataset

Baseline 0.0053 0.1010 0.0907 0.5574 0.4536 0.0165
LoRA FineTuning 0.0002 0.1998 0.3120 0.3306 0.3830 0.0245
Gray-Box Weighting 0.0036 0.0330 0.0828 – 0.4004 0.1034
BNP 0.0056 0.1786 0.0614 0.1746 0.4754 0.0199
Pride 0.0161 0.1638 0.0483 0.5575 0.4317 0.0274

MedMCQ Dataset

Baseline 0.0167 0.3182 0.5597 0.8128 0.3696 0.0161
LoRA FineTuning 0.0000 0.0052 0.0531 0.2116 0.3213 0.0056
Gray-Box Weighting 0.0059 0.0221 0.8249 – 0.4014 0.0044
BNP 0.0109 0.3098 0.5049 0.7547 0.3851 0.0154
Pride 0.0095 0.0165 0.0112 0.8217 0.3973 0.0077

QASC Dataset

Baseline 0.0046 0.2021 0.4818 0.6544 0.4892 0.0138
LoRA FineTuning 0.0026 0.0130 0.0014 0.1263 0.9514 0.0037
Gray-Box Weighting 0.0061 0.2500 0.3122 – 0.6210 0.0138
BNP 0.0037 0.1357 0.1357 0.3359 0.7441 0.0107
Pride 0.0050 0.0545 0.0017 0.4841 0.8715 0.0096
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B.2 Transferability Results over all datasets and models

Table 8: Transferability of Model-Checkpoints Across Datasets (Complete Results)

Source/Target PBM RStd CKLD Fluct. Rate Accuracy Perm Acc Std

QWEN/MEDCQ→ ARC Dataset

Baseline 0.0268 0.0158 0.0003 0.1997 0.8038 0.0088
LoRA FineTune 0.0101 0.0004 0.1869 0.1869 0.8080 0.0073
% Change -43.6% -36.1% +333.3% -6.4% +0.5% -17.0%
LoRA Transfer 0.0215 0.0116 0.0001 0.2438 0.8034 0.0075

QWEN/MEDCQ→ TeleQNA Dataset

Baseline 0.0214 0.0564 0.0070 0.5874 0.5464 0.0189
LoRA FineTune 0.0182 0.0879 0.0223 0.6093 0.5437 0.0141
% Change -15.0% +55.9% +218.6% +3.7% -0.5% -25.4%
LoRA Transfer 0.0254 0.0671 0.0096 0.2076 0.5574 0.0116

QWEN/MEDCQ→ QASC Dataset

Baseline 0.0110 0.0547 0.0117 0.2062 0.8952 0.0068
LoRA FineTune 0.0031 0.0101 0.0003 0.1188 0.9698 0.0040
% Change -72.2% -81.5% -97.4% -42.4% +8.3% -41.2%
LoRA Transfer 0.0097 0.0720 0.0291 0.1847 0.8585 0.0071

Table 9: Transferability of Model-Checkpoints (Continued)

Source/Target PBM RStd CKLD Fluct. Rate Accuracy Perm Acc Std

QWEN/TeleQNA→ ARC Dataset

Baseline 0.0268 0.0158 0.0003 0.1997 0.8038 0.0088
LoRA FineTune 0.0151 0.0101 0.0004 0.1869 0.8080 0.0073
LoRA Transfer 0.0247 0.0163 0.0006 0.2635 0.8068 0.0069

QWEN/TeleQNA→MedMCQ Dataset

Baseline 0.0577 0.0179 0.0006 0.8964 0.4805 0.0057
LoRA FineTune 0.0363 0.0771 0.0082 0.9031 0.4798 0.0055
LoRA Transfer 0.0484 0.0279 0.0024 0.2639 0.4803 0.0049

QWEN/TeleQNA→ QASC Dataset

Baseline 0.0110 0.0547 0.0117 0.2062 0.8952 0.0068
LoRA FineTune 0.0031 0.0101 0.0003 0.1188 0.9698 0.0040
LoRA Transfer 0.0167 0.0913 0.0516 0.2408 0.8337 0.0097

Table 10: Transferability of Model-Checkpoints (Continued)

Source/Target PBM RStd CKLD Fluct. Rate Accuracy Perm Acc Std

QWEN/ARC→ TeleQNA Dataset

Baseline 0.0214 0.0564 0.0070 0.5874 0.5464 0.0189
LoRA FineTune 0.0182 0.0879 0.0223 0.6093 0.5437 0.0141
LoRA Transfer 0.0025 0.1363 0.0805 0.1694 0.5464 0.0139

QWEN/ARC→MedMCQ Dataset

Baseline 0.0577 0.0179 0.0006 0.8964 0.4805 0.0057
LoRA FineTune 0.0363 0.0771 0.0082 0.9031 0.4798 0.0055
LoRA Transfer 0.0041 0.1532 0.1005 0.4023 0.4604 0.0079

QWEN/ARC→ QASC Dataset

Baseline 0.0110 0.0547 0.0117 0.2062 0.8952 0.0068
LoRA FineTune 0.0031 0.0101 0.0003 0.1188 0.9698 0.0040
LoRA Transfer 0.0214 0.2950 1.3080 0.8293 0.3013 0.0134
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Table 11: Transferability of Model-Checkpoints (Continued)

Source/Target PBM RStd CKLD Fluct. Rate Accuracy Perm Acc Std

QWEN/QASC→ ARC Dataset

Baseline 0.0268 0.0158 0.0003 0.1997 0.8038 0.0088
LoRA FineTune 0.0151 0.0101 0.0004 0.1869 0.8080 0.0073
LoRA Transfer 0.0279 0.0183 0.0011 0.2481 0.7923 0.0074

QWEN/QASC→ TeleQNA Dataset

Baseline 0.0214 0.0564 0.0070 0.5874 0.5464 0.0189
LoRA FineTune 0.0182 0.0879 0.0223 0.6093 0.5437 0.0141
LoRA Transfer 0.0408 0.0620 0.0223 0.2158 0.5601 0.0140

QWEN/QASC→MedMCQ Dataset

Baseline 0.0577 0.0179 0.0006 0.8964 0.4805 0.0057
LoRA FineTune 0.0363 0.0771 0.0082 0.9031 0.4798 0.0055
LoRA Transfer 0.0573 0.1089 0.0067 0.2175 0.4735 0.0044

Table 12: Transferability of Phi-2 Model-Checkpoints

Source/Target PBM RStd CKLD Fluct. Rate Accuracy Perm Acc Std

Phi-2/TeleQnA→ ARC Dataset

Baseline 0.0269 0.2207 0.2853 0.6334 0.5520 0.0110
LoRA FineTune 0.0148 0.0257 0.0021 0.2858 0.7553 0.0076
LoRA Transfer 0.0217 0.0545 0.0067 0.2576 0.6500 0.0080

Phi-2/TeleQnA→MedMCQ Dataset

Baseline 0.0512 0.3981 1.4585 0.9369 0.3409 0.0194
LoRA FineTune 0.0013 0.0893 0.0527 0.3358 0.3569 0.0087
LoRA Transfer 0.0256 0.0709 0.0478 0.3799 0.3344 0.0051

Phi-2/TeleQnA→ QASC Dataset

Baseline 0.0314 0.3232 2.9914 0.9676 0.1577 0.0122
LoRA FineTune 0.0002 0.2373 1.0080 0.1003 0.3002 0.0112
LoRA Transfer 0.0073 0.0605 0.0067 0.0950 0.8542 0.0008

Table 13: Transferability of Phi-2 Model-QASC

Source/Target PBM RStd CKLD Fluct. Rate Accuracy Perm Acc Std

Phi-2/Qasc→ ARC Dataset

Baseline 0.0269 0.2207 0.2853 0.6334 0.5520 0.0110
LoRA FineTune 0.0148 0.0257 0.0021 0.2858 0.7553 0.0076
LoRA Transfer 0.0129 0.2855 0.5250 0.7511 0.4489 0.0091

Phi-2/Qasc→ TeleQNA Dataset

Baseline 0.0303 0.3559 1.5208 0.8114 0.2568 0.0216
LoRA FineTune 0.0260 0.0271 0.0087 0.0267 0.3530 0.0099
LoRA Transfer 0.0494 0.4000 2.9890 1.0000 0.2100 0.0233

Phi-2/Qasc→MedMCQ Dataset

Baseline 0.0512 0.3981 1.4585 0.9369 0.3409 0.0194
LoRA FineTune 0.0013 0.0893 0.0527 0.3358 0.3569 0.0087
LoRA Transfer 0.0300 0.4259 2.4919 0.9931 0.3201 0.0199
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Table 14: Transferability of Phi-2 Model-MedMCQA)

Source/Target PBM RStd CKLD Fluct. Rate Accuracy Perm Acc Std

Phi-2/MedMCQ→ ARC Dataset

Baseline 0.0269 0.2207 0.2853 0.6334 0.5520 0.0110
LoRA FineTune 0.0148 0.0257 0.0021 0.2858 0.7553 0.0076
LoRA Transfer 0.0149 0.0257 0.0021 0.2858 0.7553 0.0076

Phi-2/MedMCQ→ TeleQNA Dataset

Baseline 0.0303 0.3559 1.5208 0.8114 0.2568 0.0216
LoRA FineTune 0.0260 0.0271 0.0087 0.0267 0.3530 0.0099
LoRA Transfer 0.0260 0.0960 0.0115 0.1939 0.4125 0.0170

Phi-2/MedMCQ→ QASC Dataset

Baseline 0.0314 0.3232 2.9914 0.9676 0.1577 0.0122
LoRA FineTune 0.0002 0.2373 1.0080 0.1003 0.3002 0.0112
LoRA Transfer 0.0004 0.0291 0.0017 0.1134 0.9265 0.0051

Table 15: Transferability of Phi-2/ARC Model-ARC

Source/Target PBM RStd CKLD Fluct. Rate Accuracy Perm Acc Std

Phi-2/ARC→ ARC Dataset

Baseline 0.0269 0.2207 0.2853 0.6334 0.5520 0.0110
LoRA FineTune 0.0148 0.0257 0.0021 0.2858 0.7553 0.0076
LoRA Transfer 0.0217 0.0545 0.0067 0.2575 0.6498 0.0076

Phi-2/ARC→ TeleQNA Dataset

Baseline 0.0303 0.3559 1.5208 0.8114 0.2568 0.0216
LoRA FineTune 0.0260 0.0271 0.0087 0.0267 0.3530 0.0099
LoRA Transfer 0.0261 0.0964 0.0115 0.1939 0.4126 0.0099

Phi-2/ARC→MedMCQ Dataset

Baseline 0.0512 0.3981 1.4585 0.9369 0.3409 0.0194
LoRA FineTune 0.0013 0.0893 0.0527 0.3358 0.3569 0.0087
LoRA Transfer 0.0269 0.0893 0.0214 0.2737 0.3749 0.0045

Phi-2/ARC→ QASC Dataset

Baseline 0.0314 0.3232 2.9914 0.9676 0.1577 0.0122
LoRA FineTune 0.0002 0.2373 1.0080 0.1003 0.3002 0.0112
LoRA Transfer 0.0042 0.0291 0.0017 0.1133 0.9265 0.0059

Table 16: Transferability of Llama 3.2 Model-ARC

Source/Target PBM RStd CKLD Fluct. Rate Accuracy Perm Acc Std

Llama 3.2/ARC→ TeleQNA Dataset

Baseline 0.0053 0.1010 0.0907 0.5574 0.4536 0.0165
LoRA FineTune 0.0002 0.1998 0.3120 0.3306 0.3830 0.0245
LoRA Transfer 0.0007 0.2344 0.5903 0.6393 0.4235 0.0209

Llama 3.2/ARC→MedMCQ Dataset

Baseline 0.0167 0.3182 0.5597 0.8128 0.3696 0.0161
LoRA FineTune 0.0000 0.0052 0.0531 0.2116 0.3213 0.0056
LoRA Transfer 0.0012 0.3943 1.2546 0.9132 0.3541 0.0189

Llama 3.2/ARC→ QASC Dataset

Baseline 0.0046 0.2021 0.4818 0.6544 0.4892 0.0138
LoRA FineTune 0.0026 0.0130 0.0014 0.1263 0.9514 0.0037
LoRA Transfer 0.0020 0.2963 1.7180 0.8920 0.2397 0.0119
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Table 17: Transferability of Llama 3.2 Model-TeleQnA

Source/Target PBM RStd CKLD Fluct. Rate Accuracy Perm Acc Std

Llama 3.2/TeleQNA→ ARC Dataset

Baseline 0.0091 0.1082 0.1050 0.5171 0.5179 0.0097
LoRA FineTune 0.0034 0.1780 0.1144 0.1373 0.5339 0.0092
LoRA Transfer 0.0010 0.1828 0.2423 0.5416 0.4343 0.0136

Llama 3.2/TeleQNA→MedMCQ Dataset

Baseline 0.0167 0.3182 0.5597 0.8128 0.3696 0.0161
LoRA FineTune 0.0000 0.0052 0.0531 0.2116 0.3213 0.0056
LoRA Transfer 0.0004 0.3840 1.6399 0.9013 0.3376 0.0056

Llama 3.2/TeleQNA→ QASC Dataset

Baseline 0.0046 0.2021 0.4818 0.6544 0.4892 0.0138
LoRA FineTune 0.0026 0.0130 0.0014 0.1263 0.9514 0.0037
LoRA Transfer 0.0012 0.3290 3.5746 0.9946 0.1369 0.0124

Table 18: Transferability of Llama 3.2 Model-QASC

Source/Target PBM RStd CKLD Fluct. Rate Accuracy Perm Acc Std

Llama 3.2/QASC→ ARC Dataset

Baseline 0.0091 0.1082 0.1050 0.5171 0.5179 0.0097
LoRA FineTune 0.0034 0.1780 0.1144 0.1373 0.5339 0.0092
LoRA Transfer 0.0003 0.1195 0.1184 0.4515 0.4944 0.0094

Llama 3.2/QASC→ TeleQNA Dataset

Baseline 0.0053 0.1010 0.0907 0.5574 0.4536 0.0165
LoRA FineTune 0.0002 0.1998 0.3120 0.3306 0.3830 0.0245
LoRA Transfer 0.0007 0.2344 0.5903 0.6393 0.4235 0.0175

Llama 3.2/QASC→MedMCQ Dataset

Baseline 0.0167 0.3182 0.5597 0.8128 0.3696 0.0161
LoRA FineTune 0.0000 0.0052 0.0531 0.2116 0.3213 0.0056
LoRA Transfer 0.0012 0.3943 1.2545 0.9132 0.3541 0.0018

Table 19: Transferability of Llama 3.2 Model-MedMCQ

Source/Target PBM RStd CKLD Fluct. Rate Accuracy Perm Acc Std

Llama 3.2/MedMCQ→ ARC Dataset

Baseline 0.0091 0.1082 0.1050 0.5171 0.5179 0.0097
LoRA FineTune 0.0034 0.1780 0.1144 0.1373 0.5339 0.0092
LoRA Transfer 0.0011 0.0914 0.0645 0.4129 0.4893 0.0133

Llama 3.2/MedMCQ→ TeleQNA Dataset

Baseline 0.0053 0.1010 0.0907 0.5574 0.4536 0.0165
LoRA FineTune 0.0002 0.1998 0.3120 0.3306 0.3830 0.0245
LoRA Transfer 0.0003 0.1730 0.2920 0.4508 0.4153 0.0202

Llama 3.2/MedMCQ→ QASC Dataset

Baseline 0.0046 0.2021 0.4818 0.6544 0.4892 0.0138
LoRA FineTune 0.0026 0.0130 0.0014 0.1263 0.9514 0.0037
LoRA Transfer 0.0009 0.2999 1.8713 0.9039 0.2441 0.0154

C Prompt Templates and Hyperparameter Configurations

C.1 Prompt Templates Used in All Experiments

This appendix provides the exact prompt templates used during evaluation of transferability experiments
across datasets and models.

MedMCQA Dataset (All Models)

Instruct = Youre a Medical Question Answering Expert, answer the following question.
Please generate only answer choice (1, 2, 3 or 4)
{question}
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{options}
Output: option

TeleQnA Dataset (Qwen & Llama)

Instruct: Answer the following question using the context provided.
Your answer must start with the correct option letter (1, 2, 3, 4, or 5):
{question}
{options}
Output: option

TeleQnA or ARC Dataset (Phi-2)

Instruct: Answer the following question.
Your answer must start with the correct option letter (1, 2, 3, 4, or 5) followed by the
text of the answer:
{question}
{options}
Output: option

ARC Dataset (All Models Except Phi)

Instruct: {question}
{options}
Output: option

QASC Dataset (Qwen, Phi-2)

Instruct: Answer the following question using the context provided, reason over it.
Please generate only answer choice (1, 2, 3, 4, 5, 6, 7 or 8) without any explanations

{question}
context: {context}

{options}
{question}
Output: option

QASC Dataset (Llama)

Instruct: Answer the following question using the context provided, reason over it.
Please generate only answer choice (1, 2, 3, 4, 5, 6, 7 or 8) without any explanations

{question}
context: {context}

{options}
Output:

C.2 Hyper-Parameter Configurations

Unsupervised LoRA Finetuning: During each iteration we randomly sample 64 samples every epoch
from the train split of the dataset and use it for training. For the LoRA adapters, we target the attention
QKV and Output projection weights, with a dropout of 0.05 and LoRA alpha of 16. We used an AdamW
optimizer with learning rate of 1e−4 and weight decay of 0.001 for all experiments. In computing the
loss, we find the use of α of 0.1 to weight the entropy as yielding good performance. However, further
experiments on the balance of this hyper-parameter choice can be further studied in more details.
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C.3 Model Size And Budget

We evaluated our methods on a set of compact yet capable LLMs, including Qwen2.5–3B, Phi-2, and
LLaMA3.2–3B, each with approximately 3 billion parameters. All experiments were conducted on
NVIDIA L40 GPUs (48 GB VRAM). Using AWS g5.12xlarge instances (approximate L40 equivalent)
priced at $3.06/hour on-demand, the cost per fine-tuning run is $6–$9, and BaQCKV inference costs are
$1–$2 per dataset. This keeps the total cost for running all experiments within a practical research budget,
demonstrating that our methods are efficient and deployable even on mid-sized mod.
Bias Metric Computation: To compute the PBM, we do not use the raw probabilities over the vocab size.
We rather use the logits for only the option IDs to compute the probabilities. Also, we limit the number of
permutations to a maximum of 24 (4!). This is due to our GPU memory budget and our considerations
that most MCQs would have around 4 options.

C.4 Dataset Description

We evaluate our methods on four publicly-available multiple-choice QA benchmarks: TeleQnA (Maatouk
et al., 2023), MedMCQA(Pal et al., 2022), QASC(Khot et al., 2020) and ARC Challenge(Clark et al.,
2018). Table 20 summarizes their key statistics.

Dataset Domain # Choices Splits (Train/Test) License

TeleQnA Telecom knowledge 2–5 1461 / 366 MIT
MedMCQA Medical exam 4 5000/ 4183 MIT
QASC Grade-school science 8 8134 /926 CC BY 4.0
ARC Challenge Grade-school science (hard) 4 1119 /1172 CC BY-SA 4.0

Table 20: Overview of QA benchmarks used in our experiments.

TeleQnA is a telecommunications-domain multiple-choice QA dataset consisting of 10,000 English
questions extracted from 3GPP standards and research articles. Each question has between 2 and 5 answer
options. We use the publicly released splits for the Zindi subset of the data (Zindi). TeleQnA is distributed
under the MIT license.
MedMCQA comprises 194,000 medical-entrance exam questions across 21 subjects and over 2,400
topics. Each item has 4 answer choices. We used the validation set as our test set in order to have access
to the answers. It is available under the MIT license.
QASC is a multi-hop commonsense reasoning dataset containing 9,980 grade-school science questions
designed for sentence composition. Each question has 8 choices. We follow the official splits of 8,134
training, 926 validation, and 920 test examples. We also used the validation set as our test, similar to the
MedMCQA. It is released under a CC BY 4.0 license.
The ARC Challenge set contains 2,590 “hard” grade-school science questions that simple IR baselines
fail to answer correctly. All questions have 4 answer options. We adopt the official splits: 1,119 train and
1,172 test examples. We use the actual test split as our test split since it contains the answers. The dataset
is provided under CC BY-SA 4.0.

D Computational Efficiency Comparison of the Bias Mitigation Strategies

Mitigation Method ARC Dataset MEDMCQ Dataset QASC Dataset

Debiasing Time (s) Inference Time (s) Debiasing Time (s) Inference Time (s) Debiasing Time (s) Inference Time (s)

LoRA-1 143.30 0.042 91.33 0.059 100.03 0.058
Gray - 0.049 - 0.061 - 0.0796
BNP 182.87 0.037 74.87 0.036 242.48 0.036
PriDe 52.54 0.042 248.27 0.037 87.20 0.037

Table 21: Comparison of the computational time for the different mitigation methods on the ARC, MEDMCQ,
and QASC datasets. The debiasing time refers to the time required to compute calibration parameters or fine-tune
the model before inference. The average inference time indicates the time to compute the final answer logits per
example.
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From Table 21, it can be seen that BNP consistently incurs the longest debiasing time across datasets.
This is due to the overhead of computing the bias vector, which in the worst case requires a forward
pass over all permutations of the dataset. In contrast, our proposed method, LoRA-1, offers a more
efficient trade-off between debiasing time and inference speed. Specifically, LoRA-1 finetuning takes
an average of 28.6 seconds per epoch using the BaQKCV loss function, resulting in approximately 143
seconds for five epochs on the ARC dataset. For MEDMCQ and QASC, LoRA-1 required only 91.3s and
100.0s, respectively, which are both lower than BNP and PriDe in those settings.While PriDe required just
52.5s on ARC, its debiasing time rose significantly on the MEDMCQ dataset (248.3s), highlighting its
sensitivity to dataset size as it calibrates using 10% of the data, and so its cost scales with dataset volume.
On the QASC dataset, its time (87.2s) was also slightly lower than LoRA-1. However, as dataset sizes
grow, LoRA-1 remains more stable and predictable, making it more suitable for scalable deployment.
Additionally, LoRA-1 maintains competitive inference times, showing only minor overhead compared to
GrayBox and BNP.
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