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Abstract

Multimodal models play a key role in empa-
thy detection, but their performance can suffer
when modalities provide conflicting cues. To
understand these failures, we examine cases
where unimodal and multimodal predictions di-
verge. Using fine-tuned models for text, audio,
and video, along with a gated fusion model,
we find that such disagreements often reflect
underlying ambiguity, as evidenced by annota-
tor uncertainty. Our analysis shows that domi-
nant signals in one modality can mislead fusion
when unsupported by others. We also observe
that humans, like models, do not consistently
benefit from multimodal input. These insights
position disagreement as a useful diagnostic
signal for identifying challenging examples and
improving the robustness of empathy systems.

1 Introduction

Empathy recognition in human communication is
a nuanced and multifaceted task and a core com-
ponent of socially intelligent systems (Fung et al.,
2016). Commonly defined as the capacity to under-
stand others and share their emotional experiences,
empathy encompasses both cognitive perspective-
taking and affective resonance (Baumeister and
Vohs, 2007). In human interactions, language,
speech, and visual cues jointly convey emotional
intent (Holler and Levinson, 2019). For example, a
speaker’s verbal message may appear neutral, yet
their vocal prosody or facial expressions may sig-
nal warmth or concern. It is then the listener’s
responsibility to draw inferences about meaning
based on a combination of these signals.

For AI systems, effectively interpreting these
multimodal signals requires not only accurate uni-
modal representations but also robust integration
of potentially conflicting information across modal-
ities. Despite recent advances in multimodal emo-
tion recognition (Jabeen et al., 2021), empathy
recognition remains particularly complex, as unlike

Figure 1: Given classifications provided by a single
modality, we identify cases where integrating additional
modalities leads to a different prediction. We analyze
these differences to understand when and why they oc-
cur.

discrete emotions such as anger or joy, empathy of-
ten arises from subtle contextual cues that may not
align across modalities (Hasan et al., 2023). For
example, a neutral utterance might be perceived as
warm or concerned when accompanied by a sym-
pathetic tone or expression.

Our work investigates some of the complexities
of multimodal empathy detection by examining in-
stances of disagreement between multimodal mod-
els and their unimodal counterparts. In parallel,
humans annotate unimodal and multimodal exam-
ples in our dataset for the presence of empathy. Our
analyses reveal that instances of multimodal and
unimodal model disagreement often correspond to
examples that are difficult for human annotators
as well, highlighting examples that are particularly
challenging, ambiguous, or nuanced. By linking
multimodal and unimodal model disagreement to
human disagreement, we offer new insight into the
limitations of current empathy modeling and high-
light the value of disagreement-based analysis in
socially grounded language tasks.

2 Related Work

Empathy Modeling. Early computational work
on empathy has focused on generating emotionally
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relevant textual responses (Rashkin et al., 2019;
Li et al., 2019), but these approaches are inher-
ently limited by the absence of non-verbal cues,
which are critical to empathic understanding. Re-
cent datasets such as EMPATHICSTORIES++ (Shen
et al., 2024), MEDIC (Zhu et al., 2023), EMMI (Gal-
land et al., 2024) and Chen et al. (2024b) address
this limitation by incorporating context, speech,
and facial expressions, enabling more comprehen-
sive modeling of empathy. These resources have
motivated frameworks such as PEGS (Zhang et al.,
2024), EMOKNOB (Chen et al., 2024a) and SYN-
THEMPATHY (Chen et al., 2025), which further ex-
tend multimodal empathetic generation by leverag-
ing large language models (LLMs) and large audio-
language models. Despite these advances, empathy
still remains difficult to model due to its reliance
on subtle, often conflicting signals across modali-
ties. Prior work has largely focused on improving
multimodal fusion strategies under the assumption
that modalities are complementary (Zadeh et al.,
2017; Tsai et al., 2019), but has paid less attention
to when fusion may fail or introduce noise.

Dataset Difficulty. Complementary lines of work
have investigated data difficulty and model dis-
agreement as tools for understanding model be-
havior. Swayamdipta et al. (2020) propose dataset
cartography, a method to identify hard or ambigu-
ous training samples, showing how difficulty-aware
instance selection improves benchmarking and re-
veals mislabeled or trivial examples. Saha et al.
(2022) demonstrate that difficult instances are also
harder for both humans and models to explain, and
Wang et al. (2023)’s Learning-From-Disagreement
(LFD) framework underscores the importance of
examining disagreements between models to gain
deeper, actionable insights into their behaviors. Al-
though ambiguity is intrinsic to empathy modeling,
disagreement-based diagnostics do remain under-
explored. As such, we leverage modality disagree-
ment to flag difficult examples that both mislead
fusion models and elicit annotator uncertainty.

3 Experiment 1: Identifying Complex
Examples from Modality Disagreement

Disagreement between models trained on different
modalities can reveal challenging, nuanced, or am-
biguous examples. Here, we identify and analyze
such cases of disagreement in binary empathy de-
tection using a multimodal English empathy speech
dataset collected from Youtube (Chen et al., 2024b)

Modality Model Accuracy F1

Text RoBERTa 0.75±0.02 0.73 ±0.02
DeBERTa 0.69±0.02 0.68±0.02

Audio HuBERT 0.72±0.01 0.71±0.01
Wav2Vec2 0.68±0.01 0.63±0.02

Video VideoMAE 0.77±0.02 0.77±0.02
TimesFormer 0.64±0.02 0.62±0.02

Fusion (All Modalities) 0.76±0.02 0.72±0.02

Table 1: Fine-tuned model performance by modality on
empathy classification (mean ± std over five runs).

(referred to as EMPSPEECH) consisting of 1,718
manually annotated English speech segments la-
beled as empathetic or neutral (Appendix A).

Experimental Setup. Examples in EMP-
SPEECH include video segments spanning three
modalities: text (transcript), audio (speech), and
video. The task is to predict whether the input
contains empathetic (1) or neutral (0) speech.

We finetune two models per modality on the
training set from EMPSPEECH: ROBERTA (Liu
et al., 2019) and DEBERTA (He et al., 2021)
for text, HUBERT (Hsu et al., 2021) and
WAV2VEC2 (Baevski et al., 2020) for audio, and
VIDEOMAE (Tong et al., 2022) and TIMES-
FORMER (Bertasius et al., 2021) for video (Ap-
pendix B.1).1 Then, we extract 768-dimensional
embeddings from each best-performing unimodal
model (ROBERTA, HUBERT, and VIDEOMAE;
Table 1) to train a multimodal fusion model that
projects all three modalities into a shared latent
space (Appendix B.2). Each modality embedding
passes through an independent sigmoid gate that
adaptively scales its contribution before fusion.
The gated embeddings are then passed through an
additive attention layer: each is projected into a
shared attention space and scored against a learned
attention vector. These scores are normalized
across modalities to compute a weighted sum that
forms the fused representation.

Results. We evaluate all models (unimodal and
multimodal) on the test split of EMPSPEECH to
identify disagreements, or examples where two
models with varying input modalities assign differ-
ent labels, highlighting those cases where different
modalities may carry ambiguous, conflicting, or
modality-specific signals.

Text shows the highest disagreement with audio
and video (Table 2), while audio and video align

1The hidden layer dimensions of all models we consider
are similar.
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Figure 2: Comparing predictions between unimodal (text, audio, video) and multimodal models. We highlight
regions where model predictions agree (blue and yellow quadrants) and disagree (red and green quadrants).

Modality Text Audio Video

Text – 0.338 0.318
Audio 0.338 – 0.253
Video 0.318 0.253 –
Full 0.214 0.383 0.331

Table 2: Pairwise disagreement rates among unimodal
models and the fusion model, computed as the fraction
of test examples with differing predictions.

Feature Red vs. Blue Green vs. Blue

p-value Direction p-value Direction

valence 0.0047 µblue > µred 0.5166 µgreen > µblue
arousal 0.0065 µblue > µred 0.0136 µblue > µgreen
Mean Pitch 0.0100 µblue > µred 0.0001 µblue > µgreen
dominance 0.0108 µblue > µred 0.0667 µblue > µgreen
Min Pitch 0.0333 µblue > µred 0.0001 µblue > µgreen
Jitter 0.0347 µred > µblue 0.0667 µgreen > µblue
Max Intensity 0.1260 µred > µblue 0.0023 µgreen > µblue

Table 3: T-test results comparing red vs. blue and green
vs. blue examples for audio features with α = 0.05. Sta-
tistically significant results are bolded. See Appendix D
for full table.

more closely. This difference likely reflects shared
nonverbal cues such as prosody and facial expres-
sion. The fusion model’s minimal disagreement
with text suggests a bias toward verbal content,
possibly mirroring the annotators’ own reliance on
textual signals.

Figure 2 visualizes disagreement regions be-
tween each unimodal model and the fusion model.
We plot unimodal confidence (x-axis) against fu-
sion confidence (y-axis) in the correct label; hence
confidence greater than 0.5 results in a correct pre-
diction. This yields four quadrants: green (mul-

timodal correct, unimodal incorrect), red (mul-
timodal incorrect, unimodal correct), blue (both
correct), and yellow (both incorrect). Red and
green quadrants are disagreement regions which
we explore to identify complex examples.

AU p (R vs B) Dir p (G vs B) Direction

AU04 0.0106 red > blue 0.3682 green > blue
AU12 0.0174 blue > red 0.8977 green > blue
AU05 0.1837 blue > red <0.0001 blue > green

Table 4: T-test results comparing AU activation rates
between red vs. blue and green vs. blue with α = 0.05.
Statistically significant results are bolded. See Ap-
pendix D for full table

3.1 Modality-Based Feature Analysis

To better understand examples in disagreement re-
gions, we extract and analyze modality-based hu-
man interpretable features.

Audio. We extract twelve prosodic and paralin-
guistic features from audio signals: nine low-
level acoustic features using PRAAT (Boersma and
Weenink, 1992–2022) and PARSELMOUTH (Jadoul
et al., 2018), and three high-level affective dimen-
sions: valence, arousal, and dominance using a
finetuned WAV2VEC2 (Wagner et al., 2023) model.
We compare feature distributions using t-tests for
examples in disagreement quadrants ( red and
green ) compared to those in the blue quadrant,

signifying non-ambiguous, easy examples. Blue
examples have several significantly elevated pitch-
related values than red examples (Table 3), sug-
gesting that stronger prosodic fluctuations are fre-
quently corroborated by other modalities. Exam-
ples in the green quadrant show significantly higher
Max Intensity than in blue, potentially reflecting the
role of volume-based emphasis in aiding unimodal
predictions. Both red and green examples exhibit
significantly lower arousal than blue examples, sug-
gesting that these less-aroused, subtler examples
lack sufficient affective intensity, which misleads
both unimodal and multimodal models.
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Figure 3: UMAP of text-only embeddings for empa-
thetic (left) vs. neutral (right) examples, colored by
modality disagreement; red and green points cluster
near the decision boundary, marking ambiguous cases.

Quadrant Mean Entropy St. Dev

Red 0.670 0.017
Blue 0.259 0.222
Yellow 0.347 0.196
Green 0.565 0.192

Table 5: Mean entropy of the fusion model grouped by
quadrant

Video. We examine facial action unit (AU) acti-
vations (Baltrušaitis et al., 2016) from video. AU04
(Brow Lowerer), AU12 (Lip Corner Puller), and
AU05 (Upper Lid Raiser) show significant differ-
ences across example types, revealing how specific
facial expressions contribute to perceptual ambigu-
ity (Table 4). AU04 is more active in red examples
than blue, indicating that, despite its visually strong
presence, its signal conflicts with other modalities.
In contrast, AU12, which is associated with posi-
tive affect, and AU05, which is linked to attentive-
ness (Friesen and Ekman, 1978), both show greater
activation in blue examples than in red and green,
respectively, suggesting that these expressions may
serve as clearer cues that are more consistently in-
terpreted across modalities. Our findings indicate
that fine-grained facial signals may contribute to
perceptual complexity in the visual stream.

Text. Visualizing UMAP (Sainburg et al., 2021)
projections of text embeddings (Figure 3) reveals
that examples in disagreement regions (red and
green) cluster along the boundary between con-
sistently correct (blue) and consistently incorrect
(yellow) examples. Rather than forming isolated
clusters, disagreement examples occupy transition
zones in the embedding space: areas where seman-
tic cues are weak. This underscores our finding that
red and green examples are ambiguous and con-
firms modality disagreement as a reliable marker
of challenging examples in empathy detection.

Quadrant Unimodal Judgment Multimodal Judgment ∆

Red 0.301 0.164 -0.137
Blue 0.379 0.646 0.267
Yellow 0.225 0.329 0.104
Green 0.482 0.218 -0.264

Table 6: Cohen’s Kappa between internal and external
annotators, computed separately for each quadrant and
prediction round.

3.2 Uncertainty Analysis

To ensure that the patterns observed in the dis-
agreement quadrants are not simply a byproduct of
model uncertainty, we compute the mean predic-
tive entropy from the fusion model’s posterior for
examples of each quadrant (Table 5).

We observe a pronounced divergence in uncer-
tainty: the disagreement quadrants (red and green)
have a substantially higher mean predictive entropy
than those of the combined agreement quadrants
(blue and yellow). Independent-samples t-tests at
α = 0.05 confirm that the difference is statistically
significant, with disagreement quadrants showing
a higher mean predictive entropy than agreement
quadrants (p = 0.001). This disparity indicates
that model disagreement often co-occurs with high
uncertainty, suggesting that examples in the red and
green quadrants are both challenging and inherently
ambiguous due to conflicting modality signals.

4 Experiment 2: Characterizing Complex
Examples

We further assess whether model disagreements
stem from data ambiguity using a human annota-
tion study that tests whether examples from the two
disagreement regions (red and green quadrants) are
equally challenging for annotators.

Annotation Setup. We sample 204 examples
evenly split across the four quadrants of each Fig-
ure 2 modality plot. For each example, annota-
tors provide a binary judgment (empathetic or neu-
tral) from a unimodal signal, then a judgment from
the full multimodal version (instructions in Ap-
pendix C), allowing us to track how human pre-
dictions shift with additional modality signals and
to understand the cognitive burden of multimodal
integration. All examples were annotated by one
author and one external annotator. Table 13 in
the Appendix showcases frames and transcripts for
four examples, along with annotator judgments.

Results. Annotator disagreement, measured with
Cohen’s Kappa (Cohen, 1960), can signal complex
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Quadrant Unimodal Judgment Multimodal Judgment ∆

Red 0.347 0.143 -0.204
Blue 0.364 0.533 0.169
Yellow 0.304 0.548 0.244
Green 0.573 0.329 -0.244

Table 7: Cohen’s Kappa between internal and external
annotators for examples of at least six tokens (the dataset
median), computed separately for each quadrant and
prediction round.

phenomena in examples (Jiang and de Marneffe,
2022; Pavlick and Kwiatkowski, 2019) such as un-
certainty in meaning leading to discrepancies in
reasoning. In disagreement regions (red and green),
we see a decrease in annotator agreement between
unimodal and multimodal judgments (Table 6), in-
dicating that humans diverge when weighing sig-
nals across modalities. In contrast, annotator agree-
ment improves upon examples where unimodal and
multimodal model predictions are in agreement,
supporting our hypothesis that these examples are
relatively unambiguous and can be reliably inter-
preted once the full context is available (Table 6).

We repeat the analysis on the subset of clips con-
taining at least six tokens (the median utterance
length in EMPSPEECH). Examples below the me-
dian often include short phrases and backchannels,
while examples above the median are often com-
plete sentences with richer lexical and syntactic
structure. As shown in Table 7, the red and green
quadrant utterances continue to exhibit a substan-
tial drop in Cohen’s κ compared to blue and yel-
low quadrant utterances, which exhibit substantial
gains with additional information. These results
collectively corroborate our hypothesis that modal-
ity disagreement can serve as a valuable signal for
identifying ambiguous, challenging, or complex in-
stances that are also difficult for human annotators.

5 Discussion and Conclusion

We have demonstrated how disagreement, both be-
tween modalities and between humans and mod-
els, can serve as a diagnostic lens to understand
the complexity of multimodal empathy detection,
challenging the assumption that more signals from
other modalities reliably yields better performance.
Our analysis reveals that disagreement between
unimodal and multimodal models is often not ar-
bitrary, but instead marks the presence of subtle,
ambiguous, or context-sensitive cues that challenge
fusion models and human annotators alike.

While our study focuses on speaker-centric em-

pathy (evaluating speakers’ empathic expression),
our diagnostic can be generalized to listener-centric
tasks, which dominate existing empathy datasets
and capture listeners’ emotional responses to each
utterance (Appendix A.2). These findings empha-
size the necessity for high-quality annotation in so-
cially complex tasks like empathy detection, where
model errors may reflect genuine human uncer-
tainty or disagreement. This framework provides a
scalable method for identifying ambiguity and en-
hancing model reliability, especially in recognizing
complex emotional states.

Beyond diagnosis, disagreement offers a foun-
dation for improving multimodal learning. Cross-
modal conflict can guide labeling efforts toward
informative and ambiguous examples, making an-
notation more efficient when resources are limited.
Patterns of disagreement can also inform curricu-
lum design (Qian et al., 2025), where models first
learn from consistent, low-disagreement examples
before tackling more ambiguous ones to build nu-
anced reasoning and robustness. Furthermore, in-
sights from disagreement can inspire more adaptive
fusion approaches that dynamically re-weight or
downplay misleading modalities when they con-
flict (Huang et al., 2023), reducing over-reliance
on a single signal. High-disagreement examples
can also serve as realistic adversarial test cases that
expose systematic vulnerabilities and strengthen
fusion strategies under genuine multimodal con-
flict (Yang et al., 2022). Finally, this diagnostic per-
spective extends beyond empathy detection to other
socially complex tasks such as persuasion (Bai
et al., 2021), rapport (Baihaqi et al., 2024), or sar-
casm (Zhou et al., 2024), where multimodal cues
and subjective judgments often diverge. In such
settings, disagreement between unimodal and fu-
sion models highlights genuinely ambiguous cases
that can guide targeted annotation, evaluation, and
model refinement.

Ultimately, treating disagreement as a meaning-
ful signal rather than an error reframes how we eval-
uate and improve multimodal models. By reveal-
ing when and why models diverge, this perspective
lays the foundation for building systems that reason
more like humans do. Beyond empathy detection,
this framework also opens broader pathways to-
ward socially intelligent multimodal systems that
can recognize uncertainty, resolve conflicting ev-
idence, and adapt their reasoning to the inherent
ambiguity of human affective communication.
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Limitations

We acknowledge several limitations in our study.
Our analyses are based on a limited dataset and
a small number of human annotators. Given that
empathy is inherently subjective, annotations may
vary due to individual interpretations, potentially
introducing biases rather than reflecting universal
properties of the data. Additionally, we rely upon a
single dataset, and future work should investigate
whether the patterns we observe hold across other
datasets and domains.

Our data is also derived from U.S.-based,
English-language television and interview content.
As such, the generalizability of our findings to mul-
tilingual or culturally diverse settings may be lim-
ited. Future research should investigate these pat-
terns in varied cultural and linguistic environments
to better assess the broader applicability of our con-
clusions.

Ethics Statement

We used a publicly available dataset and strictly
use open-source models for analysis.

All annotations were conducted by an author and
an individual affiliated with the research team. No
participants were recruited via crowdsourcing or
external platforms, and no monetary compensation
was provided, as the annotators were contributing
in a research capacity. We provided detailed infor-
mation on what we asked the annotators to annotate
and how we planned to use the data. The annotators
willingly agreed to participate with full knowledge
of the task. No sensitive or identifying information
was collected from annotators.

We note that empathy expression may vary
across cultures, and our findings may not gener-
alize to non-English or non-Western contexts. We
encourage future work to explore these questions
in more diverse settings.

We will release all code and experimental re-
sources at https://github.com/mayasri
km/multimodal-empathy-disagreemen
t to support reproducibility.
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A Dataset

A.1 Dataset Specifications

We use a multimodal empathy dataset (Chen et al.,
2024b) consisting of 346 English-language videos
totaling approximately 53 hours, collected from
YouTube between 2020 and 2022 using keywords
like “empathy” and “empathetic training.” The
dataset includes empathy training sessions, therapy
roleplays, interviews, TED Talks, and TV/movie
scenes, comprising both acted (62%) and sponta-
neous (38%) speech. Each video was labeled by at
least three expert annotators as either empathetic
or neutral, with final labels determined by majority
vote. Metadata such as speaker gender, topic, and
emotional context was manually annotated, cover-
ing themes like therapy, parenting, workplace dy-
namics, and social relationships. From this collec-
tion, a subset of 65 videos was transcribed, diarized,
and manually re-aligned using Praat to ensure accu-
rate speaker segmentation and time alignment. This
process resulted in 1,718 annotated segments with
speaker labels, timestamps, transcripts, and empa-
thy stage annotations, enabling fine-grained anal-
ysis of empathy in naturalistic and semi-scripted
settings. The median utterance length of the dataset
is six tokens. Table 8 shows example utterances
below and above the median; examples below the
median often include short phrases and backchan-
nels, while examples above the median are often
complete sentences with richer lexical and syntac-
tic structure.

A.2 Dataset Comparison

To the best of our knowledge, our work is the first
to evaluate multimodal disagreement on speaker-
centric empathy detection datasets. Most pub-
licly available empathy datasets (such as EM-
PATHICSTORIES++ (Shen et al., 2024) and OMG-
EMPATHY (Barros et al., 2019)) are fundamentally
structured around listener response, not speaker
expression. In these datasets, the task is to pre-
dict how empathetic a listener feels after hearing
a story, rather than to assess whether the speaker
themselves is expressing empathy. For instance,
in EMPATHICSTORIES++, participants record per-
sonal stories and then rate their own emotional
responses, framing empathy as a reaction to the
content rather than as a property of the speaker’s
delivery. Similarly, OMG-EMPATHY evaluates lis-
tener self-reported affective states following brief
monologues, again focusing on perceived empathy

rather than expressed empathy. This distinction
matters because listener-focused tasks inherently
entangle speaker behavior with listener subjectivity,
making it difficult to isolate which cues (textual,
audial, or visual) are directly responsible for empa-
thy expression. In contrast, the dataset we use in
this study (Chen et al., 2024b) is one of the only
accessible resources that explicitly asks annotators
to evaluate the speaker’s empathy, based solely on
the speech segment itself, across modalities. This
framing allows us to analyze how empathy is ex-
pressed in real time by the speaker, independent
of listener interpretation, and enables direct com-
parisons between modalities on their ability to con-
vey empathetic intent. Our current dataset offers a
uniquely valuable lens into the structure of empathy
as a speaker-side communicative behavior: some-
thing that remains underexplored in the literature.
In future work, our modality-disagreement diagnos-
tic could be used to flag nuanced, high-ambiguity
segments that challenge listener empathy models.
They could serve as an effective proxy for identify-
ing segments that elicit high listener variance in em-
pathy judgments, enabling targeted annotation and
model refinement on exactly those ambiguous ut-
terances where listener-centric prediction systems
struggle most.

B Model Training Details

Data was split into train, test and validation sets
using random sampling, with an 80-10-10 split. We
run fine-tuning and inference for all open-source
models on an A100 GPU in Google Colab.

B.1 Unimodal Model Training Details
Each model is trained on a binary empathy classi-
fication task using precomputed 768-dimensional
embeddings. We freeze all but the final two trans-
former layers and train for fifteen epochs with a
learning rate of 5e-6 and batch size of eight.

B.2 Fusion Model Details
Each unimodal model representation is indepen-
dently gated and passed through an additive atten-
tion mechanism that computes modality-specific
weights. The weighted embeddings are aggre-
gated and classified using a three-layer feedforward
network with max pooling. The fusion model is
trained for ten epochs using a learning rate of 1e-4
and includes modality dropout during training. To
characterize how the model balances each of the
three modalities at inference time, we computed the
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< 6 Tokens ≥ 6 Tokens
“there’s no way” (3 tokens) “No, no he’s a good guy go easy on him he’s lost

his son, Fabio” (15 tokens)
“You lost it?” (3 tokens) “You kids have the biggest hearts I’ve ever seen.”

(9 tokens)
“I can understand that.” (4 tokens) “congrats my dude, on everything man” (6 tokens)

Table 8: Example utterances with fewer than six tokens (left) versus at least six tokens (right).

per-modality gate-weight distributions over the full
test set (Table 9). The mean gate weights indicate
that our model allocates substantial importance to
each modality, with only a slight preference toward
audio and video. The high variance also shows that
the model dynamically adapts its reliance on each
modality on a per-sample basis. Thus, our fusion
model draws substantially on all three streams; no
single modality is systematically favored.

Modality Mean Standard Deviation

Text 0.430 0.297
Audio 0.502 0.227
Video 0.476 0.315

Table 9: Per-modality gate-weight distributions over the
full test set.

C Annotation Instructions

We employed two annotators, one of the paper’s au-
thors and an non-author, both fluent English speak-
ers based in the United States. No additional de-
mographic information was collected, as the anno-
tation was conducted internally for research pur-
poses.

Annotators were asked to provide two judgments
per example, labeling each as either empathetic or
neutral (Figure 4). A excerpt describing empathy
(drawn from the Encyclopedia of Social Psychol-
ogy, Volume 1, (Baumeister and Vohs, 2007)) was
provided to ensure a consistent conceptual founda-
tion for annotation:

Empathy is often defined as understanding an-
other person’s experience by imagining oneself
in that other person’s situation: One understands
the other person’s experience as if it were be-
ing experienced by the self, but without the self
actually experiencing it. There are three com-
monly studied components of emotional empathy.
The first is feeling the same emotion as another
person (sometimes attributed to emotional con-
tagion, e.g., unconsciously “catching” someone
else’s tears and feeling sad oneself). The second
component, personal distress, refers to one’s own

feelings of distress in response to perceiving an-
other’s plight. The third emotional component,
feeling compassion for another person, is the one
most frequently associated with the study of em-
pathy. Cognitive empathy refers to the extent to
which we perceive or have evidence that we have
successfully guessed someone else’s thoughts and
feelings.

Annotators were given an annotation flag indi-
cating which modality to use for the first pass; for
instance, if the flag was text, only the transcript
was to be used to make the first prediction. After
submitting the first judgment, annotators were then
given access to the full video, including all avail-
able audio, visual, and textual information. They
were then asked to provide a second prediction.

D Full Feature Comparisons

Tables 10, 11 and 12 provide additional results from
the t-tests comparing examples across different con-
fidence quadrants. Table 10 provides an internal
comparison between the disagreement quadrants.
Table 11 presents the full version of the audio fea-
ture comparisons summarized in Table 3. Table 12
expands on the facial feature comparisons shown
in Table 4.

E Feature Distributions

Figures 5 and 6 visualize the distributions of key
features across confidence quadrants. Figure 5
presents the distribution of selected audio features
(e.g., pitch, intensity) for red, green, and blue ex-
amples, highlighting acoustic patterns associated
with model disagreement. Figure 6 shows acti-
vation rates for facial Action Units (AUs) in red,
green, and blue examples, illustrating how specific
facial expressions vary across agreement condi-
tions. These visualizations complement the sta-
tistical comparisons reported in Tables 11 and 12,
providing a more interpretable view of the underly-
ing feature dynamics.
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Figure 4: Annotation interface

Feature t-stat p-value Mean Comparison
Mean Pitch 2.453 0.0159 µred > µgreen
Max Intensity -2.124 0.0366 µgreen > µred
Max Pitch 2.016 0.0465 µred > µgreen
Min Pitch 2.007 0.0475 µred > µgreen
valence -1.908 0.0593 µgreen > µred
arousal 1.827 0.0705 µred > µgreen
speaking_rate 1.773 0.0807 µred > µgreen
dominance 1.712 0.0899 µred > µgreen
Shimmer 0.773 0.4416 µred > µgreen
Jitter 0.622 0.5355 µred > µgreen
Mean Intensity 0.544 0.5886 µred > µgreen
HNR 0.508 0.6129 µred > µgreen
Min Intensity -0.429 0.6685 µgreen > µred

Table 10: T-test results comparing audio features between red and green examples. Statistically significant results
are bolded.

F Quadrant Examples

Table 13 shows video frames, transcripts, annotator
judgments, and the true labels for examples from
each confidence plot quadrant. These examples
illustrate that disagreement quadrants often contain
more ambiguous instances for both humans and
models where cues from different modalities may
conflict, while examples from agreement quadrants
typically display alignment between modalities.
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Feature p (Red vs Blue) Direction p (Green vs Blue) Direction
valence 0.0047 µblue > µred 0.5166 µgreen > µblue
arousal 0.0065 µblue > µred 0.0136 µblue > µgreen
Mean Pitch 0.0100 µblue > µred 0.0001 µblue > µgreen
dominance 0.0108 µblue > µred 0.0667 µblue > µgreen
Min Pitch 0.0333 µblue > µred 0.0001 µblue > µgreen
Jitter 0.0347 µred > µblue 0.0667 µgreen > µblue
Max Intensity 0.1260 µred > µblue 0.0023 µgreen > µblue
Mean Intensity 0.1599 µred > µblue 0.5329 µblue > µgreen
HNR 0.2217 µblue > µred 0.2055 µblue > µgreen
speaking_rate 0.2723 µblue > µred 0.9991 µgreen > µblue
Shimmer 0.4122 µred > µblue 0.1541 µblue > µgreen
Max Pitch 0.6845 µred > µblue 0.2647 µblue > µgreen
Min Intensity 0.7999 µblue > µred 0.1571 µblue > µgreen

Table 11: T-test results comparing audio features between red vs. blue and green vs. blue examples. Statistically
significant p-values are bolded.

AU p (Red vs Blue) Direction p (Green vs Blue) Direction
AU04: Brow Lowerer 0.0106 red > blue 0.3682 green > blue
AU12: Lip Corner Puller 0.0174 blue > red 0.8977 green > blue
AU05: Upper Lid Raiser 0.1837 blue > red <0.0001 blue > green
AU17: Chin Raiser 0.2256 red > blue 0.9802 blue > green
AU10: Upper Lip Raiser 0.2275 blue > red 0.6700 green > blue
AU45: Blink 0.3200 blue > red 0.7462 green > blue
AU07: Lid Tightener 0.3252 blue > red 0.9318 blue > green
AU14: Dimpler 0.4593 red > blue 0.0652 green > blue
AU20: Lip Stretcher 0.5701 blue > red 0.7907 blue > green
AU09: Nose Wrinkler 0.6211 blue > red 0.7639 green > blue
AU25: Lips Part 0.6227 blue > red 0.7492 blue > green
AU01: Inner Brow Raiser 0.6529 blue > red 0.4674 green > blue
AU23: Lip Tightener 0.6630 red > blue 0.3474 green > blue
AU28: Lip Suck 0.6735 red > blue 0.9846 green > blue
AU26: Jaw Drop 0.6851 red > blue 0.4596 blue > green
AU06: Cheek Raiser 0.7097 blue > red 0.3201 green > blue
AU15: Lip Corner Depressor 0.9528 red > blue 0.4834 green > blue
AU02: Outer Brow Raiser 0.9647 blue > red 0.6677 green > blue

Table 12: T-test results comparing AU activation rates between red vs. blue and green vs. blue. Bolded p-values are
statistically significant.
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Figure 5: Distribution of audio features for red, green and blue examples across the confidence quadrants. Red
examples are those correctly classified by the unimodal audio model but misclassified by the multimodal model;
green examples represent the reverse. Blue examples represent those correctly classified by both the unimodal audio
model and the multimodal model. Significant differences appear in pitch and intensity-based features.

Figure 6: AU activation rates for red, green, and blue examples. Red bars indicate examples where the unimodal
visual model predicted correctly but the multimodal model did not (Red: Unimodal > 0.5, Multimodal < 0.5).
Green bars show the reverse. Blue bars indicate examples where both the unimodal and multimodal models correctly
predicted the label.
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Transcript: "I assume you don’t know who
emailed me for the emergency sessions"

Quadrant: Red
True Label: Empathetic

Annotator 1: Neutral
Annotator 2: Empathetic

Transcript: "In fact research suggests we spend
about 55 percent of our day..."

Quadrant: Blue
True Label: Neutral
Annotator 1: Neutral
Annotator 2: Neutral

Transcript: "One of the reasons I wanted to come
here tonight was to discuss our future."

Quadrant: Yellow
True Label: Neutral

Annotator 1: Empathetic
Annotator 2: Empathetic

Transcript: "It’s good to have you here um
especially to talk about a topic that i think is one

of the more sensitive topics that we we’re
discussing in society today..."

Quadrant: Green
True Label: Empathetic

Annotator 1: Neutral
Annotator 2: Empathetic

Table 13: Example clips from each disagreement quadrant with transcript and labels.
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