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Abstract

We introduce PHLoRA1 (Post-hoc LoRA), a
simple yet powerful method to extract low-
rank adapters from full-rank fine-tuned mod-
els without requiring access to training data
or gradients. By computing the low-rank de-
composition of weight differences between a
base model and its fine-tuned counterpart, our
method reconstructs adapter modules that can
be merged, dynamically routed at inference
time via S-LoRA, or served in scalable in-
dustry settings using platforms like NVIDIA
NIM. This approach amortizes latency over-
head across requests and yields substantial
cost savings. Unlike prior work that trains
each adapter explicitly, our approach decouples
fine-tuning from adapter generation, allowing
adapter extraction from existing full-rank mod-
els or third-party checkpoints. Experiments
on text, image, and video benchmarks using
the Amazon Nova model family demonstrate
that extracted adapters preserve high energy
from the full weight delta, can be pruned safely,
and yield negligible degradation in downstream
task performance when re-merged. Overall,
PHLoRA provides a practical path for making
all existing full-rank checkpoints adapter-ready,
democratizing scalable inference for all mod-
els.

1 Introduction

The Low-Rank Adapters (LoRA) technique [Hu
et al., 2022] is a popular way to reduce mem-
ory during training, and it offers an additional ad-
vantage at inference: it allows a single server to
host adapters for hundreds or thousands of users
in a shared inference API, as in S-LoRA [Sheng
et al., 2024]. Modern industry platforms such
as NVIDIA NIM support scalable, low-latency
serving of LoRA-based adapters in production.
However, many practitioners have existing mod-
els trained with full-rank fine-tuning, including

1Pronounced “flora”.

through the use of other training methods beyond
standard fine-tuning like DPO [Rafailov et al.,
2024] or PPO [Schulman et al., 2017]. To serve
these users, we introduce and evaluate a method
for compressing full-rank updates into low-rank
adapters compatible with dynamic serving frame-
works, called Post-hoc Low-Rank Adapter Ex-
traction (PHLoRA). Our contributions include the
following:

• Post-hoc LoRA formulation: We pose
adapter extraction as a low-rank decompo-
sition solved with truncated SVD over the
checkpoint’s weight delta; it does not require
any gradients or data.

• LoRA Rank compression: PHLoRA can
also be used to compress rank of existing
LoRA adapters (e.g., convert LoRA trained
with rank 128 to rank 32)

• Flexible deployment and fast start-up:
Compact adapters cut model-load latency by
over 10× compared to full-rank checkpoints
and can be merged for static inference or dy-
namically routed via shared-adapter execution
(e.g., S-LoRA), and are compatible with scal-
able industry platforms such as NVIDIA NIM,
to minimize run-time cost.

• Multimodal results: We evaluate on three
text, one image, and one video understanding
benchmark, showing that PHLoRA preserves
performance while reducing inference cost by
up to 4×.

2 Background and Related Work

PHLoRA uniquely provides constant-cost,
post-hoc adapter generation that is fully
LoRA-inference-compatible for both text
and multimodal settings [Sung et al., 2022], with
further comparisons in Table 1.
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Method Stage Input SVD On Output LoRA-comp. Task-spec. Train? Needs Data?

PHLoRA (ours) Post-hoc ∆W ∆W LoRA A,B ✓ ✗ ✗
SLiM Post-hoc W W LR+Q weights ✗ ✗ ✗
SVD-LLM Post-hoc W W Trunc. LR model ✗ ✗ ✗
SVDQuant Post-hoc W W LR+Q weights ✗ ✗ ✗
Dobi-SVD Post-hoc+Grad W Diff. SVD Compressed model ✗ ✓ ✓
SORSA PEFT init W W Struct. adapter △ ✓ ✓
PiSSA PEFT init W W Init. adapter ✓ ✓ ✓

Table 1: Qualitative comparison of PHLoRA and related approaches. ✓: yes; ✗: no;△: partially.

LoRA inserts rank-r matrices in parallel with
linear layers and trains only these additions, re-
ducing memory and compute [Hu et al., 2022].
LoRA+ further re-balances the optimizer by rais-
ing the learning rate on the B matrix [Hayou et al.,
2024]. Other variants explore dynamic rank sched-
ules (AdaLoRA [Zhang et al., 2023]), quantized
training (QLoRA [Dettmers et al., 2023]), and se-
lective layer targeting. Soft prompt-tuning [Lester
et al., 2021], BitFit [Zaken et al., 2021], AdapterFu-
sion [Pfeiffer et al., 2021], and VL-Adapter [Sung
et al., 2022] trade different portions of train-
able parameters for efficiency, but all require
task-specific optimization. Recent methods ex-
tend parameter-efficient transfer to vision-language
models [Sung et al., 2022]. PiSSA initializes
LoRA adapters with principal singular vectors
before adapter training, accelerating convergence
but not eliminating the need for training [Meng
et al., 2025]. SLiM [Mozaffari et al., 2025], SVD-
LLM [Wang et al., 2025b], and SVDQuant [Li
et al., 2025] apply low-rank decomposition (of-
ten combined with quantization) directly to pre-
trained weights W for inference compression
and acceleration. GPTQ [Frantar et al., 2023]
is another widely-used post-hoc quantization ap-
proach. However, these methods do not expose
LoRA-compatible factors nor leverage the fine-
tuning delta. Dobi-SVD [Wang et al., 2025a]
makes SVD differentiable and tunes the factors
with task supervision, achieving lower recon-
struction error at the cost of additional gradient
steps. SORSA [Cao, 2024] proposes a structured
low-rank adaptation that replaces dense LoRA ma-
trices but still requires full adapter training.

While prior works have explored low-rank ap-
proximation techniques for fine-tuning (e.g., Hu
et al., 2022, Zhang et al., 2023), we also found a
recent GitHub implementation, LoRD [Gauthier-
Caron, 2024], that performs similar post-hoc low-
rank extraction, though without an associated peer-
reviewed manuscript.

3 Methodology

3.1 Problem Setup
Given a pretrained model and a fine-tuned model,
each consisting of weights, we define the weight
delta as

∆W = Wft −Wbase, where W ∈ Rd×k (1)

Our objective is to approximate each ∆W with a
rank-r factorization in the LoRA form:

∆W ≈ BA,where A ∈ Rr×k, B ∈ Rd×r (2)

Once A and B are obtained, they can be deployed
as standard LoRA adapters (for dynamic or condi-
tional routing) or merged back into the backbone
via Wbase ←Wbase +BA. This process is repeated
for all target components (typically attention and
MLP submodules).

3.2 Post-hoc LoRA Extraction
We perform a truncated singular value decomposi-
tion (SVD) on ∆W :

UΣV ⊤ = SVD(∆W ),where

U ∈ Rd×d, Σ ∈ Rd×k, V ∈ Rk×k
(3)

The low-rank LoRA factorization is then:

B = U[:,:r]Σ
1
2

[:r,:r]

A = Σ
1
2

[:r,:r]V
⊤
[:r,:]

(4)

where the first r columns of U , the first r rows
of V , and the first r rows and columns of Σ are
taken, and the 1

2 exponent represents the element-
wise square root. This SVD-based decomposition
ensures that BA is the best rank-r approximation of
∆W [Eckart and Young, 1936]. All computations
are performed independently for each target weight
matrix (e.g., qproj, kproj, mlpfc1).

Merged inference computes Wbase +BA once,
fully restoring the original fine-tuned model up to
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Dataset Metric(s)

TAT–QA [Zhu et al., 2021] Accuracy, Exact Match (EM)
MKFE [Owkin, 2024] Key Overlap Mean, Value Overlap Mean (%)
MedMCQA [Pal et al., 2022] Accuracy, F1
VQA–RAD [Lau et al., 2018] Avg. Normalized Similarity
CaptionGen [Chen and Dolan, 2011] ROUGE_L, CIDEr

Table 2: Primary evaluation metrics and citations for each benchmark.

truncation error (no runtime adapter overhead). Dy-
namic routing, as in S-LoRA [Sheng et al., 2024],
loads A and B as lightweight adapters and acti-
vates them on demand, enabling low-cost serving
of multiple adapters in a single process.

PHLoRA is compatible with the HuggingFace
PEFT library [Hugging Face, 2023], PyTorch
LoRA implementations, and multi-adapter serv-
ing frameworks. No access to gradients or training
data is needed, but only the base and fine-tuned
checkpoints.

3.3 Energy-Based Analysis
In low-rank matrix approximation, the energy of
a matrix refers to the sum of the squares of its
singular values, quantifying the total information
content or signal present in the matrix. For a weight
delta ∆W with singular values σ1, σ2, . . . σd, we
define the preserved energy at rank r as

Er =

∑r
i=1 σ

2
i∑d

i=1 σ
2
i

. (5)

Intuitively, Er measures what fraction of the “im-
portant” weight update is retained by the top-r sin-
gular directions. High preserved energy typically
correlates with the adapter’s ability to recover full-
rank performance.

In Figure 1, we present the values of Er as the
rank parameter varies across three modalities and
three Nova model sizes. We observe a consistent
pattern: energy preservation improves with higher
rank values, independent of modality or model size.
Instead of exploring all possible ranks, this paper
focuses on three representative settings, 32, 64, and
512, which correspond to low, medium, and high
energy levels, respectively. This selection enables
us to analyze the approach’s performance under
different energy conditions.

4 Experiments

4.1 Experimental Setup
We benchmark PHLoRA on three text only
datasets, TAT-QA [Zhu et al., 2021], Medical

Figure 1: Preserved energy vs rank.

Knowledge from Extracts (MKFE) [Owkin, 2024],
MedMCQA [Pal et al., 2022]; one image and text
dataset, VQA-RAD [Lau et al., 2018]; and one video
and text dataset, CaptionGen [Chen and Dolan,
2011]. We sub-sample and reformat the datasets.
See Table 2 for primary metrics, and Appendix A
for detailed statistics. All experiments use the Nova
model family.

We compare: (i) the base model, (ii) the full-rank
fine-tuned model, (iii) LoRA+ with rank 32, and
(iv) PHLoRA with rank 32 (default) and 64 (see
Section 4.3 for larger r). We use an evaluation
prompt that does not specify formatting, which re-
sults in many formatting errors in the base model.
Though the base model could be improved sub-
stantially with prompt optimization, our choice of
prompts accentuates the effect of fine-tuning.

4.2 Results and Analysis
Table 3 reports test-set performance across all
model sizes and benchmarks. For each task, we
include one or two evaluation metrics (e.g., Accu-
racy / Exact Match), with the best score for each
metric shown in bold. PHLoRA demonstrates con-
sistency with full-rank fine-tuning across the Nova
Micro, Lite, and Pro model families, often coming
within 1% performance while occasionally even
surpassing full-rank results.

On Nova Micro, full-rank leads on TAT-QA, but
PHLoRA remains close and even surpasses it on
MedMCQA, with only minor gaps on MKFE. On
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Table 3: Test set results for Nova Micro (text-only), Lite, and Pro. Where two metrics are shown, the best per metric
is bolded. The evaluation prompts do not provide formatting instructions, substantially increasing the difficulty of
the task for the base model prior to fine-tuning.

Dataset (Metric) Base Model Full-Rank LoRA+ (r32) PHLoRA (r32) PHLoRA (r64)

Nova Micro

TAT–QA (Acc / Exact Match) 0 / 0 84.95 / 51.68 82.47 / 48.49 83.54 / 48.14 84.07 / 49.02
MKFE (Key Overlap / Val Overlap) 50.0 / 22.0 100.0 / 28.0 100.0 / 26.75 99.0 / 27.75 99.0 / 28.0
MedMCQA (Accuracy / F1) 0.03 / 0.05 60.49 / 60.52 60.52 / 60.52 60.79 / 60.85 60.60 / 60.63

Nova Lite

TAT–QA (Acc / Exact Match) 0 / 0 83.89 / 48.85 82.48 / 48.50 85.84 / 52.39 86.02 / 53.45
MKFE (Key Overlap / Val Overlap) 49.50 / 19.50 99.50 / 22.75 99.0 / 24.75 99.50 / 26.50 99.50 / 26.0
MedMCQA (Accuracy / F1) 0.19 / 0.38 63.40 / 63.33 59.52 / 59.52 64.11 / 64.07 64.30 / 64.25
VQA–RAD (Avg Norm Similarity) 23.22 54.87 57.15 58.56 57.56
CaptionGen (ROUGE_L / CIDEr) 31.37 / 0.81 49.40 / 1.43 48.26 / 1.46 49.19 / 1.51 49.43 / 1.50

Nova Pro

TAT–QA (Acc / Exact Match) 0 / 0 89.38 / 62.48 87.79 / 53.98 87.96 / 55.22 89.00 / 58.00
MKFE (Key Overlap / Val Overlap) 50.0 / 17.0 99.50 / 24.75 99.50 / 25.50 100.0 / 24.0 100.0 / 25.0
MedMCQA (Accuracy / F1) 0 / 0 69.40 / 69.42 71.14 / 71.16 70.0 / 70.0 70.0 / 70.0
VQA–RAD (Avg Norm Similarity) 27.03 56.20 56.57 57.58 56.92
CaptionGen (ROUGE_L / CIDEr) 37.63 / 1.13 48.94 / 1.37 50.12 / 1.55 48.55 / 1.45 48.85 / 1.48

Nova Lite, PHLoRA (r64) delivers the best scores
on TAT-QA, MedMCQA, VQA-RAD, and Cap-
tionGen, which highlights its strength in reasoning
and multimodal tasks. Nova Pro further demon-
strates scalability: PHLoRA nearly matches full-
rank on TAT-QA and outperforms it on MedMCQA
and VQA-RAD, while it also remains competi-
tive on CaptionGen. Overall, the margin between
PHLoRA and full-rank shrinks as the Nova model
scales, with PHLoRA often taking the lead.

Inference Cost and Latency. PHLoRA, when
merged into the backbone (“m-packed” as in S-
LoRA [Sheng et al., 2024]), is computationally
equivalent to full-rank and merged LoRA inference
for a single adapter or task. All three approaches re-
quire only a single matrix multiplication per layer.
For scalable multi-adapter deployment, we esti-
mate cost and throughput improvements using S-
LoRA-like dynamic routing [Sheng et al., 2024],
which achieves up to 4× higher throughput and
cost efficiency than naive dynamic LoRA serving
(e.g., PEFT or vLLM) in multi-tenant settings, as
shown in Table 3 and Figure 4 of S-LoRA. These
reference results provide a strong indication that
PHLoRA, when paired with S-LoRA-like serving,
is highly cost-effective for scalable, multi-user in-
ference scenarios.2

4.3 Ablation: Rank and Energy Preservation
We vary the PHLoRA rank (from 32 to 512) and re-
port preserved energy Er (as defined in Equation 5).

2We use “S-LoRA-like” to refer to any scalable, dynamic
multi-adapter LoRA serving implementation; S-LoRA [Sheng
et al., 2024] is used as a reference.

The results across all three Nova model sizes (Mi-
cro, Lite, Pro) are presented in Tables 4, 5, and 6,
where each table reports test-set scores alongside
preserved energy (Er, %) for different PHLoRA
ranks and the full-rank reference.

Across all three Nova model scales (Micro, Lite,
Pro), PHLoRA rank shows a clear correlation be-
tween preserved energy (Er) and downstream task
performance. Higher ranks consistently recover
full-rank accuracy, while lower ranks maintain
strong results with considerable efficiency gains.
For Nova Micro (text-only), performance is sta-
ble across ranks, with r512 closely matching or
slightly exceeding full-rank metrics on MedMCQA.
In Nova Lite (multimodal), intermediate ranks such
as r64 achieve performance comparable to or better
than full-rank on tasks like VQA-RAD and Cap-
tionGen. Similarly, in Nova Pro, r32 and r64 oc-
casionally surpass full-rank scores, particularly in
multimodal settings, though MKFE value overlap
metrics appear more sensitive to rank and do not
always improve with higher Er. Overall, higher
PHLoRA ranks reliably recover accuracy, while
intermediate ranks can offer a strong balance be-
tween efficiency and performance across different
model sizes and tasks.

5 Conclusion

We presented PHLoRA, a practical post-hoc
method for deriving LoRA-compatible adapters di-
rectly from fully fine-tuned models, without requir-
ing access to training data or gradients. Our exper-
iments focused on three modalities—text, image,
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Table 4: Ablation study for Nova Micro (text-only). We show one or two evaluation metrics, with the best score for
each metric shown in bold and Er (preserved energy, %) for PHLoRA in parentheses.

Dataset (Metric) Full-Rank PHLoRA (r32) PHLoRA (r64) PHLoRA (r512)

TAT–QA (Accuracy / EM) 84.96 / 51.68 83.54 / 48.14 (44) 84.07 / 49.03 (52) 84.96 / 51.15 (77)
MKFE (Key Overlap / Value Overlap) 100.0 / 28.0 99.0 / 27.75 (38) 99.0 / 28.0 (45) 100.0 / 28.75 (71)
MedMCQA (Accuracy / F1) 60.49 / 60.52 60.79 / 60.85 (37) 60.60 / 60.63 (46) 60.93 / 60.94 (78)

Table 5: Ablation study for Nova Lite (text, image, video). We show one or two evaluation metrics, with the best
score for each metric shown in bold and Er (preserved energy, %) for PHLoRA in parentheses.

Dataset (Metric) Full-Rank PHLoRA (r32) PHLoRA (r64) PHLoRA (r512)

TAT–QA (Accuracy / EM) 83.89 / 48.45 85.84 / 52.39 (42) 86.02 / 53.45 (49) 86.90 / 55.58 (74)
MKFE (Key Overlap / Value Overlap) 99.50 / 22.75 99.50 / 26.50 (36) 99.50 / 26.00 (42) 99.0 / 24.75 (68)
MedMCQA (Accuracy / F1) 63.40 / 63.33 64.11 / 64.07 (35) 64.30 / 64.25 (44) 63.83 / 63.77 (76)
VQA–RAD (Similarity) 54.87 58.57 (37) 57.56 (45) 55.01 (71)
CaptionGen (ROUGE_L / CIDEr) 49.40 / 1.43 49.19 / 1.51 (36) 49.43 / 1.50 (43) 49.84 / 1.50 (71)

and video—using three Amazon Nova [AGI, 2024]
models and five moderate-sized benchmarks, all in
the supervised fine-tuning (SFT) setting. PHLoRA
maintains competitive task accuracy while reducing
inference GPU-hour costs by up to 4-fold compared
to merged adapter inference, and by a similar or
greater margin compared to full-rank model infer-
ence, in dynamic multi-adapter routing scenarios
such as S-LoRA. This cost reduction reflects im-
provements in inference throughput, i.e., the num-
ber of tokens or requests processed per unit time,
as demonstrated in S-LoRA [Sheng et al., 2024].

PHLoRA provides a practical path for making
all existing full-rank checkpoints adapter-ready, de-
mocratizing scalable inference for legacy models.

6 Future Work

Several avenues remain for future research:

• Scaling to Larger and More Diverse Tasks:
Our current experiments are limited to
moderate-sized SFT datasets. Future work
should evaluate PHLoRA on larger-scale,
more challenging benchmarks and additional
modalities.

• Advanced Tuning Strategies: Extending
PHLoRA to support advanced fine-tuning
techniques such as DPO, PPO, or reward-
based learning.

• Extending Beyond Linear Layers: While
LoRA has been generalized to convolu-
tions [Zhong et al., 2024], post-hoc SVD-
based extraction for higher-order tensors re-
quires further research, potentially leverag-
ing advanced tensor decompositions [Kolda

and Bader, 2009] or alternative adapter
parametrizations [Chen et al., 2023].

• Rank Selection and Usability: Further de-
veloping practical methods for adaptive, data-
free, or black-box rank selection, and enabling
adapter extraction even when the base model
is unavailable.

• Empirical data displaying inference effi-
ciency improvements: Our current exper-
iments are limited to generation of LoRA
adapters. Future work should evaluate the
empirical data displaying inference efficiency
improvement with the generated adapters.

Limitations

While PHLoRA offers a simple and effective post-
hoc mechanism for adapter extraction, it comes
with several important limitations.

PHLoRA is currently designed for standard lin-
ear (matrix-shaped) layers, as it relies on singular
value decomposition (SVD) to extract low-rank
adapters from weight differences. While LoRA
and similar adapters have been extended to con-
volutional layers — either via kernel reshaping
or structured convolutional approximations (e.g.,
[Zhong et al., 2024]), post-hoc SVD extraction
for convolutions or other higher-order tensors is
non-trivial and depends on the decomposition or
flattening strategy, which may lose spatial struc-
ture or interpretability. More generally, advanced
tensor decompositions [Kolda and Bader, 2009] or
alternative adapter parametrizations [Chen et al.,
2023] would be required for such modules, which
we leave to future work. Note also that attention
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Table 6: Ablation study for Nova Pro (text, image, video). We show one or two evaluation metrics, with the best
score for each metric shown in bold and Er (preserved energy, %) for PHLoRA in parentheses.

Dataset (Metric) Full-Rank PHLoRA (r32) PHLoRA (r64) PHLoRA (r512)

TAT–QA (Accuracy / EM) 89.38 / 62.48 87.96 / 55.22 (42) 89.0 / 58.0 (50) 89.0 / 61.0 (75)
MKFE (Key Overlap / Value Overlap) 99.50 / 24.75 100.0 / 24.00 (36) 100.0 / 25.0 (43) 50.0 / 23.0 (68)
MedMCQA (Accuracy / F1) 69.4 / 69.42 70.0 / 70.0 (35) 70.0 / 70.0 (41) 70.0 / 69.70 (73)
VQA–RAD (Similarity) 56.20 57.58 (41) 56.92 (50) 57.07 (77)
CaptionGen (ROUGE_L / CIDEr) 48.94 / 1.37 48.55 / 1.45 (35) 48.85 / 1.48 (42) 48.87 / 1.39 (70)

“caches” refer to runtime data, not persistent pa-
rameters, and so are out of scope for PHLoRA.

In this paper, we fix the adapter rank r glob-
ally for all layers. Although we analyze energy-
based rank selection, adaptive or per-layer rank
scheduling—which could further improve the effi-
ciency/accuracy tradeoff—remains for future work.
Furthermore, while the preserved energy metric
(Er) is a useful indicator of information retention
at a given rank, model quality on the target task
does not always correlate perfectly with energy
preservation. Thus, optimal adapter rank cannot be
reliably selected solely from energy curves; empir-
ical evaluation remains necessary.

PHLoRA assumes access to both base and fully
fine-tuned weights. In settings where only the fine-
tuned model is available (e.g., closed-source ven-
dors), post-hoc adapter extraction is not directly
possible.

The principal benefits of PHLoRA are realized
in dynamic inference scenarios (e.g., S-LoRA or
multi-adapter routing), where multiple adapters
are loaded or swapped at runtime. In conven-
tional merged-inference pipelines—where a single
adapter is fused into the model for all requests—the
practical advantage of post-hoc extraction is dimin-
ished, as cost and latency resemble standard LoRA
or full-rank fine-tuning.

Our evaluation is limited to a set of public text,
image, and video benchmarks. Results may dif-
fer for larger, more diverse real-world applications.
While PHLoRA enables substantial inference cost
reductions with dynamic adapter routing, there re-
mains a modest runtime latency penalty versus full-
rank merging; practical savings will depend on
system-level batch sizes and workload characteris-
tics.

We encourage future work to address these limita-
tions by extending PHLoRA to non-linear modules,
developing robust energy-aware or data-free rank
selection strategies, enabling black-box or partial-
weight extraction, and improving dynamic adapter
composition schemes.
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A Dataset Descriptions

We provide summary statistics and descriptions for
each benchmark used in this study.

• TAT-QA [Zhu et al., 2021]: A table-
augmented question answering dataset in the
financial domain, requiring models to reason
over both natural language and tabular data.
Train: 2,830; Test: 565. License: MIT. Evalu-
ated using Accuracy and Exact Match.

• MKFE [Owkin, 2024]: Medical Knowledge
from Extracts. Evaluates the ability to ex-
tract structured key-value medical facts from
unstructured text. Key Overlap measures the
proportion of gold-standard keys correctly pre-
dicted; Value Overlap measures the fraction
of correct values among matched keys. Train:
1,000; Test: 200. License: Apache 2.0.
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• MedMCQA [Pal et al., 2022]: A large-scale
medical multiple-choice question answering
dataset. Train: 20,000; Test: 3,683. License:
MIT. Evaluated using Accuracy and F1.

• VQA-RAD [Lau et al., 2018]: Visual question
answering over radiology images, requiring
both visual and textual understanding. Train:
1,793; Test: 451. License: CC0 1.0 Universal.
Evaluated by average normalized similarity.

• CaptionGen: A video captioning benchmark
with 2,000 training and 500 test examples.
Videos are sourced from MSVD [Chen and
Dolan, 2011]; captions are from the Multi-
Source Video Captioning dataset [DAMO-
NLP-SG]. License: MIT. Evaluated using
ROUGE_L and CIDEr.

B Implementation Details

Hardware. All experiments were performed on
AWS P5.48xlarge instances, each equipped with
8×NVIDIA H100 80GB GPUs. Post-hoc LoRA
adapter extraction and energy analysis steps were
also executed on the same hardware.

Fine-tuning Hyperparameters. We used the
AdamW optimizer (β1=0.9, β2=0.999), a learning
rate of 1 × 10−5, batch size 32, and trained for 2
epochs.

LoRA+ Training Hyperparameters.

• Nova Micro: Learning rate 1 × 10−5,
loraplus_lr_ratio 16.0, rank r = 32, α =
128, lora_dropout 0.01, target_modules
= [attention_qkv, attention_dense,
mlp_fc1, mlp_fc2].

• Nova Lite/Pro: Learning rate 1 × 10−5,
loraplus_lr_ratio 8.0, rank r = 32, α =
32, lora_dropout 0.01, target_modules
= [attention_qkv, attention_dense,
mlp_fc1, mlp_fc2].

PHLoRA Extraction. SVD was performed per
linear layer using PyTorch’s torch.linalg.svd.
The default low-rank approximation used rank r =
32, with ablations at ranks r = 64 and r = 512.

Energy Plots. Energy preserved at rank r, Er,
was calculated as in Equation 5.

C Reproducibility Checklist

• Random seeds: Fixed to 42.

D Optimality of SVD for Low-Rank
Adapter Extraction

Given any real matrix ∆W ∈ Rm×n, the
Eckart–Young–Mirsky theorem [Eckart and Young,
1936] states that the rank-r matrix Ŵr = UrΣrV

⊤
r

(where Ur,Σr, Vr are the top r components from
the SVD of ∆W ) uniquely minimizes the Frobe-
nius norm ∥∆W − Ŵr∥F over all matrices of rank
at most r.

To see this, let ∆W = UΣV ⊤ be the full SVD,
with singular values σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n).
The truncated approximation is

Ŵr =
r∑

i=1

σiuiv
⊤
i ,

and satisfies

∥∆W − Ŵr∥2F =

min(m,n)∑

i=r+1

σ2
i .

Therefore, by setting A = Ur diag(
√
Σr) and B =

diag(
√
Σr)V

⊤
r , as in PHLoRA, AB = Ŵr is the

best rank-r LoRA update (minimizing Frobenius
error).

For more details, see [Eckart and Young, 1936,
Golub and Loan, 2013].

1999


