
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 1954–1966

December 20-24, 2025 ©2025 Association for Computational Linguistics

Reasoning RAG via System 1 or System 2: A Survey on Reasoning Agentic
Retrieval-Augmented Generation for Industry Challenges

Jintao Liang1, Gang Su2, Huifeng Lin3, You Wu4, Rui Zhao5,6, Ziyue Li7*,
1Beijing University of Posts and Telecommunications, 2University of Georgia,

3South China University of Technology, 4Hong Kong University of Science and Technology,
5SenseTime Research, 6Qingyuan Research Institute, Shanghai Jiaotong University,

7Department of Operations and Technology, and Munich Data Science Institute,
and Heilbronn Data Science Center, Technical University of Munich

ljt2021@bupt.edu.cn, {gangsuedu,huifeng.work}@gmail.com, ywuiu@connect.ust.hk

zhaorui@sensetime.com, ziyue.li@tum.de

Abstract

Retrieval-Augmented Generation (RAG) has
emerged as a powerful framework to over-
come the knowledge limitations of Large Lan-
guage Models (LLMs) by integrating external
retrieval with language generation. While early
RAG systems based on static pipelines have
shown effectiveness in well-structured tasks,
they struggle in real-world scenarios requir-
ing complex reasoning, dynamic retrieval, and
multi-modal integration. To address these chal-
lenges, the field has shifted toward Reasoning
Agentic RAG, a paradigm that embeds decision-
making and adaptive tool use directly into the
retrieval process. In this paper, we present a
comprehensive review of Reasoning Agentic
RAG methods, categorizing them into two pri-
mary systems: predefined reasoning, which
follow fixed modular pipelines to boost reason-
ing, and agentic reasoning, where the model
autonomously orchestrates tool interaction dur-
ing inference. We analyze representative tech-
niques under both paradigms, covering archi-
tectural design, reasoning strategies, and tool
coordination. Finally, we discuss key research
challenges and propose future directions to ad-
vance the flexibility, robustness, and applica-
bility of reasoning agentic RAG systems. Our
collection of the relevant researches has been
organized into a GitHub Repository.

1 Introduction

Large Language Models (LLMs) (Singh, 2023;
Zhao et al., 2023; Zhu et al., 2024) have demon-
strated remarkable capabilities in natural language
understanding and generation, enabling a wide ar-
ray of applications. However, LLMs rely on static
training data, making them prone to hallucina-
tions and limiting their ability to provide accurate,
up-to-date information in dynamic or knowledge-
intensive tasks (Rawte et al., 2023; Zhang et al.,
2023; Huang et al., 2025). Retrieval-Augmented

* Corresponding author.

Generation (RAG) (Chen et al., 2024; Lewis et al.,
2020; Gao et al., 2023) has attracted significant
attention as a promising approach to overcome
the knowledge limitations of LLMs resulting from
static pretraining. By integrating relevant infor-
mation from external knowledge bases or search
engines, RAG enhances factual accuracy and broad-
ens the model’s temporal and domain coverage
(Zhao et al., 2024; Li et al., 2024a). Traditional
RAG methods perform strongly with well-formed
queries and readily available necessary information
in the retrieved context.

Despite the effectiveness of basic RAG meth-
ods, they often struggle when applied to real-
world, industrial-scale applications involving com-
plex and heterogeneous data. For example, in
multi-document scenarios, relevant information is
spread across sources, requiring not just retrieval
but also coherent synthesis (Wang et al., 2025,
2024b). Naively concatenating retrieved passages
can lead to fragmented or contradictory responses,
particularly in domains where multi-hop reasoning
is critical. Additionally, most RAG systems are
limited to text-only processing and cannot handle
multi-modal inputs such as tables, charts, or im-
ages (Ma et al., 2024; Yu et al., 2025). This limits
their ability in data-rich environments like enter-
prise intelligence, scientific reporting, or technical
support, where visual and structured data play a
central role (Lin et al., 2023a; Yu et al., 2024).

To address these limitations of basic RAG in han-
dling complex, real-world tasks, recent research
has turned to Agentic RAG (Ravuru et al., 2024), a
paradigm that tightly integrates retrieval with rea-
soning and decision-making(see Appendix A.2 for
relevant researches). Figure 1 shows the evolu-
tion trajectory of Reasoning Agentic RAG. Unlike
static pipelines, Agentic RAG treats retrieval as a
dynamic, context-sensitive operation guided by the
model’s reasoning process. This reasoning-centric
perspective is crucial for applications demanding

1954

https://github.com/ByebyeMonica/Reasoning-Agentic-RAG


Figure 1: Illustration of the evolution trajectory of Reasoning Agentic RAG.

multi-step problem solving, adaptive information
acquisition, and tool-assisted synthesis. Within
this paradigm, as shown in Figure 2, two major
types of reasoning agentic systems have emerged
based on how control and decision-making are han-
dled: predefined reasoning, which follow struc-
tured, rule-based plans with fixed pipelines to
boost reasoning for retrieval and generation; and
agentic reasoning, where the model actively mon-
itors its reasoning process and determines when
and how to retrieve or interact with external tools.
These two workflows form the basis of Reason-
ing Agentic RAG, which unifies structured and au-
tonomous approaches for more intelligent, context-
aware retrieval-augmented reasoning. Reasoning
Agentic RAG can be broadly categorized into two
paradigms: predefined reasoning and agentic rea-
soning, as shown in Figure 3.

Design Follow

LLM
Human

(a) Predefined Reasoning

Reasoning

(b) Agentic Reasoning

External Tools

Tool Calling

Retrieved Information

Figure 2: Two major types of reasoning Agentic Systems.
Predefined reasoning adopts structured and

modular RAG pipelines where the retrieval and rea-
soning steps are explicitly designed. These work-
flows typically decompose tasks into discrete com-
ponents such as query reformulation, document
retrieval, re-ranking, and answer synthesis, exe-
cuted in a linear or orchestrated fashion. In general,
predefined reasoning spans several architectural

variants: route-based methods selectively trigger
retrieval based on context or model uncertainty,
such as low confidence scores or ambiguous inter-
mediate outputs (Wang et al., 2024a); loop-based
methods enable limited iteration through retrieval-
feedback cycles, supporting multiple rounds of re-
finement (Asai et al., 2023; Yang et al., 2024b);
tree-based methods organize information hierar-
chically to support structured exploration (Sarthi
et al., 2024; Hu et al., 2025); and hybrid-modular
frameworks compose specialized modules into a
flexible but still rule-driven workflow (Jeong et al.,
2024; Gao et al., 2024). These workflows priori-
tize control and modularity, fitting tasks requiring
efficient computation and customization. However,
their reasoning remains constrained by predesigned
execution paths, limiting flexibility in evolving and
open-ended tasks.

Agentic reasoning repositions the LLM as an
active decision maker, that autonomously orches-
trates retrieval and tool use throughout the rea-
soning process. Instead of executing a fixed plan,
the model identifies knowledge gaps, formulates
queries, retrieves external information via tools
such as search engines or APIs, and integrates
the retrieved contents into an evolving solution.
This dynamic interplay of reasoning and tool use
enables the system to tackle complex, multi-turn
tasks that require iterative refinement and adaptive
information synthesis. There are two primary meth-
ods for implementing agentic reasoning. The first
is prompt-based methods, which leverages the in-
context reasoning and instruction-following capa-

1955



R
ea

so
ni

ng
A

ge
nt

ic
R

A
G Predefined reasoning

Route-based RAGate (Wang et al., 2024a), Self-Route (Li et al., 2024b)

Loop-based Self-RAG (Asai et al., 2023), CRAG (Yan et al., 2024)

Tree-based RAPTOR (Sarthi et al., 2024), MCTS-RAG (Hu et al., 2025)

Hybrid-modular Adaptive-RAG (Jeong et al., 2024), Modular-RAG (Gao et al., 2024)

Agentic reasoning

Prompt-based ReAct (Yao et al., 2023), Self-Ask (Press et al., 2023),
Function calling (Eleti et al., 2023), Search-O1 (Li et al., 2025a)

Training-based
DeepRetrieval (Jiang et al., 2025), Search-R1 (Jin et al., 2025),
R1-Searcher (Song et al., 2025), ReZero (Dao and Le, 2025),
DeepResearcher (Zheng et al., 2025)

Figure 3: A taxonomy of Reasoning Agentic RAG.

bilities of LLMs (Yao et al., 2023; Press et al., 2023;
Li et al., 2025a). In this setting, the model is guided
by carefully crafted prompts or embedded control
tokens that instruct it when to retrieve, what actions
to take, and how to integrate external information.
These methods require no additional training, mak-
ing them lightweight and adaptable across tasks.
The second paradigm is training-based methods,
where models are explicitly optimized through re-
inforcement learning, to determine when and how
to invoke external tools (Jiang et al., 2025; Jin et al.,
2025; Zheng et al., 2025). This paradigm enables
more fine-grained and strategic tool usage, enabling
models to learn long-term planning and develop re-
trieval policies tailored to complex tasks. Owing
to its autonomy and adaptability, agentic reason-
ing has shown strong performance in open-domain
QA, scientific reasoning, and multi-stage decision-
making scenarios.

To further contextualize predefined and agen-
tic reasoning within the dual-process theory of
cognition, commonly referred to as System 1 and
System 2 thinking (Yang et al., 2024a; Li et al.,
2025b), we can draw an analogy between these
RAG paradigms and human cognitive modes. Ta-
ble 1 aligns predefined and agentic reasoning with
the dual-system theory from cognitive science.

• Predefined reasoning resembles System 1
thinking: fast, structured, and efficient, re-
lying on predefined heuristics and modular
workflows that mirror habitual or rule-based
cognition. While this enables rapid execution
and predictable behavior, it often lacks the
flexibility to adapt beyond its design.

• Agentic reasoning aligns more closely with
System 2 thinking: slow, deliberative, and
adaptive. Here, the LLM actively engages
in reasoning, planning, and decision-making,
dynamically leveraging external tools and re-
trieved knowledge to address complex, novel

tasks. This reflective mode allows the model
to identify gaps, reassess strategies, and ad-
just its behavior—traits characteristic of con-
scious, analytical human reasoning.

System Type Reasoning Workflow Description

System 1 Predefined Reasoning Structured, modular, rule-
based execution.

System 2 Agentic Reasoning Autonomous, adaptive, model-
driven decision-making.

Table 1: Cognitive system alignment of reasoning workflows.

The paper systematically reviews and analyzes
the current research approaches and future devel-
opment paths of Reasoning Agentic RAG, summa-
rizing them into two primary technical paradigms,
among which the distribution of different works is
shown in Figure 4. The remainder of the paper is
organized as follows: Section 2 and Section 3 dive
into the two types of reasoning workflows within
Agentic RAG: Predefined Reasoning and Agentic
Reasoning. Section 4 outlines future research di-
rections and Section 5 concludes the paper.

Figure 4: Distributed Works of Reasoning Agentic RAG.

2 Predefined Reasoning

Agents and RAG are increasingly integrated in ad-
vanced AI systems. By augmenting LLMs with
external knowledge retrieval, RAG enables agents
to ground their reasoning in relevant information.
In turn, agent-based reasoning which includes plan-
ning, tool use and self-reflection, enhances RAG by
guiding the model on what information to retrieve
and how to incorporate it into the reasoning process.
This synergy supports a predefined reasoning, as
illustrated in Figure 5, where the agent iteratively
queries external sources (e.g., a local database or

1956



Question
LLM

Sub-Questions

Retrieval

Reflection. Are there 
knowledge gaps?

Yes, generate new questionsNo, Summarize

Answer

Question 
Decomposition

Predefined Reasoning

Figure 5: Overview of the Predefined Reasoning. The LLM
decomposes a question into sub-questions, retrieves relevant
evidence from external sources, and reflects on whether knowl-
edge gaps remain. If gaps are found, new queries are gener-
ated; otherwise, the final answer should be summarized.

web search) and refines its reasoning based on the
retrieved evidence. We categorize predefined RAG
reasoning workflows into four broad types based
on their structural and reasoning characteristics.

Route-based Approaches: RAG incorporates
dynamic routing mechanisms that direct queries
along different retrieval or reasoning paths based on
predefined conditions—such as query type, model
uncertainty, or confidence estimation—while still
operating within a fixed architecture. RAGate
(Wang et al., 2024a) uses the conversation context
and model confidence to route dialogues truly re-
quiring external knowledge to a RAG process. This
ensures the system can bypass retrieval for straight-
forward prompts while invoking it for knowledge-
intensive queries, exemplifying conditional RAG
in dialogue. Self-Route (Li et al., 2024b) intro-
duced dynamically routes queries to either RAG or
Long-Context (LC) models based on the model’s
confidence-based routing. This method signifi-
cantly reduces computation cost while maintaining
performance comparable to LC models.

Loop-based Approaches: RAG operates within
a feedback loop that supports multiple rounds of
refinement. The system can self-reflect, critique in-
termediate outputs, and iteratively update retrieval
inputs to improve generation quality. Self-RAG
(Asai et al., 2023) is a foundational example of this
controlled reasoning loop. In the Self-RAG work-
flow, a single LLM agent engages in self-reflection
during generation to improve its output. Instead of
relying on a fixed retrieved context, the model can
decide mid-generation to fetch additional informa-
tion or to critique its own draft answer. CRAG (Yan
et al., 2024) introduced loop-based corrective feed-
back mechanism into the retrieval process. In the
CRAG workflow, a lightweight retrieval evaluator

assigning the confidence scores about the quality
of the retrieved chunks/documents — categorized
as correct, incorrect, or ambiguous. When retrieval
quality is deemed suboptimal, the system activates
corrective strategies such as query rewriting or ex-
ternal web search to gather better evidence. The
system refines the retrieved content into a focused
context and iteratively improves retrieval until a
satisfactory output is generated.

Tree-based Approaches: RAG organizes the re-
trieval process hierarchically, using recursive struc-
tures such as trees to support multi-hop reason-
ing or document summarization. RAPTOR (Sarthi
et al., 2024) introduces a recursive tree structure
from documents, allowing for more efficient and
context-aware information retrieval. This approach
enhances RAG by creating a summary tree from
text chunks, providing deeper insights to over-
come limitations of short, contiguous text retrieval.
MCTS-RAG (Hu et al., 2025) integrates a Monte
Carlo Tree Search loop into the RAG process for
complex reasoning tasks. MCTS-RAG dynami-
cally integrates retrieval and reasoning through an
iterative decision-making process. Unlike standard
RAG, which retrieves information independently
from reasoning and thus integrates knowledge sub-
optimally, or conventional MCTS reasoning, which
depends solely on internal model knowledge with-
out external facts, MCTS-RAG combines struc-
tured reasoning with adaptive retrieval.

Hybrid-modular Approaches: RAG in its most
flexible form combines routing, looping, reflec-
tion, and modular orchestration. Tasks are divided
among specialized components, coordinated by an
agent that can reconfigure the workflow according
to the query or reasoning context. Adaptive-RAG
(Jeong et al., 2024) extends the Self-RAG frame-
work by introducing routing mechanisms that en-
able dynamic path selection. In addition to allow-
ing the model to interleave retrieval and generation
steps, it equips the agent with a decision-making
router that selects appropriate retrieval strategies or
reasoning pathways based on the query characteris-
tics or the agent’s own uncertainty. Rather than sim-
ply determining whether to retrieve more informa-
tion, the agent can choose which retrieval method
to apply, what type of information to prioritize, or
which downstream modules to engage. Modular-
RAG (Gao et al., 2024) is the most advanced incar-
nation that transform RAG into a LEGO-like mod-
ular framework, breaking the RAG process into
an orchestrated pipeline of specialized modules.

1957



Rather than a single agent handling everything,
a Modular-RAG architecture compartmentalizes
tasks, e.g., one module for query reformulation,
one for document retrieval, another for ranking
or filtering results, and another for answer synthe-
sis, all chained together in a composable workflow.
The pipeline is composed by an agent that coordi-
nates modular components, each of which can be
optimized or swapped independently.

This progression of predefined reasoning work-
flows reflects a broader shift from static retrieval
pipelines to dynamic, agent-driven reasoning sys-
tems. Modern predefined reasoning increasingly
integrates planning, tool use, and decision-making
components that allow flexible orchestration of re-
trieval and reasoning strategies. Rather than pre-
defining rigid retrieval steps, these systems em-
power agents to determine what information to
seek, how to use it, and when to adapt their ap-
proach—marking a move toward more autonomous
and intelligent knowledge integration. A summary
of the representative works and open-source indus-
trial implementations across these predefined RAG
workflow types is provided in Table 2.

3 Agentic Reasoning

Beyond the predefined reasoning mentioned above,
a more dynamic paradigm has emerged: the Agen-
tic Reasoning. In this setting, the LLM serves as
an autonomous agent that not only generates text,
but also actively manages retrieval. With advances
in reasoning and instruction-following capabilities,
the model can identify knowledge gaps, determine
when and what to retrieve, and interact with ex-
ternal tools such as search engines or APIs. This
tight integration of reasoning and tool use enables
iterative decision-making, enabling the system to
refine its responses based on newly retrieved in-
formation. As a result, agentic reasoning supports
more flexible and adaptive problem-solving, ex-
tending RAG beyond basic QA to complex tasks
such as scientific inquiry, multi-step reasoning, and
strategic decision-making. Agentic reasoning ap-
proaches can be broadly categorized by how the
LLM learns to use tools:

• Prompt-Based Approaches: These methods
leverage the instruction-following, in-context
learning and reasoning capabilities of pre-
trained LLMs, guiding tool use through care-
fully crafted prompts or built-in functionali-
ties without additional training.

• Training-Based Approaches: These meth-
ods involve explicitly training LLMs via rein-
forcement learning, to learn when and how to
interact with external tools effectively.

A summary of representative agentic reasoning
approaches and their characteristics is provided in
Table 2. The following sections examine represen-
tative and techniques within each approach.

3.1 Prompt-Based Approaches

Prompt-based approaches harness the remarkable
capabilities already present in pre-trained LLMs to
enable agentic behavior. Instead of updating model
weights, these methods use advanced prompting,
few-shot examples, or built-in tool interfaces to
guide LLMs in interacting with external tools such
as search engines.

Function-Calling-Based: A core prompt-based
method for agentic behavior, and one way to im-
plement function calling, is ReAct (Reason+Act)
(Yao et al., 2023). ReAct aims to create a synergy
between the reasoning processes and action-taking
capabilities within an LLM. Its core mechanism
involves prompting the LLM to generate outputs in
an interleaved sequence of Thought, Action, and
Observation. ReAct employs few-shot prompting,
providing the LLM with examples that demon-
strate this Thought-Action-Observation trajectory
for solving similar tasks. the frozen model learns
how to structure its reasoning, invoke tools, and
move toward a goal. The framework demonstrated
significant advantages in grounding the LLM’s rea-
soning. By allowing the model to actively seek and
incorporate external information via actions, ReAct
can mitigate the hallucination and error propaga-
tion issues observed in purely internal reasoning
methods like Chain-of-Thought (Wei et al., 2023).
The explicit reasoning traces (“Thoughts”) in Re-
Act enhance the interpretability and transparency
of the model’s decision-making. Within RAG, Re-
Act offers a natural agentic reasoning pipeline: the
LLM’s "Thought" process can identify a knowl-
edge gap, leading to a search "Action," with the
retrieved results forming the "Observation" that
informs subsequent reasoning. A related method,
Self-Ask (Press et al., 2023), encourages step-by-
step problem decomposition by prompting LLM to
generate and answer simpler follow-up questions.
These intermediate steps involve search actions,
enabling the model to gather relevant information
before attempting to answer the main question.

1958



Predefined Reasoning

Approach Strategy Control Type Reasoning Complexity Code

RAGate (Wang et al., 2024a) Route-based Adaptive Medium Link
self-RAG (Asai et al., 2023) Loop-based Agentic Medium Link
CRAG (Yan et al., 2024) Loop-based Adaptive Medium Link
MCTS-RAG (Hu et al., 2025) Tree-based Agentic High Link
RAPTOR (Sarthi et al., 2024) Tree-based Fixed Medium Link
Adaptive-RAG (Jeong et al., 2024) Hybrid-modular Adaptive Medium Link
Modular-RAG (Gao et al., 2024) Hybrid-modular Fixed Low N/A
DeepSearcher Industry Adaptive Medium Link
RAGFlow Industry Adaptive Medium Link
Haystack Industry Adaptive Medium Link
Langchain-Chatchat Industry Adaptive/Agentic Medium Link
LightRAG Industry Adaptive Medium Link
R2R Industry Agentic High Link
FlashRAG Industry Adaptive Medium Link

Agentic Reasoning

Approach Strategy Training environment Reward design Code

ReAct (Yao et al., 2023) Prompt-based N/A N/A Link
Self-Ask (Press et al., 2023) Prompt-based N/A N/A Link
Function calling (Eleti et al., 2023) Prompt-based N/A N/A N/A
Search-O1 (Li et al., 2025a) Prompt-based N/A N/A Link
Search-R1 (Jin et al., 2025) Training-based Local retrieval system Answer reward Link
R1-Searcher (Song et al., 2025) Training-based Local retrieval system Retrieval reward, format reward, answer reward Link
ReZero (Dao and Le, 2025) Training-based Local retrieval system Retrieval reward, format reward, answer reward, retry reward Link
DeepRetrieval (Jiang et al., 2025) Training-based Restricted real-world search engine Retrieval reward, format reward Link
DeepResearcher (Zheng et al., 2025) Training-based Real-world search engine Format reward, answer reward Link

Table 2: A summary of reasoning agentic rag.

Another prominent prompt-based approach in-
volves leveraging the function calling capabilities
that have been explicitly built into or fine-tuned
into certain LLMs, such as versions of GPT (Eleti
et al., 2023), Llama, and Gemini. This feature
allows the LLM to interact reliably with prede-
fined external tools or APIs based on natural lan-
guage instructions. Function calling significantly
expands the capabilities of LLMs beyond text gen-
eration, enabling them to access real-time, dynamic
information, interact with external systems and
databases, automate tasks, and reliably convert nat-
ural language requests into structured API calls
or database queries. In contrast to the more open-
ended "thought-action-observation" cycle of ReAct,
function calling often bypasses explicit intermedi-
ate reasoning steps. The LLM directly identifies
the relevant tool and generates the necessary param-
eters based on its training to recognize and format
specific function calls. This more direct approach
relies on the model’s pre-existing knowledge of
available tools and their required inputs. Further-
more, the format and capabilities of the tools acces-
sible via function calling are typically predefined
and have been integrated into the model’s training
or prompt design. For Agentic RAG, function call-
ing provides a straightforward and structured way
for the LLM agent to invoke a search API when its
internal analysis determines that external informa-
tion is required to answer a prompt accurately.

Large Reasoning Model-based: A growing

trend in Agentic RAG workflow involves directly
utilizing LLMs that possess inherently strong rea-
soning capabilities, often referred to as Large Rea-
soning Models (LRMs). These models, sometimes
developed through techniques like large-scale re-
inforcement learning (e.g., models analogous to
OpenAI’s o1 (OpenAI et al., 2024), DeepSeek-R1
(DeepSeek-AI et al., 2025)), are designed to excel
at complex, multi-step reasoning tasks. The under-
lying premise is that an LLM with superior intrin-
sic reasoning abilities will be better equipped to
manage the complexities of an Agentic RAG work-
flow, including decomposing challenging queries,
planning information-gathering steps, assessing the
relevance and utility of retrieved information, and
synthesizing knowledge effectively. In essence,
leveraging LRMs within RAG represents a prompt-
based agentic strategy where the model’s powerful
inherent reasoning capabilities drive the process,
implicitly deciding when and how to retrieve infor-
mation to support its complex thought processes.

However, effectively managing the retrieved con-
text is another significant challenge. LLMs with
extremely long context windows can suffer from a
"lost-in-the-middle" problem, where information
presented in the middle of a long input receives
less attention. Furthermore, retrieved documents,
whether in long-context models or standard RAG,
often contain verbose, noisy or contradictory con-
tent that can disrupt the coherence of the LLM’s rea-
soning process. Mitigating this challenge requires

1959

https://github.com/wangxieric/RAGate
https://github.com/AkariAsai/self-rag
https://github.com/HuskyInSalt/CRAG
https://github.com/yale-nlp/MCTS-RAG
https://github.com/parthsarthi03/raptor
https://github.com/starsuzi/Adaptive-RAG
https://github.com/zilliztech/deep-searcher
https://github.com/infiniflow/ragflow
https://github.com/deepset-ai/haystack
https://github.com/chatchat-space/Langchain-Chatchat
https://github.com/HKUDS/LightRAG
https://github.com/SciPhi-AI/R2R
https://github.com/RUC-NLPIR/FlashRAG
https://github.com/ysymyth/ReAct
https://github.com/ofirpress/self-ask
https://github.com/sunnynexus/Search-o1
https://github.com/PeterGriffinJin/Search-R1
https://github.com/RUCAIBox/R1-Searcher
https://github.com/menloresearch/ReZero
https://github.com/pat-jj/DeepRetrieval
https://github.com/GAIR-NLP/DeepResearcher


more precise retrieval strategies and adaptive con-
text management mechanisms. As shown in Figure
6, the Search-o1 framework (Li et al., 2025a) is
specifically designed to enhance LRMs by tack-
ling knowledge insufficiency during long, step-by-
step reasoning chains. It integrates two core com-
ponents: an Agentic RAG Mechanism where the
LRM dynamically triggers search queries based
on self-assessed knowledge gaps, and a Reason-in-
Documents Module that processes retrieved con-
tent to distill relevant information into a refined
format, thereby minimizing noise and maintaining
the LRM’s reasoning integrity. Search-o1 exempli-
fies a sophisticated prompt-based agentic approach
focused on maintaining reasoning integrity in the
face of external information retrieval.

Original Question:
Step1: … Step2: … Step3: ...
Sub-Question

LRM

Retrieved 
Documents

Reason-in-
Documents

Search for helpful info

Reasoning for next step
Distilled 

Information

Step n

Step n+1

Search Query

Step n+2
...

Final Step
Final Answer

iterable

Agentic Reasoning

Figure 6: Overview of Agentic Reasoning. The LRM it-
eratively identifies missing knowledge at each reasoning
step, issues targeted search queries, and invokes a Reason-in-
Documents module to extract and distill relevant information
from retrieved content. The distilled results are incorporated
into the next reasoning step until a final answer is derived.

3.2 Training-Based Approaches
While prompt-based methods leverage the inherent
capabilities of LLMs, their performance in complex
tool-use scenarios can be inconsistent. Achieving
highly reliable and optimized behavior, especially
in deciding when and how to interact with tools
like search engines, often benefits from explicit
training. Training-based approaches, particularly
those utilizing Reinforcement Learning (RL), en-
able the LLM agent to learn sophisticated strategies
through trial and error, directly optimizing its ac-
tions towards specific goals such as maximizing
retrieval effectiveness or overall task success. RL
enables agents to develop more robust and strategic
interaction patterns than prompting alone.

Interacting with local retrieval systems:
Search-R1 (Jin et al., 2025) tackles a different as-
pect of agentic search: training the LLM to au-
tonomously decide when and what to search for dur-
ing a multi-step reasoning process. It extends RL-
based reasoning frameworks (like DeepSeek-R1)
by integrating search engine interaction directly

into the learning loop. In the Search-R1 framework,
the search engine is modeled as part of the RL envi-
ronment. The LLM agent learns a policy to gener-
ate a sequence of tokens that includes both internal
reasoning steps (often enclosed in <think> tags)
and explicit triggers for search actions. These trig-
gers are special tokens, <search> and </search>,
which encapsulate the generated search query. This
design allows for flexible, multi-turn interactions
where the LLM can interleave reasoning, search-
ing, processing retrieved information (presented
within <information> tags), and further reason-
ing or searching as needed. The framework utilizes
a simple outcome-based reward function, typically
based on the correctness of the final answer gener-
ated by the LLM (within <answer> tags) compared
to a ground truth, avoiding the complexity of de-
signing intermediate process rewards. A crucial
technique employed is retrieved token masking.
During the calculation of the RL loss (using algo-
rithms like PPO or GRPO (Shao et al., 2024)), the
tokens corresponding to the content retrieved from
the search engine (i.e., within the <information>
tags) are ignored or masked out, which stabilizes
the training process. Search-R1 has shown signifi-
cant performance improvements over various RAG
baselines on question-answering datasets. Its core
contribution is training the LLM to learn an opti-
mal policy for interacting with the search engine
as an integrated part of its reasoning flow, enabling
dynamic, context-aware search decisions. The re-
lated R1-Searcher (Song et al., 2025) framework
also proposes a similar two-stage, outcome-based
RL approach for enhancing search capabilities.

ReZero (Retry-Zero) (Dao and Le, 2025) in-
troduces another dimension to RL-based agentic
search by specifically focusing on incentivizing per-
sistence. It addresses the common scenario where
an initial search query might fail to retrieve the nec-
essary information, potentially causing the LLM
agent to halt prematurely or generate a suboptimal
response. ReZero aims to teach the agent the value
of “trying one more time." The framework oper-
ates within a standard RL setup (using GRPO is
mentioned) where the LLM interacts with a search
environment. The novelty lies in its modified re-
ward function, which includes a specific compo-
nent termed reward retry. This component provides
a positive reward signal whenever the LLM issues
a <search> query after the initial search query
within the same reasoning trajectory. Crucially, this
reward for retrying is conditional upon the agent

1960



successfully completing the task, indicated by gen-
erating a final answer enclosed in <answer> tags.
This conditionality prevents the agent from accu-
mulating rewards simply by retrying indefinitely
without making progress. By directly rewarding
the act of persistence (when productive), ReZero
encourages the LLM to explore alternative queries
or search strategies if the first attempt proves insuf-
ficient. This contrasts with methods that might only
implicitly reward persistence through eventual task
success. ReZero positions itself as complementary
to frameworks like DeepRetrieval; while DeepRe-
trieval focuses on optimizing a single refined query,
ReZero emphasizes the value of making multiple
retrieval attempts when needed.

Interacting with real-world search engines:
DeepRetrieval (Jiang et al., 2025) focuses specifi-
cally on improving the quality of the search queries
generated by the LLM agent. It frames the task
of query generation or rewriting as an RL prob-
lem, training the LLM to transform an initial user
query into a more effective query for downstream
retrieval systems. The core mechanism involves the
LLM generating an augmented or rewritten query
based on the input query. DeepRetrieval employs
RL algorithms like Proximal Policy Optimization
(PPO) (Schulman et al., 2017) to train this query
generation process. A key innovation lies in its
reward signal: instead of relying on supervised
data (e.g., pairs of original and "gold" rewritten
queries), DeepRetrieval uses the performance of
the generated query in the actual retrieval system as
the reward. Metrics such as recall@k, Normalized
Discounted Cumulative Gain (NDCG), or evidence-
seeking retrieval accuracy (Hits@N) obtained from
executing the generated query against a restricted
real search engine (like PubMed) or document col-
lection are used to provide feedback to the LLM.
The model learns, through trial and error, to gen-
erate queries that maximize these retrieval metrics.
To structure the generation, the model often pro-
duces reasoning steps within <think> tags before
outputting the final query in an <answer> tag. This
approach offers significant advantages. By directly
optimizing for the end goal (retrieval performance),
it bypasses the need for expensive and potentially
suboptimal supervised query datasets. Compared
to other RL methods, DeepRetrieval’s primary fo-
cus is on optimizing the content and formulation
of the search query itself.

DeepResearcher (Zheng et al., 2025) pushes the
boundaries of training-based Agentic RAG by mov-

ing beyond controlled environments or static cor-
pora to perform end-to-end RL training directly
within real-world web. It aims to equip LLM agents
with the capabilities for complex research tasks that
require navigating the noisy, unstructured and dy-
namic nature of the open web. This addresses a key
limitation of many existing agents, whether prompt-
engineered or trained in simulated/static RAG set-
tings, which struggle with the complexities of real-
world web interaction. The framework employs
RL (specifically GRPO with an F1 score-based
reward for answer accuracy) to train agents that
interact with web search APIs and browse actual
webpages. DeepResearcher utilizes a specialized
multi-agent architecture to handle the complexities
of web interaction. This includes a reasoning mod-
ule for invoking web search, and dedicated “brows-
ing agents" responsible for extracting relevant in-
formation from the diverse structures of webpages
encountered. Training in this realistic setting was
found to foster several emergent cognitive behav-
iors not typically observed in agents trained under
more constrained conditions. These include the
ability to formulate initial plans and dynamically
adjust them during research process, cross-validate
information retrieved from multiple web sources,
engage in self-reflection when retrieved informa-
tion seems contradictory or insufficient leading to
refined search strategies, and exhibit honesty by de-
clining to provide an answer when definitive infor-
mation cannot be found. DeepResearcher demon-
strated substantial performance improvements over
prompt-engineering baselines and RAG-based RL
agents trained on static corpora, particularly on
open-domain research tasks. The results suggest
that end-to-end training in realistic web environ-
ments is crucial for developing capable research
agents, moving closer to the capabilities hinted at
by proprietary systems like OpenAI’s Deep Re-
search (OpenAI, 2025) or Grok’s DeeperSearch.

The progression for the training-based methods,
from optimizing the decision process of when and
what to query (Search-R1), to fostering persistence
(ReZero), optimizing query formulation (DeepRe-
trieval), and managing real-world research work-
flows (DeepResearcher) reflects the growing so-
phistication of RL in agentic search. It reflects
a growing appreciation that effective information
seeking by an agent involves a confluence of fac-
tors: query quality, strategic timing, resilience to
failure, and adeptness in navigating realistic infor-
mation environments and so on. Future advance-

1961



ments in RL-based Agentic RAG will likely need
to integrate these facets more holistically, perhaps
through more complex reward structures, multi-
objective optimization, or architectures that explic-
itly model these different dimensions of the search
process, to achieve truly human-like research and
problem-solving capabilities.

4 Future Research Directions

Enhancing tool interaction through advanced
configuration. Current agentic reasoning often uti-
lizes search tools with relatively basic interfaces,
primarily focused on generating text queries. Fu-
ture work should enable agents to exploit more
advanced configurations offered by external APIs
and tools. This could involve training agents to
understand and utilize options like result filtering
(e.g., by date, source type), sorting criteria, specify-
ing search domains, or interacting with structured
databases via complex queries. Granting finer con-
trol would support more targeted, efficient, and
strategic retrieval aligned with task demands.

Developing finer-Grained and process-
oriented reward functions. Simple outcome-
based rewards like exact match may not offer
adequate guidance for complex RAG tasks that
require multi-step reasoning or detailed responses.
Future research should develop fine-grained reward
functions that assess both final answer correctness
and intermediate steps such as document relevance,
reasoning coherence, information cross-validation,
and effective problem decomposition. These
signals are vital for training agents to handle
queries requiring more than short factual answers.

Improving Efficiency in Retrieval. The ap-
proaches mentioned above primarily focus on the
accuracy of the final answer, but enhancing the
efficiency of the retrieval process itself is also crit-
ical. Agents trained to interact with potentially
vast information sources, must learn to perform re-
trievals strategically. Future research should focus
on techniques that help agents avoid excessive or
unnecessary search queries, select the most promis-
ing sources, and know when sufficient information
has been gathered. Developing strategies to prevent
agents from getting stuck in loops of unproductive
searching or performing redundant retrievals is vi-
tal for practical and scalable Agentic RAG.

Enhancing Generalization and Robustness in
Dynamic Environments. Robust generalization
to new queries, unseen tools (e.g., sparse or dense

retrieval), and changing environments remains a
major challenge. While training in realistic condi-
tions (as in DeepResearcher) improves resilience,
agents still struggle with tool failures and shifting
knowledge availability. Future work should explore
adaptive training methodologies and architectures
that ensure robust performance in unfamiliar or
dynamic settings.

By addressing key areas such as improving agent
control over tools, designing more sophisticated re-
ward signals, increasing efficiency, and enhancing
generalization, the field can move toward build-
ing more capable, reliable, and widely applicable
Agentic RAG systems. These advancements are
essential for transitioning agentic AI from research
prototypes to practical systems that can effectively
support humans in complex information tasks.

5 Conclusions

As language models are increasingly deployed in
complex, knowledge-intensive applications, the
limitations of static RAG pipelines have become
apparent. Reasoning Agentic RAG offers a promis-
ing path forward by integrating retrieval with
model-driven planning, self-reflection, and tool
use. This paper surveyed the landscape of reason-
ing workflows within Agentic RAG, distinguishing
between predefined reasoning with fixed orchestra-
tion, and agentic reasoning that enables dynamic,
autonomous decision-making. We reviewed key
methods across both paradigms, highlighting their
strengths, limitations, and use-case applicability.
To advance the field, we identify several crucial di-
rections for future research, including fine-grained
reward design, enhanced tool control, automated
data synthesis, and robust training in dynamic envi-
ronments. These innovations will be essential for
realizing intelligent, context-aware RAG systems
capable of addressing real-world challenges with
greater adaptability, transparency, and reliability.

Limitations

While this paper provides a comprehensive review
of Reasoning Agentic RAG methods, it still has
limitations in terms of resource coverage. The
study mainly focuses on representative published
literature and open-source projects in recent years,
excluding closed-source solutions from the analy-
sis scope. This may lead to an incomplete under-
standing of the practical application landscape of
Reasoning Agentic RAG.

1962



References
Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and

Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
Preprint, arXiv:2310.11511.

Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun.
2024. Benchmarking large language models in
retrieval-augmented generation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 17754–17762.

Alan Dao and Thinh Le. 2025. Rezero: Enhancing
llm search ability by trying one-more-time. Preprint,
arXiv:2504.11001.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.
2025. Deepseek-r1: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Atty Eleti, Jeff Harris, and Logan Kilpatrick. 2023.
Function calling and other api updates.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun, Haofen
Wang, and Haofen Wang. 2023. Retrieval-augmented
generation for large language models: A survey.
arXiv preprint arXiv:2312.10997, 2:1.

Yunfan Gao, Yun Xiong, Meng Wang, and Haofen
Wang. 2024. Modular rag: Transforming rag systems
into lego-like reconfigurable frameworks. Preprint,
arXiv:2407.21059.

Yunhai Hu, Yilun Zhao, Chen Zhao, and Arman Co-
han. 2025. Mcts-rag: Enhancing retrieval-augmented
generation with monte carlo tree search. Preprint,
arXiv:2503.20757.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and 1 oth-
ers. 2025. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. ACM Transactions on Information
Systems, 43(2):1–55.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong C. Park. 2024. Adaptive-rag:
Learning to adapt retrieval-augmented large lan-
guage models through question complexity. Preprint,
arXiv:2403.14403.

Pengcheng Jiang, Jiacheng Lin, Lang Cao, Runchu Tian,
SeongKu Kang, Zifeng Wang, Jimeng Sun, and Ji-
awei Han. 2025. Deepretrieval: Hacking real search
engines and retrievers with large language models via
reinforcement learning. Preprint, arXiv:2503.00223.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon,
Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei
Han. 2025. Search-r1: Training llms to reason and
leverage search engines with reinforcement learning.
Preprint, arXiv:2503.09516.

Yilun Kong, Jingqing Ruan, Yihong Chen, Bin Zhang,
Tianpeng Bao, Shi Shiwei, Du Qing, Xiaoru Hu,
Hangyu Mao, Ziyue Li, and 1 others. 2024. Tptu-
v2: Boosting task planning and tool usage of large
language model-based agents in real-world industry
systems. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing:
Industry Track, pages 371–385.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, and 1 others. 2020. Retrieval-augmented gen-
eration for knowledge-intensive nlp tasks. Advances
in neural information processing systems, 33:9459–
9474.

Jiarui Li, Ye Yuan, and Zehua Zhang. 2024a. En-
hancing llm factual accuracy with rag to counter
hallucinations: A case study on domain-specific
queries in private knowledge-bases. arXiv preprint
arXiv:2403.10446.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang,
Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng
Dou. 2025a. Search-o1: Agentic search-enhanced
large reasoning models. Preprint, arXiv:2501.05366.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Ji-
axin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu,
Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, and 1 oth-
ers. 2025b. From system 1 to system 2: A survey
of reasoning large language models. arXiv preprint
arXiv:2502.17419.

Zhuowan Li, Cheng Li, Mingyang Zhang, Qiaozhu
Mei, and Michael Bendersky. 2024b. Retrieval aug-
mented generation or long-context llms? a com-
prehensive study and hybrid approach. Preprint,
arXiv:2407.16833.

Weizhe Lin, Jinghong Chen, Jingbiao Mei, Alexandru
Coca, and Bill Byrne. 2023a. Fine-grained late-
interaction multi-modal retrieval for retrieval aug-
mented visual question answering. Advances in
Neural Information Processing Systems, 36:22820–
22840.

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia Shi,
Maria Lomeli, Richard James, Pedro Rodriguez, Ja-
cob Kahn, Gergely Szilvasy, Mike Lewis, and 1 oth-
ers. 2023b. Ra-dit: Retrieval-augmented dual instruc-
tion tuning. In The Twelfth International Conference
on Learning Representations.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting in retrieval-
augmented large language models. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 5303–5315.

1963

https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2504.11001
https://arxiv.org/abs/2504.11001
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://openai.com/index/function-calling-and-other-api-updates/
https://arxiv.org/abs/2407.21059
https://arxiv.org/abs/2407.21059
https://arxiv.org/abs/2503.20757
https://arxiv.org/abs/2503.20757
https://arxiv.org/abs/2403.14403
https://arxiv.org/abs/2403.14403
https://arxiv.org/abs/2403.14403
https://arxiv.org/abs/2503.00223
https://arxiv.org/abs/2503.00223
https://arxiv.org/abs/2503.00223
https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2501.05366
https://arxiv.org/abs/2501.05366
https://arxiv.org/abs/2407.16833
https://arxiv.org/abs/2407.16833
https://arxiv.org/abs/2407.16833


Zi-Ao Ma, Tian Lan, Rong-Cheng Tu, Yong Hu, Heyan
Huang, and Xian-Ling Mao. 2024. Multi-modal re-
trieval augmented multi-modal generation: A bench-
mark, evaluate metrics and strong baselines. arXiv
preprint arXiv:2411.16365.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer,
Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, Alex Beutel, Alex
Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
Passos, Alexander Neitz, Alexander Prokofiev,
Alexander Wei, Allison Tam, and 244 others. 2024.
Openai o1 system card. Preprint, arXiv:2412.16720.

OpenAI. 2025. Deep research system card.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2023. Measuring
and narrowing the compositionality gap in language
models. Preprint, arXiv:2210.03350.

Chidaksh Ravuru, Sagar Srinivas Sakhinana, and
Venkataramana Runkana. 2024. Agentic retrieval-
augmented generation for time series analysis. arXiv
preprint arXiv:2408.14484.

Vipula Rawte, Swagata Chakraborty, Agnibh Pathak,
Anubhav Sarkar, SM_Towhidul Islam Tonmoy,
Aman Chadha, Amit Sheth, and Amitava Das. 2023.
The troubling emergence of hallucination in large
language models-an extensive definition, quantifica-
tion, and prescriptive remediations. Association for
Computational Linguistics.

Stephen Robertson, Hugo Zaragoza, and 1 others. 2009.
The probabilistic relevance framework: Bm25 and
beyond. Foundations and Trends® in Information
Retrieval, 3(4):333–389.

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu,
Tianpeng Bao, Hangyu Mao, Ziyue Li, Xingyu Zeng,
Rui Zhao, and 1 others. 2023. Tptu: Task plan-
ning and tool usage of large language model-based
ai agents. In NeurIPS 2023 Foundation Models for
Decision Making Workshop.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh
Khanna, Anna Goldie, and Christopher D. Manning.
2024. Raptor: Recursive abstractive processing for
tree-organized retrieval. Preprint, arXiv:2401.18059.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Prox-
imal policy optimization algorithms. Preprint,
arXiv:1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Aditi Singh. 2023. Exploring language models: A
comprehensive survey and analysis. In 2023 Inter-
national Conference on Research Methodologies in

Knowledge Management, Artificial Intelligence and
Telecommunication Engineering (RMKMATE), pages
1–4. IEEE.

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen,
Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and Ji-
Rong Wen. 2025. R1-searcher: Incentivizing the
search capability in llms via reinforcement learning.
Preprint, arXiv:2503.05592.

Han Wang, Archiki Prasad, Elias Stengel-Eskin, and
Mohit Bansal. 2025. Retrieval-augmented gener-
ation with conflicting evidence. arXiv preprint
arXiv:2504.13079.

Xi Wang, Procheta Sen, Ruizhe Li, and Emine Yilmaz.
2024a. Adaptive retrieval-augmented generation for
conversational systems. Preprint, arXiv:2407.21712.

Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi
Zhang, and Tyler Derr. 2024b. Knowledge graph
prompting for multi-document question answering.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 19206–19214.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling.
2024. Corrective retrieval augmented generation.
Preprint, arXiv:2401.15884.

Cheng Yang, Chufan Shi, Siheng Li, Bo Shui, Yujiu
Yang, and Wai Lam. 2024a. Llm2: Let large lan-
guage models harness system 2 reasoning. arXiv
preprint arXiv:2412.20372.

Xiao Yang, Kai Sun, Hao Xin, Yushi Sun, Nikita Bhalla,
Xiangsen Chen, Sajal Choudhary, Rongze Gui, Zi-
ran Jiang, Ziyu Jiang, and 1 others. 2024b. Crag-
comprehensive rag benchmark. Advances in Neural
Information Processing Systems, 37:10470–10490.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. Preprint, arXiv:2210.03629.

Qinhan Yu, Zhiyou Xiao, Binghui Li, Zhengren Wang,
Chong Chen, and Wentao Zhang. 2025. Mramg-
bench: A beyondtext benchmark for multimodal
retrieval-augmented multimodal generation. arXiv
preprint arXiv:2502.04176.

Shi Yu, Chaoyue Tang, Bokai Xu, Junbo Cui, Jun-
hao Ran, Yukun Yan, Zhenghao Liu, Shuo Wang,
Xu Han, Zhiyuan Liu, and 1 others. 2024. Vis-
rag: Vision-based retrieval-augmented generation
on multi-modality documents. arXiv preprint
arXiv:2410.10594.

1964

https://arxiv.org/abs/2412.16720
https://openai.com/index/deep-research-system-card/
https://arxiv.org/abs/2210.03350
https://arxiv.org/abs/2210.03350
https://arxiv.org/abs/2210.03350
https://arxiv.org/abs/2401.18059
https://arxiv.org/abs/2401.18059
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2503.05592
https://arxiv.org/abs/2503.05592
https://arxiv.org/abs/2407.21712
https://arxiv.org/abs/2407.21712
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2401.15884
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629


Bin Zhang, Hangyu Mao, Jingqing Ruan, Ying Wen,
Yang Li, Shao Zhang, Zhiwei Xu, Dapeng Li, Ziyue
Li, Rui Zhao, and 1 others. Controlling large lan-
guage model-based agents for large-scale decision-
making: An actor-critic approach. In ICLR 2024
Workshop on Large Language Model (LLM) Agents.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, and 1 others. 2023. Siren’s song in the
ai ocean: a survey on hallucination in large language
models. arXiv preprint arXiv:2309.01219.

Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhen-
gren Wang, Yunteng Geng, Fangcheng Fu, Ling
Yang, Wentao Zhang, Jie Jiang, and Bin Cui. 2024.
Retrieval-augmented generation for ai-generated con-
tent: A survey. arXiv preprint arXiv:2402.19473.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, and 1 others. 2023.
A survey of large language models. arXiv preprint
arXiv:2303.18223, 1(2).

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai,
Lyumanshan Ye, Pengrui Lu, and Pengfei Liu. 2025.
Deepresearcher: Scaling deep research via reinforce-
ment learning in real-world environments. Preprint,
arXiv:2504.03160.

Yizhang Zhu, Shiyin Du, Boyan Li, Yuyu Luo, and
Nan Tang. 2024. Are large language models good
statisticians? arXiv preprint arXiv:2406.07815.

A Related Work

A.1 Basic RAG
Retrieval-Augmented Generation (RAG) was in-
troduced to overcome the static knowledge limi-
tations of LLMs by integrating external retrieval
mechanisms during inference (Chen et al., 2024;
Gao et al., 2023). Naive RAG methods represent
the earliest implementations, typically using sparse
retrieval techniques like BM25 (Robertson et al.,
2009) to fetch documents based on keyword over-
lap (Ma et al., 2023). While efficient for simple
factoid queries, these approaches offered limited
semantic understanding, thus often retrieving noisy
or redundant content and failing to reason across
multiple sources.

The emergence of Advanced RAG and Modular
RAG was aimed at addressing key limitations of the
Naive RAG, particularly in terms of retrieval preci-
sion, information integration, and system flexibil-
ity (Gao et al., 2023). Advanced RAG improves re-
trieval quality through techniques such as dense se-
mantic matching, re-ranking, and multi-hop query-
ing, while also introducing refined indexing strate-
gies like fine-grained chunking and metadata-aware

retrieval. Modular RAG rethinks the Naive RAG by
breaking down the end-to-end process of indexing,
retrieval, and generation into discrete, configurable
modules. This design allows for greater architec-
tural flexibility and enables system developers to
incorporate diverse techniques into specific stages,
such as enhancing retrieval with fine-tuned search
modules (Lin et al., 2023b). In response to specific
task demands, various restructured and iterative
module designs have also emerged. As a result,
modular RAG has increasingly become a dominant
paradigm in the field, supporting both serialized
pipeline execution and end-to-end learning across
modular components.

Despite their effectiveness, basic RAG work-
flows are limited by static control logic and lack
the ability to reflect, adapt, or assess the suffi-
ciency of retrieved information. These constraints
reduce their suitability for tasks requiring itera-
tive reasoning, tool use, or multi-modal integra-
tion. Thus, Agentic RAG has proposed to embed
reasoning and decision-making into the retrieval
process. This work focuses on reasoning Agentic
RAG approaches that enable more autonomous and
context-aware information processing.

A.2 Reasoning Agentic RAG
The year 2025 is marked as the year of agentic
AI, with applications emerging such as agentic
LLMs and so on (Ruan et al., 2023; Kong et al.,
2024; Zhang et al.). Recent advances in RAG
have seen a shift from static, rule-driven retrieval
pipelines toward dynamic, reasoning-driven archi-
tectures, collectively referred to as Reasoning Agen-
tic RAG. Figure 1 illustrates the evolution trajectory
of Reasoning Agentic RAG. These systems embed
decision-making into the retrieval process, enabling
models to actively determine when, what, and how
to retrieve based on their internal reasoning trajec-
tory. As shown in Figure 3, Reasoning Agentic
RAG approaches can be broadly categorized into
two paradigms: predefined reasoning and agentic
reasoning.

Predefined reasoning depends on structured, rule-
based pipelines where the retrieval and reasoning
stages are modularized and fixed in advance. These
workflows often include components for query re-
formulation, document retrieval, re-ranking, and
response generation, coordinated by static control
logic. RAGate (Wang et al., 2024a) exemplifies
route-based designs, where retrieval is condition-
ally triggered based on the context or model con-

1965

https://arxiv.org/abs/2504.03160
https://arxiv.org/abs/2504.03160


fidence, enabling the system to skip unnecessary
operations and focus on knowledge-intensive in-
puts. Self-RAG (Asai et al., 2023) introduces loop-
based reasoning by enabling the model to self-
reflect and iteratively refine its responses, while
RAPTOR (Sarthi et al., 2024) leverages a recursive
tree structure to hierarchically summarize and or-
ganize retrieved content, supporting multi-hop and
abstractive reasoning. Building on these founda-
tions, more advanced frameworks like Adaptive-
RAG (Jeong et al., 2024) combine dynamic routing
and retrieval adaptation, enabling models to se-
lect optimal reasoning paths. Modular-RAG (Gao
et al., 2024) extends this idea by dividing the RAG
pipeline into interoperable modules like retrievers,
rerankers and generators, which can be flexibly
composed into hybrid workflows. These designs
enabling more flexible orchestration while still op-
erating under predefined execution paths.

Agentic reasoning empowers the LLM to act
as an autonomous agent, dynamically deciding
how to interact with external tools based on its
current reasoning state. These workflows tightly
couple reasoning with tool use, enabling the model
to issue retrieval queries, assess results, and iter-
atively adapt its actions. Two main implementa-
tion strategies have emerged: prompt-based and
training-based approaches. Prompt-based meth-
ods leverage the instruction-following abilities of
pretrained LLMs to drive agentic behavior with-
out additional training. For example, ReAct (Yao
et al., 2023) interleaves reasoning steps with tool
use to guide retrieval based on emerging knowl-
edge gaps. Other methods like Self-Ask (Press
et al., 2023) and Search-o1 (Li et al., 2025a) sup-
port decomposition into sub-questions or trigger
retrieval mid-generation. Additionally, function
calling mechanisms (Eleti et al., 2023) built into
commercial LLMs such as GPT and Gemini offer
structured interfaces for tool use, further enabling
prompt-based agentic control. In parallel, training-
based approaches aim to explicitly teach LLMs to
reason and retrieve in a unified, goal-driven man-
ner by leveraging reinforcement learning (RL) to
optimize tool-use behavior. DeepRetrieval (Jiang
et al., 2025) trains models to reformulate queries
by maximizing retrieval metrics. Search-R1 (Jin
et al., 2025) and R1-Searcher (Song et al., 2025)
both adopt a two-stage, outcome-driven RL frame-
work that enables LLMs to learn when and what to
search within a reasoning trajectory. ReZero (Dao
and Le, 2025)incentivizes persistence, rewarding

effective retry strategies. DeepResearcher (Zheng
et al., 2025) pushes further by training agents in
open web environments, enabling robust search
and synthesis across diverse, unstructured sources.

1966


