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Abstract

Understanding how large language models
(LLMs) reason across semantically distinct do-
mains remains an open challenge. In this work,
we investigate whether LLMs can connect per-
sonality traits to musical preferences, specifi-
cally chord progressions. Drawing on psycho-
logical theory and symbolic music structure,
we introduce a novel benchmark that evaluates
two interdependent tasks: (1) inferring person-
ality traits from a textual context and (2) select-
ing a musically appropriate chord progression
aligned with the inferred trait. We release a
synthetic, expert-guided dataset grounded in
Cattell’s 16 Personality Factors (PF16), genre-
conditioned chord structures, and diverse situa-
tional contexts. We explore multiple learning
strategies, including fine-tuning task-specific
corpora, model merging with LoRA adapters,
and advanced prompt-based reasoning tech-
niques such as verbalization. Additionally, we
propose a teacher-student framework to evalu-
ate the quality of model-generated explanations
using a five-dimensional rubric. Our findings
show that verbalization outperforms standard
reasoning methods, achieving up to 11% im-
provement over zero-shot baselines.

1 Introduction

Music is more than just entertainment; it is often
an emotional extension of the self, subtly reflect-
ing our moods, values, and personalities (Juslin,
2010; Flannery and Woolhouse, 2021; Chamorro-
Premuzic and Furnham, 2007; Ferwerda et al.,
2017). Across cultures, the music people enjoy
and create provides a window into who they are,
offering insights into their internal worlds. In re-
cent years, conversational AI has seen a surge of
interest in simulating human-like personas using
datasets such as Persona Chat (PC) (Zhang et al.,
2018) and Blended Skill Talk (BST) (Smith et al.,

*This work is independent research and does not involve
JPMorgan Chase & Co.

Figure 1: Illustrating our benchmark’s core idea: Can
language models link personality traits to musical struc-
tures? Given a context, the model infers personality and
selects a matching genre and chord progression, reflect-
ing distinct creative preferences.

2020). These efforts have been further extended by
creating a Synthetic Persona Chat (SPC) (Jandaghi
et al., 2024) dataset, which generates artificial pro-
files to diversify persona-driven dialogue. Paral-
lel to this, newer datasets like Journal Intensive
Conversations (JIC) (Pal et al., 2025) aim to cap-
ture more intrinsic personality traits by ground-
ing conversations in long-form, autobiographical
texts. While such datasets have improved the per-
sonalization capabilities of large language models
(LLMs) (Kasahara et al., 2022), they are primar-
ily confined to understanding personality within
the dialogue domain. What remains underexplored
is whether LLMs can reason across domains (Si-
mon et al., 2022; Akyürek et al., 2023), particu-
larly in capturing the connection between person-
ality traits (Mazaré et al., 2018; Lee et al., 2025)
and musical preferences. We hypothesize that the
music individuals resonate with is not a random
choice but a psychologically grounded expression
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of who they are. For instance, highly extroverted
individuals may gravitate toward energetic genres
like rock or hip-hop, while more introspective per-
sonalities may find alignment with genres such
as jazz or pop. This connection is intuitive and
supported by decades of psychological literature
(Chamorro-Premuzic and Furnham, 2007; Ferw-
erda et al., 2017), yet remains largely untested in
computational models. This raises important ques-
tions about whether LLMs can reason consistently
when connecting personality traits to other domains
like music, a low-resource domain with symbolic
structure and limited textual data (Huang and Yang,
2020).

Personality refers to the characteristic patterns of
thoughts, emotions, and behaviors that define how
individuals perceive and interact with the world
(Mairesse et al., 2007; McCrae and Costa Jr., 1999;
Sanchez-Roige et al., 2018). In psychology, sev-
eral models have been proposed to represent per-
sonality traits, including the Big Five (OCEAN
(Hurtz and Donovan, 2000; Azucar et al., 2018)),
the Myers-Briggs Type Indicator (MBTI)(Cohen
et al., 2013), and Raymond Cattell’s 16 Personality
Factors (PF16) (Cattell and P. Cattell, 1995). On
the other hand, chord progression in music theory
refers to a sequence of chords that forms the har-
monic foundation of a musical piece (Cho et al.,
2016; Kawase, 2024). Different progressions evoke
distinct emotional tones and are often linked to par-
ticular genres, moods, or artistic styles (Bakker and
Martin, 2015). Music theory and chord reasoning
are relatively low-resource and underrepresented in
mainstream LLM training corpora, making it diffi-
cult for models to generalize across these modali-
ties (Yuan et al., 2024). Understanding how LLMs
interpret the relationship between personality traits
and musical inclinations can open new possibilities
for personalized content generation (Wang et al.,
2024), human-centered creative tools (Spangher
et al., 2025), and emotionally aware recommenda-
tion systems (Lyu et al., 2024). Addressing this
cross-domain reasoning challenge is a step forward
in improving LLM capabilities and is crucial for
building AI that reflects the interconnectedness of
human cognition, creativity, and identity.

The relationship between personality and mu-
sic is not just theoretical; it is often explicitly ar-
ticulated by artists when reflecting on their cre-
ative process. For example, Taylor Swift breaks

down “Blank Space”1, she explains how the song
responds to the media’s exaggerated portrayal of
her dating life, crafting a fictionalized character
based on public perception. Similarly, Charlie
Puth breaks down “Attention”2, describing how
it evolved from a piano ballad into a layered pop
track reflecting his emotional state and artistic con-
fidence. He emphasizes his production choices,
such as using acoustic guitar rhythms, vinyl tex-
tures, and deliberate drops as extensions of his
personal identity and emotional landscape. Bil-
lie Eilish and Finneas, in their deconstruction of
“Bad Guy”3, highlight their spontaneous, personal
approach to sound design, incorporating chaotic
sonic quirks that mirror their creative personali-
ties. These examples suggest that musical compo-
sition often encodes deeper personality traits and
emotional intentions. This motivates our central
question as shown in Figure 1: Can large language
models, which perform well in dialogue person-
alization, also reason across domains to connect
personality with musical structure?

In this work, (1) we release a novel bench-
mark that evaluates whether large language models
can reason across domains by aligning personal-
ity traits with musical structure. (2) Our bench-
mark is designed with a modular construction
methodology, allowing extensibility to more chal-
lenging variants. (3) We explore two key training
strategies: personality-grounded fine-tuning and
joint adaptation across both tasks. (4) To im-
prove performance without training, we propose
a verbalization-based inference pipeline that dy-
namically guides chord selection, yielding a con-
sistent 11% improvement over zero-shot base-
lines. (5) Finally, we introduce a thinking evalua-
tion protocol to assess reasoning quality through
teacher-rated justifications, enabling evaluation
beyond output correctness. Our code and data is
publicly available.4

2 Related Work

Personality Grounding in Conversational LLMs.
Understanding and generating persona-consistent
responses has been a long-standing goal in dia-
logue systems (Liu et al., 2016; Caron and Srivas-
tava, 2023; Saha et al., 2022). Early approaches
(Yamashita et al., 2023; Zhang et al., 2018) such

1Blank Space breakdown by Taylor Swift
2Attention breakdown by Charlie Puth
3Bad Guy breakdown by Billie Eilish and Finneas
4Code and Data
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Figure 2: Overview of our benchmark design and methodology. S1: Benchmark Creation- We generate synthetic
contexts using PF16 traits, genres, and domains as prompts, forming two multiple-choice tasks per sample. S2:
Training Strategy- Task 1 models are trained on existing dialogue datasets, while Task 2 uses chord pretraining
and genre-conditioned generation. S3: Inference Pipeline- We evaluate models under zero-shot, CoT, and
verbalized prompting strategies. Verbalization chains trait inference and music theory to guide chord generation. S4:
Evaluation- Outputs are assessed using Accuracy, F1, NEI, and reasoning quality.

as PersonaChat (Zhang et al., 2018) and Blended-
SkillTalk (Smith et al., 2020) used manually au-
thored or template-based persona attributes to drive
more faithful conversations (Dušek and Jurčíček,
2016). Synthetic extensions like SPC (Jandaghi
et al., 2024) diversified persona representation,
while Journal Intensive Conversations (JIC) (Pal
et al., 2025) introduced free-form autobiographical
grounding to capture more nuanced traits. Beyond
static attributes, recent research has explored in-
tegrating psychological theories such as the Big
Five (OCEAN) (Azucar et al., 2018; Hurtz and
Donovan, 2000) and PF16 (Cattell and P. Cattell,
1995) to enrich modeling of personality in LLMs.
While fine-tuning LLMs on personalized data has
led to more trait-aligned generations (Labruna et al.,
2024; Pal et al., 2024), most work focuses exclu-
sively on dialogue settings, without examining if
such personalization can extend to semantically
distant domains like music.

Language Models for Symbolic Music Under-
standing. Recent works (Copet et al., 2023) have
explored LLM capabilities in music composition
and understanding, primarily through symbolic
representations such as chord labels or textual

scores. ChatMusician (Yuan et al., 2024) intro-
duced a large-scale dataset and training framework
for music-related dialogue tasks, while Chordo-
nomicon (Kantarelis et al., 2024) compiled a genre-
specific chord progression database aimed at sym-
bolic pattern learning. Models like MusicTrans-
former (Huang et al., 2018) and MusicNet (Thick-
stun et al., 2017) have focused on sequence mod-
eling in music but often rely on specialized musi-
cal representations or piano-roll formats. In con-
trast, our work focuses on the textual reasoning
behind chord choices, leveraging symbolic descrip-
tors grounded in genre and personality. Unlike
prior approaches that focus on chord generation or
genre classification, we pose chord selection as a
cross-domain reasoning task, situated at the inter-
section of psychological and creative semantics.

3 Personality-Music Alignment Bench
(PMAB)

3.1 Motivation and Novelty
Recent advances in personalized dialogue and cre-
ative language generation have treated these do-
mains separately. Yet, real-world reasoning is
rarely so isolated. Our benchmark takes a first
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step toward evaluating whether LLMs can connect
personality traits expressed through language with
corresponding musical choices like chord progres-
sions. It challenges models to carry intent across
symbolically and semantically distinct domains
without training, supervision, or domain-specific
fine-tuning. Designed purely for evaluation, this
two-stage task tests how well LLMs generalize and
align outputs across contexts that demand interpre-
tation and creativity. Figure 2 outlines the overview
of our benchmark design and methodology.

3.2 PMAB Design: Annotation, Terminology,
and Mapping Strategy

Personality Trait Framework. We adopt Cattell’s
16 Personality Factor (PF16) model5 to represent
fine-grained human traits across both ends of a
bipolar scale. Each trait includes a high and low
pole, capturing variations in behavior and emo-
tional disposition. For instance, the trait Warmth
spans from descriptors like “outgoing” and “partic-
ipating” to “reserved” and “aloof.”
Genre Alignment via Expert-Led Mapping. To
connect personality traits to musical preferences,
we curated a genre inventory consisting of 19 cat-
egories (Apdx. Table 8). Using GPT-4o under
the guidance of psychology and music experts,
we annotated each PF16 trait with alike genres
(those resonating with the trait) and different gen-
res (those misaligned). For example, high scorers
on Warmth were mapped to genres like Pop, Coun-
try, and Gospel, reflecting expressive and socially
oriented aesthetics. Conversely, low scorers were
aligned with introspective or emotionally distant
genres like Rock, Electronic, and Metal. These
mappings form the backbone of our benchmark’s
trait-to-genre reasoning tasks and are detailed in
Apdx. Table 9.
Chord Progression Design. To support musically
grounded inference, we sourced chord progressions
from the Chordonomicon dataset (Kantarelis et al.,
2024), a structured repository of genre-labeled
chord progression patterns. For each genre, we
selected 10 most representative progressions based
on the frequency and stylistic fit. These were then
reviewed by musicians to ensure genre authenticity.
A subset of 5 genres with 4 representative progres-
sions each is presented in Apdx. Table 10, along
with associated danceability and mood characteris-
tics. This mapping enables precise chord inference

5Wiki-16PF-Questionnaire

Algorithm 1 Synthetic Context Generation for
Personality-Music Benchmark
1: Input: PF16 trait key t, trait-to-genre mapping G, domain set D with subdomains,

descriptor set Ht (high polarity), sampling parameter K
2: Initialize: GPT-4o as context generator M
3: Create two descriptor subsets: H1 , H2 from Ht with |Hi| = 3

4: for each domain d ∈ D do
5: for each subdomain s ∈ d do
6: for each genre g ∈ G(t) do
7: for each descriptor set Hi ∈ {H1,H2} do
8: Generate K candidate contexts {c1, c2, . . . , cK} using GPT-4o

given prompt (Hi, g, d, s)

9: Use GPT-4o to select the most diverse and representative context c∗ =
argmaxck representativeness(ck)

10: Append context c∗ to dataset C
11: end for
12: end for
13: end for
14: end for
15: Output: Synthetic context set C grounded in PF16 traits, musical genres, and domain

diversity

aligned with inferred personality and genre labels.
Synthetic Domain and Subdomain Construction.
To ensure wide topical coverage and contextual
variability, we constructed 10 high-level domains
(e.g., Personal Development, Creative Expression),
each with 3 coherent subdomains. These were
generated using GPT-4o with prompt templates
encouraging socio-cognitive realism, emotional nu-
ance, and stylistic diversity (Apdx. Table 11).
Our method is inspired by the prompt diversifica-
tion approach of the TÜLU dataset6 from AllenAI,
which showed that structured instruction genera-
tion improves coverage and generalization. This
design simulates real-world contexts where per-
sonality traits manifest through narrative, behavior,
and preference.

3.3 Synthetic Context and PMAB
Construction

Context Generation. We generate compact, fic-
tional scenarios that implicitly reflect specific per-
sonality traits and musical preferences. Each sce-
nario is conditioned on: (i) a PF16 trait t, (ii)
a descriptor subset Ht, (iii) a genre g aligned
with the trait, and (iv) a domain-subdomain pair
(d, s). A generation model M (GPT-4o) receives
the prompt:

P = prompt(Ht, g, d, s),

and generates K narrative candidates
{c1, . . . , cK} = M(P). The final context
c∗ is selected as:

c∗ = argmax
ck

representativeness(ck),

6Tulu-v2-sft-mixture
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Algorithm 2 Final Benchmark Construction for
Personality-Music Alignment
1: Input: Generated contexts C, PF16 types T , chord progression map M, embedding

model E
2: Output: Flat benchmark dataset B with dual-task annotations
3: Compute context embeddings E(C)
4: Build descriptor pool D from all PF16 trait descriptors (high + low)
5: Compute descriptor embeddings E(D)

6: for each context c ∈ C do
7: // Task 1: Personality Identification
8: Select correct descriptor dgt ∈ c[high]

9: Exclude descriptors belonging to the same PF16 type
10: Select 3 distractors di with lowest cosine similarity to E(c)

11: Shuffle correct option with distractors to form Task 1 choices
12: // Task 2: Chord Progression Matching
13: Select genre g = c[alike_genre]

14: Choose one correct progression from M[g]

15: Choose 3 distractors from other genres in M
16: Shuffle correct option with distractors to form Task 2 choices
17: Append entry to benchmark B with:
18: context, domain, subdomain, PF16 type, genre,
19: Task 1: question, options, correct label
20: Task 2: question, options, correct label
21: end for
22: Return benchmark dataset B

ensuring trait expressivity and musical alignment.
Further details are provided in Algorithm 1 and
Appendix A.1.
Benchmark Tasks. Each context is converted into
two multiple-choice tasks: (1) Personality Trait
Identification and (2) Chord Progression Match-
ing. Both follow a 1-correct, 3-distractor format.
Distractors for Task 1 are selected based on se-
mantic distance in embedding space, while Task
2 distractors are sampled from genres unrelated
to the aligned one. Algorithm 2 provides the full
construction pipeline.
Modularity and Extensibility. The benchmark is
designed to support harder variants: distractors can
be made more semantically similar, genre-chord
mappings can be made noisier, or new context types
can be added. This modular design allows the
benchmark to scale in complexity, enabling a more
nuanced evaluation of cross-domain reasoning.

3.4 Quality Control and Evaluation Attributes

Automated Filtering during Context Genera-
tion. As part of the generation process, we sample
K = 1 to 3 candidate contexts per configuration
and retain the most representative sample, as se-
lected by GPT-4o based on a diversity and rele-
vance prompt. This initial filtering ensures each
retained scenario reflects its intended personality-
musical alignment.
Human and Model-Based Evaluation. To fur-
ther verify quality, we randomly select 20 contexts
per PF16 trait and 3 human judges and GPT-4o
evaluate them across five qualitative dimensions:
personality alignment, musical coherence, natural-

ness, implicitness, and specificity. Each context
is rated independently by three expert annotators
and GPT-4o. Appendix A.3 defines each evaluation
dimension, and Table 12 has the mean and SD of
the evaluation.
Reliability and Qualitative Evidence. Inter-rater
reliability is assessed using Intraclass Correla-
tion Coefficients (ICC), reported in Apdx. Ta-
ble 13. Qualitative examples are included in Ap-
pendix A.2.

4 Benchmark Statistics

300

120

240

60

180

120 120

180

240 240 240

120 120 120 120

60

120 120

60

Alternative

Blues
Classical

Country

Electronic

Folk
Gospel

Hip-Hop

Indie
Jazz

Metal
New Age

Pop
Punk

R&B
Reggae

Reggaeton

Rock
Soul

0

50

100

150

200

250

300

Genre Distribution in Benchmark

Genre

F
re

qu
en

cy

Figure 3: Genre distribution across the 2,880 benchmark
contexts. Each bar represents the frequency of a genre
used in the dataset. The genres are alphabetically sorted,
and the distribution is designed to maintain stylistic and
semantic diversity across personality-aligned contexts.

Our benchmark consists of a total of 2,880 con-
text–question pairs. For each trait, we generate
exactly 180 unique contexts, resulting in a bal-
anced distribution across personality categories.
The benchmark spans 10 high-level domains, each
further subdivided into 3 subdomains. This leads
to 288 data points per domain and 96 samples per
subdomain, ensuring uniform representation across
the entire context space.

In total, the benchmark covers 19 unique musical
genres, with personality-genre mappings grounded
in trait semantics and verified through expert feed-
back. We measure the diversity of the dataset us-
ing the number of unique categories and Shannon
entropy for both personality traits and genres, sum-
marized in Table 1. Genre distribution across the
benchmark is visualized in the bar chart in Figure 3.

5 Experimentation

5.1 Training Strategy
We fine-tune both benchmark tasks using
parameter-efficient fine-tuning (PEFT) with Low-
Rank Adaptation (LoRA) (Hu et al., 2022) on
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Table 1: Benchmark Composition and Diversity Statis-
tics

Attribute Unique Values Entropy

Total contexts 2,880 –
Personality traits 16 2.773
Musical genres 19 2.844
Domains 10 –
Subdomains per domain 3 –

LLaMA 3 8B (AI@Meta, 2024) and Mistral 7B
v0.3 (Jiang et al., 2023). Only the projection lay-
ers (Wq, Wk, Wv, Wo) are updated while all other
weights remain frozen.

Let D(1)
train and D(2)

train denote the training sets for
Task 1 (T1) and Task 2 (T2), respectively. The gen-
eral training objective is to minimize the negative
log-likelihood (NLL) loss:

Ltask(θ) = − 1

|D|
∑

(x,y)∈D
log p(y|x; θ),

where x is the input (e.g., context, genre, or chord
prefix) and y is the target label.
LoRA Optimization. Each attention projection
matrix is updated using low-rank decomposition:

W ′
q = Wq +AqBq, Aq ∈ Rd×r, Bq ∈ Rr×d,

with r as the rank hyperparameter. The same ap-
plies to Wk, Wv, and Wo.

T1: Personality Trait Identification. We fine-
tune both models using multiple dialogue-style
datasets annotated with personality traits: PC, BST,
SPC, and JIC following the strategy by (Pal et al.,
2025). These datasets help models capture a wide
range of personality-grounded linguistic cues. See
Appendix B.1.1 for dataset statistics.

T2: Chord Alignment and Adapter Merging. For
Task 2, we first pre-train a chord-focused language
model on sequences from Chordonomicon, fol-
lowed by genre-conditioned chord generation. We
additionally perform inverse modeling to predict
genre from chord sequences. Finally, we merge the
personality and chord adapters using SVD-based
LoRA merging from the PEFT library, enabling
joint reasoning over dialogue and symbolic mu-
sic. Detailed strategy, implementation, and training
configurations are provided in Appendix B.1.

5.2 Inference Pipeline
We evaluate models under three setups: (1) Zero-
shot prompting, and (2) Guided prompting
strategies.

(1) Zero-shot Prompting. Given a context x, we
prepend a task description and present four candi-
date options. The model selects the most probable
output without training. This serves as our base-
line. Additionally, we use the fine-tuned adapter
MJIC for Task 1 and a merged model MSVD for
Task 2. Outputs are compared to gold labels using
classification metrics.

(2) Guided Prompting. To improve reasoning,
we use structured prompting methods inspired by
chain-of-thought (CoT) and staged inference.

(A) CoT Prompting. The model is encouraged
to reason step by step using a modified prompt to
think step by step.

(B) Ensemble CoT. We sample k = 5 comple-
tions {y1, ..., yk} and take the majority vote:

ŷ = mode{y1, y2, ..., yk}.

(C) Verbalization Pipeline (Task 2). This is our
key reasoning enhancement method. We introduce
a two-step prompt chaining approach to align per-
sonality traits with genres and then map those gen-
res to suitable chords using music theory.
Step 1: Trait → Genre Reasoning. Given a con-
text x, we prompt the model to infer the dominant
trait and its associated genres using a structured
prompt Pgenre:

ĝ = Mverbal(Pgenre(x))

Step 2: Genre → Chord Reasoning with Music
Theory. The next prompt Pchord is conditioned on
the context x, predicted genre ĝ, and correspond-
ing music theory explanation µ(ĝ). The model
generates a rationale and selects a suitable chord
progression:

ŷ = Mverbal(Pchord(x, ĝ, µ(ĝ)))

The final prediction is extracted from the gener-
ated response using answer tags. Prompt formats
are detailed in Appendix B.2.1.

5.3 Evaluation Strategy
Task-Level Performance Metrics. We evaluate
both benchmark tasks using standard classification
metrics: accuracy (Acc) and macro-averaged F1
score (F1). In addition, we report the Not Enough
Information (NEI) count, which reflects model re-
sponses that are vague, contradictory, or insuffi-
ciently grounded in context. NEI is triggered when
the model fails to select a valid option.
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Reasoning Quality Assessment. To assess deeper
model understanding, we evaluate reasoning qual-
ity for Task 2 on randomly selected 500 samples.
For each model, we prompt a teacher model (GPT-
4o) to generate ideal responses based on the cor-
rect chord label. The student model’s explanation
is then rated on a 1–5 Likert scale across five di-
mensions: Personality-Musical Alignment (PMA),
Chordal Appropriateness (CA), Causal Justifica-
tion (CJ), Specificity (S), and Fluency and Clarity
(F). Definitions of these dimensions and the full
scoring rubric are provided in Appendix C.1. We
report both the mean score and the percentage of
high-quality responses (score ≥ 4) for each dimen-
sion.

Benchmark Validity. To validate Task 1, we com-
pare model performance against the LM Evaluation
Harness7 OCEAN benchmark.

6 Results and Discussion
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Figure 4: Task 2 F1 scores for baseline and verbalized
setups across models, sorted by improvement.

Model T2 F1 (B) T2 F1 (V) %Imp.

phi-3-mini 0.2129 0.3466 13.37
mixtral-7b 0.2018 0.3430 14.12
llama3-8B 0.2685 0.3489 8.04
tulu3.1-8B 0.2157 0.3372 12.15
qwen2-7B 0.2294 0.2913 6.19
olmo2-7B 0.2318 0.2851 5.33
gemma2-9B 0.2657 0.4628 19.71

Table 2: Comparison of Task 2 F1 scores between zero-
shot baseline (B) and verbalized prompting (V) for open-
source models. Verbalization consistently improves per-
formance, with largest gains seen in gemma2-9B. De-
tailed results of all tasks in Table 14

7https://github.com/EleutherAI/
lm-evaluation-harness

6.1 Inference-Only Evaluation

We begin by analyzing model performance under
inference-only settings, which include zero-shot
prompting, chain-of-thought (CoT), majority-vote
ensembles (CoTk), and our verbalization pipeline.
Table 2 reports performance across second task.
Detailed results in Apdx. Table 14

Task 1 (Personality Trait Identification). Zero-
shot prompting yields strong performance across
models, with F1 scores consistently above 0.81.
Surprisingly, CoT reasoning does not always help:
models like mistral, llama3 and gemma2 see de-
graded F1 with CoTk, indicating overthinking or
drift in trait inference. The best-performing model
in Task 1 is gemma2-9b-it (F1: 0.8988), followed
by llama-3-8Bb (F1: 0.8620).

Task 2 (Chord Progression Alignment). In con-
trast to Task 1, the baseline F1 scores for Task 2
are significantly lower (ranging from 0.18–0.27),
highlighting the inherent difficulty of musical rea-
soning. Here, CoT strategies offer only marginal
improvements (1–3%) in most models. However,
our verbalization pipeline consistently provides
the largest gains, improving F1 by over 13% on
phi-3, mixtral, and Tulu-3.1, and over 19% on
gemma2-9b-it. This validates the importance of
modular reasoning and staged prompt design in
music-theoretic alignment tasks. Additional in-
sights in Appendix D.1

Commercial Models. Closed-source models like
GPT-4.1 and GPT-4o outperform open models,
with GPT-4.1-mini scoring highest on Task 1. For
Task 2, performance improves with newer and
larger models. Due to API cost, we report only
zero-shot results for these systems.

Overall Insights. Verbalization consistently out-
performs unguided reasoning strategies such as
CoT and CoTk by explicitly chaining person-
ality inference to genre selection and symbolic
chord prediction. This structured, staged in-
ference enables better control and alignment
than generic prompting methods. Notably,
deepseek-llama3.1, a model pretrained to
"think" by design, outperforms its supervised coun-
terpart (Tulu-3.1) in Task 2, highlighting that
models trained for reflective reasoning inherently
generalize better than those forced into such behav-
ior via prompts alone.

Further, the pretrained capabilities of open-
source models reveal strong variance. As shown
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in Figure 4 and Table 2, base performance on Task
2 varies significantly. Llama3 and gemma2 start
strong, whereas phi-3 and mistral begin weaker.
However, the gains from guided prompting are also
uneven: models like phi-3 and mistral achieve
large improvements post-verbalization, sometimes
even surpassing stronger baselines like llama3.
Meanwhile, gemma2 maintains top performance
throughout, demonstrating both high base capa-
bility and strong responsiveness to verbalized guid-
ance.

6.2 Impact of Fine-Tuning and Merged
Models.

Among all supervised setups, fine-tuning on JIC
provides the largest gains for Task 1, improving
F1 scores by 1.4% (Mixtral) and 2.4% (LLaMA-
3), consistent with trends from the LM Harness
benchmark (Pal et al., 2025). However, merged
models fail to yield meaningful improvements on
Task 2, likely due to the dataset gap: symbolic
chord alignment may require dialogue-style data
where musical preferences are explicitly discussed
(e.g., artist interviews). Notably, the verbalized
inference variant (Merged (V)) still delivers the
best Task 2 performance without fine-tuning, reaf-
firming the strength of prompt chaining. Detailed
results in Table 15.
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Figure 5: Reasoning quality across models on five di-
mensions: PMA, CA, CJ, S, and F. Left: mean Lik-
ert scores (1–5). Right: percentage of high-quality re-
sponses (≥ 4).

6.3 Reasoning Quality Across Models.
Figure 5 illustrates the reasoning quality of mod-
els along five dimensions. The left plot shows the
mean Likert scores (1–5), while the right plot re-
ports the percentage of responses rated ≥ 4. We
observe in Table 3 that gemma2-9b-it achieves the
highest scores across most dimensions, especially
in PMA, CA, and CJ, indicating consistent align-
ment between personality and musical reasoning.

Model PMA CA CJ S F

phi-3 3.18 / 36.5 4.19 / 87.4 2.57 / 8.7 2.42 / 2.5 3.51 / 49.7
mixtral 3.42 / 50.8 4.24 / 88.4 2.70 / 11.4 2.57 / 4.2 3.56 / 55.4
llama3 3.29 / 44.2 4.22 / 87.8 2.66 / 12.8 2.58 / 3.0 3.64 / 63.6
qwen2 3.07 / 32.6 4.02 / 82.6 2.46 / 9.8 2.43 / 3.4 3.47 / 46.8
olmo2 3.11 / 39.6 4.15 / 85.6 2.48 / 7.4 2.35 / 1.4 3.40 / 42.2
gemma2 3.58 / 63.6 4.43 / 92.4 2.84 / 19.8 2.58 / 4.0 3.56 / 56.6

Table 3: Mean (M) and % of high-quality (%H) teacher
ratings (≥ 4) across five reasoning dimensions (Re-
ported M/%H): PMA, CA, CJ, Specificity, and Fluency.
Full table in Table 16.

llama-3-8B excels in Fluency, and mixtral-7b
leads in Specificity. These trends reaffirm that
larger models are generally more capable of produc-
ing coherent, human-aligned justifications, even
when overall accuracy differences are moderate.

6.4 Ablation Study

Variant Acc F1 %Imp

Verbalized 0.3521 0.3489 8.04
CoT (Maj. Vote) 0.2874 0.2755 0.70
CoT 0.2872 0.2752 0.67
Baseline 0.2721 0.2685 –
Mis-verbalized 0.2282 0.2287 -3.98

Table 4: Inference-time ablation on LLaMA-3-8B for
Task 2 (Chord Matching). Verbalized prompting shows
the highest gains. See full results in Appendix 17.

We conduct an ablation to assess the impact of
different reasoning strategies and training configu-
rations on benchmark performance. Table 17 sep-
arates results into two blocks: inference-only and
trained model settings, using the LLaMA-3-8B and
Mistral-7B architectures. In inference mode, we
vary prompting strategies (baseline, CoT, verbal-
ization, etc.), while in training mode, we isolate
the effect of verbalization by toggling it in merged
models.

7 Conclusion

This work bridges a novel intersection between
personality modeling and symbolic music reason-
ing by evaluating whether LLMs can align per-
sonality traits with musical preferences through
a modular cross-domain benchmark. We evalu-
ate fine-tuning and inference-time strategies, find-
ing that while trait-specific training aids identifica-
tion, verbalization-based prompting significantly
improves chord alignment without supervision.
Our reasoning evaluation further shows that larger
models generate fluent, personality-consistent jus-
tifications. These findings open a new direction in
evaluating LLMs’ capacity to reason about identity
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through language and music.

Limitations

While our benchmark and methods demonstrate
promising results in aligning personality traits with
musical structure, several limitations remain:

1. Limited Real-World Data. Our benchmark re-
lies on synthetic contexts rather than real-world
conversations or interviews about music prefer-
ences. While we mitigate this through care-
ful prompt engineering and sampling, grounded
datasets involving real individuals would provide
more robust evaluation.

2. Symbolic Music Bias. Chord progression align-
ment captures only one facet of musical structure.
Other dimensions such as rhythm, melody, or pro-
duction aesthetics are not modeled, potentially un-
derrepresenting a user’s full musical identity.

3. Model Pretraining Bias. Open-source mod-
els vary widely in pretraining corpora and musical
exposure, affecting baseline performance on sym-
bolic reasoning tasks. Some gains may be due to
prior exposure to musical texts or specific chord
forms.

4. Limited Generalization to Other Domains.
While our focus is on personality-music reasoning,
it remains to be seen whether similar verbalization
or alignment techniques generalize well to other
symbolic or creative domains (e.g., art, literature).

Ethical Considerations

Our benchmark relies on synthetic data generated
by GPT-4o, which may carry subtle biases from its
pretraining. While personality and genre cues are
indirectly embedded, unintended stereotypes could
emerge. The benchmark is for research use only
and is not intended for sensitive applications like
diagnosis or profiling. All annotations were model-
generated or anonymized, and no personal data was
used. The dataset will be released under the CC
BY-NC 4.0 license for non-commercial research
use.
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A PMA Bench Details

A.1 Context Generation Prompt

The following prompt was used with GPT-4o to
generate realistic personality-conditioned musical
scenarios. Each instance was conditioned on a
PF16 descriptor set Ht, an aligned genre g, and a
domain-subdomain pair (d, s). No trait or genre
was explicitly named in the output.

You specialize in crafting realistic, engaging scenarios
that subtly reflect individuals’ personality traits and
musical preferences without explicitly mentioning
them.

Generate a short, structured context (50–70
words) that describes an individual’s character and
preferred music style in a natural, real-world scenario.
Do not explicitly mention the personality trait or the
music genre.

Instructions:
1. The individual exhibits qualities such as: {descrip-
tor list}.
2. Their musical preference subtly aligns with a style
reminiscent of {genre}.
3. Incorporate contextual details from the domain
“{domain}” and subdomain “{subdomain}”.

Please produce a plain text description.

A.2 Qualitative Analysis of
Personality-Musical Alignment

We present illustrative examples from our bench-
mark to highlight how personality traits and mu-
sical preferences are naturally encoded in context
and whether models can reason through this map-
ping. GPT-4o rated each example below along five

dimensions: Personality Alignment, Musical Co-
herence, Naturalness, Implicitness, and Specificity.
Scores range from 1–5.

Example 1: Joyful Domesticity (Pop – Liveli-
ness)

Sophie twirled into the living room, her
laughter echoing through the house as
she playfully swung her younger brother
around in a dance. The sound of catchy,
upbeat tunes streamed from the kitchen,
where her mom clapped along while
preparing dinner. Sophie loved these im-
promptu moments, turning everyday rou-
tines into lively celebrations, her energy
infectious, setting a joyful rhythm in their
home.

This context captures a high-liveliness personality
through spontaneous, energetic behavior and social
warmth. The selected trait, animated, and the genre-
aligned chord progression (C G Am F, common in
uplifting pop music) match the tone and rhythm
of the narrative. GPT-4o rated this scenario with
perfect scores across Personality Alignment, Mu-
sical Coherence, and Naturalness, noting slightly
lower scores (4) for Implicitness and Specificity,
indicating the cues were vivid but somewhat overt.

Example 2: Reflective Absorption (Jazz – Ab-
stractedness)

At the monthly community art exhibit,
Ella wandered, her eyes lingering on ab-
stract canvases. Lost in thought, she
barely noticed the faint strains of sax-
ophone drifting from the corner stage.
As locals gathered, swapping stories of
the night, she found herself nodding in
rhythm to the seamless improvisation,
her fingers unconsciously sketching pat-
terns on the program in hand.

This example showcases introspective, imaginative
tendencies associated with high Abstractedness.
The trait absentminded aligns with the narrative’s
detached tone, while the chosen genre (Jazz) and
progression (Dm7 Em7 A7 Dm7) reinforce the re-
flective, improvisational mood. All five reasoning
dimensions received top scores, validating both the
subtle personality encoding and genre integration.
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A.3 Evaluation Dimensions for Context
Quality

Human judges evaluated a randomly sampled sub-
set of synthetic contexts to assess their quality and
faithfulness to intended personality-music map-
pings. Each context was independently rated on a
5-point Likert scale (1 = poor, 5 = excellent) across
five qualitative dimensions listed in Table 5. Anno-
tators were instructed to read each context carefully
and assign scores reflecting how well it satisfied
each criterion.

Instruction to Human Annotators:
For each given context, please rate it from 1 (poor) to
5 (excellent) on the following five aspects:
1. Personality Alignment: Does the context express
the intended PF16 trait?
2. Musical Coherence: Is the implied musical prefer-
ence plausible for that trait?
3. Naturalness: Is the text fluent and realistic in every-
day language?
4. Implicitness: Are the cues subtle rather than ex-
plicit?
5. Specificity: Does the description include concrete,
non-generic detail?
Provide your numeric ratings only; no written expla-
nations are required.

Dimension Explanation

Personality
Alignment (PA)

Measures how well the context re-
flects the high-polarity descriptors
of the intended PF16 trait.

Musical Coher-
ence (MC)

Evaluates whether the scenario plau-
sibly implies a genre preference
aligned with the given trait.

Naturalness (N) Assesses the realism and fluency of
the scenario in everyday language.

Implicitness (I) Captures whether personality and
genre cues are subtly embedded
rather than explicitly stated.

Specificity (S) Judges the level of concrete detail
and avoidance of generic phrasing.

Table 5: Qualitative dimensions used to evaluate sam-
pled contexts across traits.

B Experiments

B.1 Training Strategy Detailed

T2: Chord Progression Alignment. This task in-
volves symbolic reasoning over music theory, con-
ditioned on inferred personality traits. We approach
it in two steps:

(i) Chord-LM Pre-training (Unsupervised): We
first train a causal decoder-only model on 30K+
chord sequences from the Chordonomicon corpus.

Attrib PC SPC BST JIC

# of Conversations 18,878 10,905 6,808 418,476
Tot. # of Turns 120,361 152,945 44,959 3,347,808
Avg. # of Turns 6.38 14.03 6.60 8.00
Tot. # of Utterances 259,600 310,874 89,918 6,695,616
Avg. Utt. (conv) 13.75 28.51 13.21 16.00
Avg. Words (u) 11.24 8.75 13.46 15.48
Avg. Conv. Length (w) 154.56 249.53 177.83 247.61
Longest Conv. (u) 49 117 28 16
Shortest Conv. (u) 11 6 4 16
Longest Conv. (w) 477 637 422 581
Shortest Conv. (w) 41 60 24 16
Avg. Topic Consistency (u) 0.50 0.57 0.55 0.53
Avg. Semantic Similarity (u) 0.31 0.39 0.36 0.36

Table 6: Comparison of various datasets across several
attributes. Here PC is Persona Chat, SPC is Synthetic
Persona Chat, BST is Blended Skill Talk, (u) means per
utterance, and (w) means per word.

Given a sequence C = (c1, c2, . . . , cn), the model
is trained to maximize the likelihood of predicting
the next chord:

Lchord(θ) = −
n∑

i=2

log p(ci|c1:i−1; θ).

(ii) Genre-Chord Translation (Supervised): We
treat genre-chord reasoning as a translation task.
The model is trained in both directions: (a) gener-
ate chords c1:n from a genre label g and related at-
tributes (e.g., subgenre, era), (b) generate the most
likely genre label g given a chord progression. This
bidirectional fine-tuning improves both generation
and reverse classification:

Lgenre(θ) = −
n∑

i=1

log p(ci|c1:i−1, g; θ)

Lgenre-inv(θ) = − log p(g|c1:n; θ)
This formulation allows the model to learn the

genre-conditioned musical structure and improves
generalization to unseen chord forms and personal-
ity mappings.
Model Merging via SVD. To combine the person-
ality and chord reasoning capabilities, we merged
the adapters trained on T1 and T2 using SVD-
based adapter merging from the PEFT library. This
method approximates a shared low-rank subspace
across LoRA modules, allowing efficient integra-
tion.

B.1.1 Personality Trait Identification -
Dataset stats.

Table 6 shows the dataset statistics.

B.1.2 Training Arguments and GPU
All the models were trained on a single A100 80
GB. Table 7 shows the Training Args used to train
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all the Models. The batch size default was set
to 4 but was reduced to 2 when A100 80GB was
unavailable (used A100 40 GB). LoRA hyper pa-
rameters (r = 64, alpha = 16, dropout = 0.1) were
most significant.

Argument Value

lora_r 64
lora_alpha 16
lora_dropout 0.1
bf16 True
learning_rate 2.0e-05
gradient_accumulation_steps 128
gradient_checkpointing True
logging_strategy Steps
logging_steps 1
save_strategy Steps
save_steps 100
eval_steps 100
per_device_train_batch_size 4
per_device_eval_batch_size 4
max_seq_length 2048
lr_scheduler_type Cosine
early_stopping_patience 4

Table 7: Trainer Arguments

B.2 Inference Pipeline
B.2.1 Verbalization Prompt
Prompt Templates for Verbalization Pipeline
Step 1: Personality-to-Genre Prompt

You are a music expert and songwriter who knows
how personality drives musical taste.

Below is a mapping of personality traits to
genres:
- Warmth: Pop, Country, Gospel
- Reasoning: Jazz, Alternative, Classical ...

Context: {context}

Task: In no more than 30 words, identify the
dominant personality traits from the context and
recommend 2–3 genres they are most likely to enjoy,
based on the mapping above.

Step 2: Genre-to-Chord Prompt

You are a music expert and songwriter who knows
how personality influences musical preferences and
harmonic structure.

Below is a mapping of genres to music theory
knowledge:
- Pop: Uses the I–V–vi–IV major-key cycle with
simple triads. Uplifting, highly danceable.
- Rock: Drives on I–IV–V or I–V–vi–IV power
chords. Bold, energetic tone.
- Jazz: Rich in 7th chords and ii–V–I cadences.
Complex, smooth. ...

Context: {context}

Personality and Genre Knowledge: {predicted
trait and genre rationale from Step 1}

Question: Which chord progression best matches the
user’s music preference?

Options: A: {prog1} B: {prog2} C: {prog3}
D: {prog4}

Please analyze how the context, predicted
genre, and music theory knowledge align to justify
your selection.

Limit your answer to 100 words. Conclude
with ONLY the letter of your choice inside <answer>
tags. Example: <answer>C</answer>.

C Evaluation Strategy

C.1 Reasoning Evaluation Dimensions
To evaluate the quality of model-generated reason-
ing in Task 2 (chord progression alignment), we
define five key dimensions, each rated on a 1–5
Likert scale. These dimensions are adapted from
prior work on explanation quality, natural language
generation, and interpretability in NLP models.

1. Personality-Musical Alignment: Measures
how well the explanation connects the inferred
personality trait to the selected chord pro-
gression or genre. Inspired by trait-grounded
reasoning evaluation in personality modeling
(Mairesse et al., 2007) and controllable gener-
ation (Keskar et al., 2019).

2. Chordal Appropriateness: Assesses
whether the described chord progression is
musically coherent with the inferred genre or
emotional tone. Draws from music theory
alignment evaluation and symbolic music
generation benchmarks (Krumhansl, 1995).

3. Causal Justification: Evaluates whether the
explanation includes a clear, logical cause-
effect rationale for why the chosen progres-
sion fits the described personality or mood.
Builds on explanation plausibility and justi-
fication work in NLI and commonsense rea-
soning (Camburu et al., 2018; Rajani et al.,
2019).

4. Specificity: Measures the level of detail in
the reasoning, including references to actual
chord functions, emotional textures, or sub-
traits. Inspired by dialogue specificity metrics
(See et al., 2019).

5. Fluency and Clarity: Captures the grammat-
ical correctness, coherence, and readability of
the explanation.
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Each reasoning sample is first evaluated by a
teacher model (GPT-4o) that generates a gold ex-
planation from the context and ground-truth label.
It then scores the student model’s explanation on
each dimension, optionally providing a short justi-
fication.

D Results and Discussions

D.1 Verbalization Success and NEI Trends
Verbalized prompting substantially reduces NEI
rates for most models, notably dropping from
187 to 1 for OLMo, indicating improved grounding.
While mixtral shows a minor NEI increase, which
indicates the model is overthinking, models like
phi-3, llama3, and gemma2 remain consistently
low, reflecting better alignment and control.

E Miscellaneous

Contains tables and extra information
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Genre Description

Alternative A broad genre encompassing experimental and non-mainstream rock/pop styles.
Blues A soulful genre rooted in African American history, emphasizing emotion and improvi-

sation.
Classical Western art music tradition featuring orchestral, chamber, and solo compositions.
Country Narrative-driven music with acoustic instrumentation and Southern U.S. cultural roots.
Electronic Synthesized, beat-driven music spanning ambient, techno, and dance substyles.
Folk Acoustic storytelling music rooted in cultural traditions and social commentary.
Gospel Spiritually expressive music grounded in Christian themes and vocal harmony.
Hip-Hop Rhythm-centric genre combining rap, beats, and urban cultural expression.
Indie Independent music often characterized by artistic freedom, introspection, and lo-fi

sounds.
Jazz Improvisational and harmonic genre blending swing, blues, and complex instrumentation.
Metal High-intensity genre marked by distorted guitars, aggression, and darker themes.
New Age Meditative, atmospheric music focused on relaxation, spirituality, and soundscapes.
Pop Mainstream music emphasizing catchy melodies and broad appeal across demographics.
Punk Raw, fast-paced genre with rebellious lyrics and stripped-down instrumentation.
R&B Rhythm and blues style blending soulful vocals with groovy and romantic instrumenta-

tion.
Reggae Jamaican-born genre known for offbeat rhythms and themes of resistance and peace.
Reggaeton Latin fusion of reggae, hip-hop, and dancehall with rhythmic Spanish vocals.
Rock Guitar-driven genre ranging from classic rock to modern subgenres like alt-rock.
Soul Emotionally rich music emphasizing vocal power and themes of love and struggle.

Table 8: Descriptions of the 19 musical genres used in the benchmark. These span a range of emotional, structural,
and cultural attributes relevant to personality alignment.

Trait High Descriptors Low Descriptors Alike Genres Different Genres

Warmth Warm, outgoing, attentive to others,
kindly, easygoing

Impersonal, distant, cool, detached,
aloof

Pop, Country, Gospel Rock, Electronic, Metal

Reasoning Abstract-thinking, intelligent,
bright, fast-learner

Concrete-thinking, less intelligent,
unable to abstract

Jazz, Alternative, Classical Pop, Country, Hip-Hop

Emotional Stability Emotionally stable, adaptive, mature Reactive, changeable, easily upset New Age, Reggae, Folk Metal, Punk, Rock

Dominance Dominant, assertive, competitive,
bossy

Deferential, cooperative, submissive Rock, Metal, Punk Pop, Country, Gospel

Liveliness Lively, animated, spontaneous,
cheerful

Serious, restrained, taciturn Pop, Hip-Hop, Electronic Jazz, Blues, Folk

Rule-Consciousness Rule-bound, dutiful, moralistic Expedient, nonconforming, self-
indulgent

Classical, Jazz, R&B Hip-Hop, Punk, Electronic

Social Boldness Socially bold, venturesome, uninhib-
ited

Shy, timid, hesitant Hip-Hop, Electronic, Reggae-
ton

Jazz, Classical, New Age

Sensitivity Sensitive, sentimental, refined Tough-minded, objective, rough Soul, Gospel, Blues Metal, Punk, Rock

Vigilance Vigilant, skeptical, oppositional Trusting, unsuspecting, accepting Alternative, Metal, Punk Pop, Country, Reggae

Abstractedness Imaginative, absentminded, ab-
sorbed in ideas

Grounded, practical, conventional Jazz, New Age, Indie Country, Hip-Hop, Reggae

Privateness Discreet, shrewd, diplomatic Forthright, genuine, open Classical, Indie, Folk Pop, Hip-Hop, Electronic

Apprehension Apprehensive, insecure, self-
blaming

Self-assured, secure, confident Blues, Alternative, Indie Pop, Country, Gospel

Openness to Change Experimental, analytical, freethink-
ing

Traditional, conservative Electronic, Alternative, Reg-
gaeton

Country, Blues, Gospel

Self-Reliance Self-reliant, solitary, individualistic Group-oriented, dependent Indie, Alternative, Metal Pop, Country, Reggae

Perfectionism Perfectionistic, organized, self-
disciplined

Tolerates disorder, lax, impulsive Classical, Jazz, R&B Hip-Hop, Punk, Electronic

Tension Tense, driven, frustrated Relaxed, tranquil, composed Rock, Hip-Hop, Metal New Age, Folk, Reggae

Table 9: PF16 traits, their descriptors (high and low range), and genre associations.
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Genre Chord Progressions Dancability Mood

Pop

C Am F G
C G Am F
Am F C G

C Am Dm G

8 Uplifting

Rock

G D Em C
D A Bm G
E B C#m A
A E F#m D

7 Energetic

Jazz

Dm7 G7 Cmaj7
Am7 Dm7 G7 Cmaj7
Dm7 Em7 A7 Dm7

Gm7 C7 Fmaj7

6 Sophisticated

Hip-Hop

Am7 Dm7 G7 Cmaj7
Am F C G

Em Am Dm G
Am7 Em7 Dm7 G7

9 Groovy

Metal

Em C Am B
Em G D A
Em D C B
Em C B A

4 Intense

Table 10: Representative chord progressions for five popular genres, along with dancability scores (1–10) and
associated mood labels. These examples demonstrate genre-specific harmonic structures used in our benchmark.

Domain Subdomains

Social Dynamics Friendships, Romantic Relationships, Community Engagement
Personal Development Self-Improvement, Emotional Resilience, Identity Exploration
Lifestyle & Routine Daily Routines, Leisure & Recreation, Health & Wellness
Professional Environment Workplace Culture, Career Growth, Leadership Dynamics
Creative Expression Artistic Pursuits, Music Exploration, Literary Interests
Cultural Engagement Heritage & Tradition, Global Influences, Local Community
Urban Living City Life, Public Transit, Neighborhood Vibes
Technology & Media Digital Connectivity, Social Media Trends, Innovative Consumption
Family & Home Domestic Life, Family Bonds, Home Environment
Adventure & Exploration Travel Experiences, Outdoor Activities, Culinary Journeys

Table 11: Synthetic domains and subdomains used for context generation.

Model PA MC N I S

M SD M SD M SD M SD M SD

GPT-4o 4.537 0.631 4.531 0.617 4.544 0.504 4.147 0.513 4.309 0.462
Judge 1 4.503 0.657 4.509 0.642 4.516 0.564 4.150 0.572 4.297 0.533
Judge 2 4.513 0.652 4.528 0.632 4.522 0.542 4.134 0.595 4.303 0.535
Judge 3 4.487 0.647 4.522 0.642 4.506 0.565 4.141 0.555 4.322 0.518

Table 12: Mean (M) and standard deviation (SD) of the five evaluation dimensions for each model/variant.
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Metric Personality Alignment Musical Coherence Naturalness Implicitness Specificity

Pearson_LLM_J1 0.923 0.919 0.881 0.852 0.833
Spearman_LLM_J1 0.912 0.917 0.910 0.862 0.859
Pearson_LLM_J2 0.918 0.924 0.860 0.858 0.847
Spearman_LLM_J2 0.905 0.927 0.877 0.866 0.874
Pearson_LLM_J3 0.912 0.918 0.877 0.839 0.837
Spearman_LLM_J3 0.912 0.908 0.905 0.842 0.858
Pearson_J1_J2 0.843 0.816 0.776 0.785 0.693
Spearman_J1_J2 0.833 0.834 0.830 0.796 0.751
Pearson_J1_J3 0.879 0.864 0.828 0.710 0.730
Spearman_J1_J3 0.867 0.864 0.865 0.720 0.783
Pearson_J2_J3 0.845 0.861 0.771 0.690 0.764
Spearman_J2_J3 0.846 0.868 0.833 0.695 0.811
ICC 0.969 0.968 0.951 0.935 0.933

Table 13: Pearson(P), Spearman(S), and Intraclass Correlation Coefficients (ICC) between the language model (LM:
GPT-4o) and human annotations for the 5 dimensions. High ICC values indicate strong agreement between LLM
and human evaluations.

Model Params.(B) Config. Metric

T1_acc T1_f1 %Imp.(T1_f1) T1_NEI T2_acc T2_f1 %Imp.(T2_f1) T2_NEI

Open Source Models (≤10B)

phi-3-mini-4k-ins 3.8

baseline 0.8597 0.8599 – 0 0.2358 0.2129 – 0
cot 0.8649 0.8641 0.4200 0 0.2500 0.2264 1.3500 0

cot_maj_vote 0.8681 0.8653 0.5400 0 0.2543 0.2275 1.4600 0
verbalized – – – – 0.3462 0.3466 13.3700 2

mixtral-7b-v0.3-instruct 7

baseline 0.8240 0.8240 - 0 0.2448 0.2018 – 1
cot 0.8104 0.8108 -1.3200 1 0.2462 0.2131 1.1300 2

cot_maj_vote 0.8123 0.8128 -1.1200 0 0.2498 0.2173 1.5500 0
verbalized – – – – 0.3420 0.3430 14.1200 21

llama-3-8Bb-instruct 8

baseline 0.8615 0.8620 – 0 0.2721 0.2685 – 0
cot 0.8420 0.8426 -1.9400 0 0.2872 0.2752 0.6700 2

cot_maj_vote 0.8425 0.8428 -1.9200 0 0.2874 0.2755 0.7000 0
verbalized – – – – 0.3521 0.3489 8.0400 0

Llama-3.1-Tulu-3.1-8B 8

baseline 0.8632 0.8641 – 0 0.2576 0.2157 –
cot 0.8719 0.8716 0.7500 0 0.2681 0.2288 1.3100 8

cot_maj_vote 0.8723 0.8777 1.3600 0 0.2657 0.2254 0.9700 8
verbalized – – – – 0.3451 0.3372 12.1500 0

deepseek_llama_3.1_8B 8 thinking 0.8125 0.8188 -4.5300 45 0.2896 0.2893 7.3600 17

Qwen2-7B-Instruct 7

baseline 0.8177 0.8185 - 0 0.2549 0.2294 – 0
cot 0.7858 0.7860 -3.9707 0 0.2812 0.2700 4.0600 4

cot_maj_vote 0.7834 0.7840 -4.2150 0 0.2812 0.2700 4.0600 4
verbalized – – – – 0.3028 0.2913 6.1900 9

OLMo-2-1124-7B-Instruct 7

baseline 0.8340 0.8323 – 0 0.2524 0.2318 – 0
cot 0.8149 0.8150 -2.0786 0 0.2476 0.1839 -4.7900 187

cot_maj_vote 0.8128 0.8136 -2.2468 0 0.2466 0.1819 -4.9900 187
verbalized – – – – 0.3097 0.2851 5.3300 1

gemma2-9b-it 9

baseline 0.8990 0.8988 – 0 0.2840 0.2657 – 0
cot 0.8573 0.8679 -3.4379 69 0.3059 0.2933 2.7600 4

cot_maj_vote 0.8598 0.8685 -3.3712 46 0.3088 0.2967 3.1000 1
verbalized – – – – 0.4632 0.4628 19.7100 0

Meta-Llama-3-70B-Instruct 70 baseline 0.8792 0.8858 – 43 0.3122 0.2984 – 0

Closed Source (commercial) Models

gpt-3.5-turbo N/A baseline 0.8948 0.8950 – 1 0.2444 0.2333 – 142

gpt-4o-mini N/A baseline 0.9142 0.9150 – 5 0.3354 0.3358 – 0

gpt-4o N/A baseline 0.9007 0.9007 – 0 0.3660 0.3658 – 0

gpt-4.1-mini N/A baseline 0.9066 0.9066 – 0 0.3427 0.3391 – 0

gpt-4.1 N/A baseline 0.9073 0.9074 – 0 0.3750 0.3721 – 0

Table 14: Performance of open-source and closed-source models across both tasks under inference-only settings.
Baseline denotes the zero-shot prompting setup, while cot, cot_maj_vote, and verbalized represent guided prompting
strategies. We report accuracy (Acc), macro F1 score (F1), improvement over baseline (%Imp), and Not Enough
Information (NEI) rates for both personality trait identification (T1) and chord progression alignment (T2). Closed
models (e.g., GPT-4.1) generally outperform open models, but verbalization provides substantial gains in T2 across
most systems.
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Model Config Metric

T1_acc T1_f1 %Imp.(T1_f1) T1_NEI T2_acc T2_f1 %Imp.(T2_f1) T2_NEI

mixtral-7b-v0.3-instruct

baseline 0.8240 0.8240 - 0 0.2448 0.2018 - 1
Ft. PC 0.8211 0.8214 -0.2600 0 0.2436 0.2003 -0.1500 1

Ft. SPC 0.8256 0.8259 0.1900 0 0.2440 0.2013 -0.0500 0
Ft. BST 0.8241 0.8236 -0.0400 0 0.2448 0.2018 0.0000 1
Ft. JIC 0.8378 0.8379 1.3900 0 0.2573 0.1262 -7.5600 0
Merged 0.8375 0.8375 1.3500 0 0.2531 0.1387 -6.3100 2

Merged (V) - - - - 0.2437 0.2701 6.8300 572

llama-3-8Bb-instruct

baseline 0.8615 0.8620 - 0 0.2721 0.2685 - 0
Ft. PC 0.8578 0.8586 -0.3400 0 0.2719 0.2682 -0.0300 0

Ft. SPC 0.8618 0.8629 0.0900 0 0.2720 0.2689 0.0400 0
Ft. BST 0.8579 0.8589 -0.3100 0 0.2708 0.2666 -0.1900 0
Ft. JIC 0.8858 0.8861 2.4100 0 0.2615 0.2364 -3.2100 1
Merged 0.8822 0.8834 2.1400 0 0.2633 0.2366 -3.1900 2

Merged (V) - - - - 0.3149 0.3124 4.3900 29

Table 15: Supervised fine-tuning results for both tasks across LLaMA-3 and Mixtral models. JIC-based adapters
consistently yield the best gains for Task 1 (personality reasoning). Verbalization (Merged (V)) continues to
outperform others on Task 2 (chord reasoning)

Model
Metric

PMA CA CJ S F

M SD %H M SD %H M SD %H M SD %H M SD %H

phi-3-mini-4k-ins 3.183 0.777 36.52 4.185 0.738 87.36 2.565 0.678 8.71 2.424 0.558 2.53 3.511 0.548 49.72
mixtral-7b-v0.3-instruct 3.416 0.718 50.80 4.242 0.784 88.40 2.700 0.668 11.40 2.572 0.580 4.20 3.558 0.606 55.40

llama-3-8Bb-instruct 3.288 0.744 44.20 4.218 0.922 87.80 2.664 0.715 12.80 2.578 0.576 3.00 3.642 0.553 63.60
Qwen2-7B-Instruct 3.072 0.819 32.60 4.022 0.981 82.60 2.464 0.741 9.80 2.434 0.615 3.40 3.470 0.617 46.80

OLMo-2-1124-7B-Instruct 3.106 0.843 39.60 4.146 0.953 85.60 2.480 0.694 7.40 2.346 0.585 1.40 3.398 0.579 42.20
gemma2-9b-it 3.580 0.724 63.60 4.430 0.818 92.40 2.844 0.743 19.80 2.584 0.599 4.00 3.562 0.618 56.60

Table 16: Teacher-rated (Teacher is GPT-4o) reasoning quality across five dimensions: Personality-Musical
Alignment (PMA), Chordal Appropriateness (CA), Causal Justification (CJ), Specificity (S), and Fluency & Clarity
(F). Metrics include mean (M), standard deviation (SD), and percentage of high-quality ratings (%H) with a score ≥
4.

Model Variant Task 1 (Personality ID) Task 2 (Chord Matching)

Acc F1 %Imp Acc F1 %Imp

Inference-Only

LLaMA-3-8B

Verbalized - - - 0.3521 0.3489 8.04
CoT (majority vote) 0.8425 0.8428 -1.92 0.2874 0.2755 0.70
CoT 0.8420 0.8426 -1.94 0.2872 0.2752 0.67
Baseline 0.8615 0.8620 – 0.2721 0.2685 –
Mis-verbalized - - - 0.2282 0.2287 -3.98

Mistral-7B

Verbalized - - - 0.3420 0.3430 14.12
CoT (majority vote) 0.8123 0.8128 -1.12 0.2498 0.2173 1.55
CoT 0.8104 0.8108 -1.32 0.2462 0.2131 1.13
Baseline 0.8240 0.8240 – 0.2448 0.2018 –
Mis-verbalized - - - 0.2010 0.1854 -1.64

Training-Time Variants

LLaMA-3-8B
Merged + Verbalized - - - 0.3149 0.3124 4.39
Merged (no verbalize) 0.8822 0.8834 2.14 0.2633 0.2366 -3.19
Baseline 0.8615 0.8620 – 0.2721 0.2685 –

Mistral-7B
Merged + Verbalized - - - 0.2437 0.2701 6.83
Merged (no verbalize) 0.8375 0.8375 1.35 0.2531 0.1387 -6.31
Baseline 0.8240 0.8240 – 0.2448 0.2018 –

Table 17: Ablation study comparing inference-only and fine-tuned configurations across two tasks. Verbalization
consistently improves Task 2 (chord matching) performance. Merged models trained without verbalization show
limited gains, highlighting the importance of prompt chaining and reasoning. Mis-verbalized means the intermediate
knowledge about personality traits was randomly mapped to any genre.

2018


