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Abstract

The Nepali language has distinct linguistic fea-
tures, especially its complex script (Devana-
gari script), morphology, and various dialects,
which pose a unique challenge for Natural Lan-
guage Understanding (NLU) tasks. While the
Nepali Language Understanding Evaluation
(Nep-gLUE) benchmark provides a foundation
for evaluating models, it remains limited in
scope, covering four tasks. This restricts their
utility for comprehensive assessments of Natu-
ral Language Processing (NLP) models. To ad-
dress this limitation, we introduce twelve new
datasets, creating a new benchmark, the Nepali
Language Understanding Evaluation (NLUE)
benchmark for evaluating the performance of
models across a diverse set of Natural Lan-
guage Understanding (NLU) tasks. The added
tasks include Single-Sentence Classification,
Similarity and Paraphrase Tasks, Natural Lan-
guage Inference (NLI), and General Masked
Evaluation Task (GMET). Through extensive
experiments, we demonstrate that existing top
models struggle with the added complexity of
these tasks. We also find that the best multilin-
gual model outperforms the best monolingual
models across most tasks, highlighting the need
for more robust solutions tailored to the Nepali
language. This expanded benchmark sets a
new standard for evaluating, comparing, and
advancing models, contributing significantly to
the broader goal of advancing NLP research for
low-resource languages.

1 Introduction

Nepali is written in the Devanagari script and is
a highly inflected language. The Nepali language
incorporates a complex system of noun, adjective,
and verb inflections, including gender, case, and
number (Bal, 2004). It has a rich vocabulary and is
spoken in different dialects across various regions,
and there are variations in vocabulary, grammar,

* means equal contributions

and pronunciation. Developing and establishing ro-
bust models for Nepali requires reliable methods to
evaluate their quality and effectiveness and it is es-
sential to have tools that can assess how well these
models address the language’s unique linguistic
challenges while identifying their limitations.

Despite Nepali’s importance as a primary or sec-
ondary language for millions of speakers, research
efforts and resources dedicated to its computational
processing and evaluation remain relatively sparse.
Existing benchmarks, such as Nep-gLUE (Tim-
ilsina et al., 2022), have made significant progress
in this direction, providing a foundation for evaluat-
ing models on fundamental tasks. However, these
benchmarks are limited in scope, primarily address-
ing four basic tasks and overlooking critical aspects
of linguistic understanding such as coreference res-
olution, paraphrase interpretation, and advanced
inference capabilities. To address this need, we
introduce a new benchmark comprising 12 Natural
Language Understanding (NLU) tasks ! for Nepali.
The tasks are grouped into four categories:

Single-Sentence Tasks: Sentiment Analysis (SA),
Corpus of Linguistic Acceptability (CoLA),
and WinoGrande (WG)

Similarity and Paraphrase Tasks: Quora Ques-
tion Pairs (QQP), Microsoft Research Para-
phrase Corpus (MRPC), Semantic Textual
Similarity Benchmark (STS-B), and Query-
Ad Matching (QADSM)

Natural Language Inference (NLI) Tasks:
Multi-Genre NLI (MNLI), Question Answer
NLI (QNLI), Recognizing Textual Entailment
(RTE), and Coreference Resolution (CR)

General Masked Evaluation Task (GMET):
A diagnostic task for testing factual and
contextual understanding.

'NLUE Benchmark Datasets
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Corpus Train Test Task Maetrics Used Domain
Single Sentence Tasks
SA 65.1K  16.3K Sentiment Macro F1, Acc Reviews, Tweets
CoLA 7.8K  1.95K Acceptability Macro F1, Acc Books, Journal
WG 325K 814K Commonsense Reasoning -y e A Misc.
and Pronoun Coreference
Similarity and Paraphrase Tasks
QQP 26K 6.5K  Paraphrase Macro F1, Acc Social QA
MRPC 4.19K 1.05K Paraphrase Macro F1, Acc News
Pearson Corr,
STS-B 5.45K 1.36K Sentence Similarity Spearman Corr, News, Video Cap.
R2
QADSM 594K 149K Similarity Macro F1, Acc News
Natural Language Inference Tasks
MNLI 40.8K 10.2K NLI Macro F1, Acc Misc.
QNLI 28K 7K QA/NLI Macro F1, Acc Wikipedia
RTE 2.01K 503 NLI Macro F1, Acc News, Wikipedia
CR 564 142 Coreference/NLI Macro F1, Acc Fiction Books
General Masked Evaluation Task
GMET - 1.5K Mask Filling Acc, Combined Score Books, News

Table 1: Task descriptions and dataset statistics in the NLUE benchmark.

This suite includes a broader range of linguistic
tasks, enabling more comprehensive evaluation of
NLU capabilities for Nepali language models (Ap-
pendix A). Table 1 provides an overview of tasks,
dataset sizes, evaluation metrics, and domains cov-
ered in the NLUE Benchmark.

The datasets in the NLUE Benchmark are in-
spired by the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018)
and XGLUE benchmark (Liang et al., 2020), and
were developed through a combination of auto-
mated and manual processes to ensure high-quality
task-specific datasets. Our contributions involved
translating datasets with Large Language Models
(LLMs), particularly GPT-40-mini (OpenAl, 2024)
and Gemini-2.5-flash (GeminiTeam, 2025), and en-
suring the accuracy and contextual relevance of
these translations (Appendix B & C). We also con-
ducted a thorough review of the availability of ex-
isting Nepali datasets for each task. Where datasets
were available, we integrated them with translated
data, carefully eliminating duplicates to form a
unified and comprehensive dataset. For tasks like
Acceptability Judgments and Coreference Resolu-
tion, where suitable datasets or high-quality trans-
lations were unavailable, we performed manual
translations to ensure linguistic accuracy and con-
sistency. These efforts collectively ensure that the

final dataset is robust, comprehensive, and reflec-
tive of the linguistic diversity in the Nepali lan-
guage.

To assess the effectiveness of the NLUE bench-
mark and performance of models, we conducted
experiments by fine-tuning both monolingual mod-
els trained exclusively on Nepali-language data and
multilingual models that include Nepali as one of
their supported languages. Each model was fine-
tuned on tasks introduced in the NLUE Benchmark
and evaluated using metrics provided in Table 1,
providing a comprehensive understanding of their
performance on various aspects of NLU.

2 Related Works

Benchmarks like GLUE (Wang et al., 2018) and
its successor Super General Language Understand-
ing Evaluation (SuperGLUE) benchmark (Wang
et al., 2020) have been instrumental in advanc-
ing research in Natural Language Understanding
(NLU). GLUE introduced a multi-task framework
for evaluating diverse NLU capabilities, such as
single-sentence classification, sentence-pair simi-
larity, and inference tasks. SuperGLUE extended
this with more challenging tasks, including causal
reasoning and coreference resolution, addressing
GLUE’s limitations for state-of-the-art models.
These benchmarks set a standard for evaluating
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linguistic and semantic understanding in high-
resource languages like English, inspiring adapta-
tions in other languages and low-resource settings.
Efforts like (Liang et al., 2020) and (Hu et al., 2020)
expanded these concepts to multilingual contexts,
enabling cross-lingual transfer learning.

Nep-gLUE (Timilsina et al., 2022) is the first
comprehensive benchmark for Natural Language
Understanding (NLU) tasks in Nepali. It includes
four core tasks: Named Entity Recognition (NER),
Part-of-Speech Tagging (POS), Content Classifica-
tion (CC), and Categorical Pair Similarity (CPS).
Although Nep-gLUE offers a robust foundation
with its multi-task dataset, it falls short in address-
ing more advanced NLP tasks necessary for com-
prehensive evaluations of models at the linguistic
level. The advanced and complex tasks are crucial
for further progress in low-resource languages like
Nepali.

Nepali Sentiment Analysis (NepSA) (Singh
et al., 2020) is a targeted aspect-based sentiment
analysis dataset, with 3,068 comments extracted
from 37 YouTube videos across 9 channels. It
is annotated using a binary sentiment polarity
schema across six aspects: General, Profanity,
Violence, Feedback, Sarcasm, and Out-of-scope.
Another dataset, Aspect-Based Sentiment Anal-
ysis (Tamrakar et al., 2020), contains 1,576 sen-
tences, equally divided between positive and nega-
tive sentiments. Additional datasets, such as Nepali
Language Sentiment Analysis - Movie Reviews
(Ghimire) with 602 data points, and Nepali Sen-
timent Analysis (Acharya) with 2,161 data points
found on Kaggle, are limited in size and domain-
specific. For our benchmark, we utilized the Nep-
COV19Tweets dataset (Sitaula et al., 2021), which
includes ~33.5k sentiments labeled as positive, neg-
ative, or neutral. From these, we selected 14.9k
positive and 13.5k negative data points for the
SA dataset. A more recent dataset, Sentiment
of Election-Based Nepali Tweets (Pokharel), con-
tains ~17.8k tweets but includes English charac-
ters and numbers, making it less suitable for our
benchmarked dataset. To our knowledge, there
are no publicly available datasets for coreference
resolution, acceptability judgment, paraphrase and
similarity detection, commonsense reasoning, pro-
noun coreference resolution, general masked evalu-
ation, or NLI in the Nepali language. Despite some
studies focusing on Nepali grammar, the lack of
datasets for these advanced tasks limits the devel-
opment of comprehensive NLU benchmarks.

3 Model Selection

To evaluate the performance of Natural Language
Processing (NLP) models on the Nepali Language
Understanding Evaluation (NLUE) benchmark, we
selected ten publicly available models that sup-
port devanagari script, carefully chosen to repre-
sent a diverse range of architectures, parameter
sizes, and pretraining strategies including the state-
of-the-art encoder model for language understand-
ing and best monolingual models for the Nepali
Language. Evaluating these models on the NLUE
benchmark serves multiple purposes. First, it pro-
vides a comprehensive assessment of their capa-
bilities across a diverse set of tasks. This enables
us to identify which architectures and pretraining
strategies are best suited for Nepali NLP, partic-
ularly for tasks that demand robust handling of
the language’s morphological complexity and di-
alectal variations. Second, comparing monolingual
and multilingual models highlights the trade-offs
between language-specific pretraining and cross-
lingual generalization, offering insights into the
optimal approach for low-resource languages. By
identifying the strengths and weaknesses of exist-
ing models, this study informs the development of
more robust solutions tailored to Nepali’s unique
linguistic challenges.

4 Tasks

NLUE is a benchmark designed to evaluate the
performance of language understanding models
across a diverse set of tasks, addressing the limita-
tions of its predecessor, Nep-gLUE. The objective
of NLUE is to provide a robust evaluation metric
applicable to a broad range of language understand-
ing challenges. We describe the tasks below and in
Table 1.

4.1 Single-Sentence Tasks

Single-sentence tasks in the NLUE benchmark fo-
cus on assessing a model’s ability to understand
and analyze individual sentences. These tasks eval-
uate a model’s ability to understand and interpret
the meaning, sentiment, and grammatical structure
of individual sentences.

4.1.1 Sentiment Analysis (SA)

The Sentiment Analysis dataset has been added to
evaluate models’ ability to classify the emotional
tone (Positive & Negative) of Nepali text. We cre-
ated the dataset for sentiment analysis by translat-
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Model Params SA CoLA WG
Acc F1 Acc F1 Acc F1

Distilbert-Nepali (Maskey et al., 2022) 67M  86.34 8633 84.51 80.96 58.20 58.08
NepBERT (Rajan, 2021) 82M 83.34 83.34 80.51 74.80 5249 52.04
NepaliBERT (Pudasaini et al., 2023) 110M  87.06 87.06 84.51 8092 5477 54.75
BERT Nepali (Thapa et al., 2025) 110M  87.73 87.72 84.76 80.65 66.81 66.13
NepBERTa (Timilsina et al., 2022) 110M  86.62 86.62 84.15 80.60 67.12 50.52
RoBERTa Nepali (Thapa et al., 2025) 125M  87.75 87.74 8544 82.14 68.07 68.07
DeBERTa-Nepali (Maskey et al., 2022) 139M  87.43 8742 85.08 81.86 59.76 59.75
Multilingual BERT (Devlin et al., 2019)  172M  86.35 86.34 82.41 78.95 67.12 50.52
XLM-R Base (Conneau et al., 2020) 270M  88.33 88.34 85.64 82.03 50.77 50.52
m-DeBERTa-v3 (He et al., 2023) 276M  88.94 88.93 88.31 85.64 6745 67.44

Table 2: Model Performance across Single-Sentence Tasks

ing Stanford Sentiment Treebank (Socher et al.,
2013) from the GLUE Benchmark, which includes
~53k sentence-level data points from movie reviews
with human-annotated sentiment labels, using GPT-
40-mini, and manually translating instances that
could not be accurately translated (Appendix B &
C). We incorporated this dataset with pre-existing
sentiment analysis of Nepali COVID-19-related
tweets (Sitaula et al., 2021), adding ~28.4k data
points. The combined SA dataset totals 81.4k data
points, equally distributed between the positive and
negative classes. Models are evaluated using Ac-
curacy and Macro F1-score metrics, as reported in
Table 1.

4.1.2 Corpus of Linguistic Acceptability
(CoLA)

The Acceptability Judgments dataset determines
whether a given sentence follows the linguistic
rules of Nepali, ensuring the model can assess
grammaticality. The dataset was created by translat-
ing the Corpus of Linguistic Acceptability (CoLA)
(Warstadt et al., 2019) from the GLUE Benchmark,
which includes 9.75k data points sourced from
books and journal articles on linguistic theory, us-
ing GPT-40-mini. Manual corrections were applied
to sections where translations were inaccurate (Ap-
pendix B & C). The dataset is divided into correct
and incorrect classes in a 70:30 ratio, respectively.
Models are evaluated using Accuracy and Macro
F1-score metrics, as reported in Table 1.

4.1.3 WinoGrande (WG)

The WinoGrande dataset evaluates a model’s abil-
ity to perform commonsense reasoning by identify-
ing the correct referent in a sentence with a blank
referring to one of two candidate entities. The

dataset for this benchmark is converted to Nepali by
translating the XGLUE benchmark’s WinoGrande
dataset (Sakaguchi et al., 2019) using Gemini-2.5-
flash, with manual corrections applied to ensure
translation accuracy (Appendix B & C). The final
dataset contains 40.7k data points, with each in-
stance labeled to indicate the correct referent, and
is equally split between both classes. The dataset
preserves the original format and balance of the
English version. Models are evaluated using Ac-
curacy and Macro F1-score metrics, as reported in
Table 1.

4.2 Similarity and Paraphrase Tasks

Similarity and Paraphrase Task in the NLUE bench-
mark evaluates a model’s ability to determine
whether two sentences convey the same meaning
or are paraphrases of each other. By focusing on
this aspect of language comprehension, these tasks
provide valuable insights into a model’s proficiency
in handling diverse expressions of similar ideas.

4.2.1 Quora Question Pairs (QQP)

The QQP dataset tests whether the model can
identify if pairs of questions from the community
question-and-answer website Quora have similar
meanings. The dataset was created by translating
the Quora Question Pairs dataset (Iyer et al., 2017)
from the GLUE Benchmark into Nepali using GPT-
40-mini and Gemini-2.5-flash, with manual cor-
rections applied (Appendix B & C). The dataset
contains 32.5k question pairs, labeled as similar or
dissimilar, with a class distribution of 40% similar
and 60% dissimilar. Models are assessed using ac-
curacy and Macro F1-score metrics, as reported in
Table 1.
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Model Params QQP MRPC STS-B QADSM
Acc F1 Acc F1 Sp.corr  Pr.corr R? Acc F1
Distilbert-Nepali (Maskey et al., 2022) 67M  81.63 81.07 8052 7795 84.57 83.13 71.13 65.74 65.63
NepBERT (Rajan, 2021) 82M  71.17 69.61 6734 5691 41.44 41.06 12771 61.03 60.80
NepaliBERT (Pudasaini et al., 2023) 110M 7737 176.67 66.86 5849 75091 73776 57.62 6327 63.18
BERT Nepali (Thapa et al., 2025) 110M  80.88 80.48 7650 73.61 84.57 83.87 7154 6435 64.34
NepBERTa (Timilsina et al., 2022) 110M  81.83 81.57 8042 78.67 87.54 86.44 76.53 6371 63.64
RoBERTa Nepali (Thapa et al., 2025) 125M  81.15 80.60 79.47 7525 87.75 86.32 76.68 65.02 65.00
DeBERTa-Nepali (Maskey et al., 2022) 1390M  82.85 82.33 80.61 7823 81.62 80.00 66.35 6523 65.21
Multilingual BERT (Devlin et al., 2019)  172M 8231 81.78 8147 78.02  87.75 86.62 7693 6391 63.84
XLM-R Base (Conneau et al., 2020) 270M  83.06 82.68 8271 80.59 87.68 86.79  76.77 63.70 63.70
m-DeBERTa-v3 (He et al., 2023) 276M  84.34 83.82 83.48 81.93 90.22 89.57 8133 6642 66.42

Table 3: Model Performance across Similarity and Paraphrase Tasks

4.2.2 Microsoft Paraphrase Research Corpus
(MPRCO)

We introduced the MRPC dataset, intending to iden-
tify whether the sentence pairs extracted from news
articles are paraphrases of each other, based on the
Microsoft Research Paraphrase Corpus (Dolan and
Brockett, 2005). Using GPT-40-mini, we trans-
lated the MRPC dataset into Nepali with manual
correction whenever needed (Appendix B & C).
The dataset contains 5.23k sentence pairs, with the
class distribution of 70-30, with a higher propor-
tion of paraphrase pairs. We report the Accuracy
and Macro F1 score, as shown in Table 1.

4.2.3 Semantic Textual Similarity Benchmark
(STS-B)
The STS-B dataset measures a model’s proficiency
in predicting the degree of semantic relatedness be-
tween pairs of sentences drawn from sources such
as news headlines and video captions. Each pair is
annotated with a similarity score on a continuous
scale from 0O (no meaning overlap) to 5 (complete
semantic equivalence), framing the task as a regres-
sion problem. The dataset was created by trans-
lating the STS-B dataset (Cer et al., 2017) from
the GLUE Benchmark into Nepali using Gemini-
2.5-flash, with manual corrections applied to en-
sure translation accuracy (Appendix B & C). The
dataset contains 6.82k sentence pairs. We evalu-
ate the model using Pearson correlation, Spearman
correlation, and R? metrics, as reported in Table 1.

4.2.4 Query-Ad Matching (QADSM)

The QADSM dataset assesses a model’s capabil-
ity to align the semantic meaning between queries
and advertisements. The dataset was created by
translating the QADSM dataset from the XGLUE
Benchmark (Liang et al., 2020) into Nepali using
Gemini-2.5-flash, with manual refinements to en-
sure linguistic precision (Appendix B & C). The

dataset contains 74.3k data points, equally split
between relevant and irrelevant classes, based on
ad-query relevance. Models are evaluated using
accuracy and Macro F1-score metrics, as reported
in Table 1.

4.3 Inference Tasks

The NLI tasks in this benchmark assess a model’s
ability to understand relationships between sen-
tences, such as entailment, contradiction, and neu-
tral alignment. These tasks are crucial because they
evaluate a model’s comprehension of contextual
meaning, logical inference, and its ability to handle
complex linguistic structures, making them essen-
tial for advancing robust language understanding.

4.3.1 Multi-Genre NLI (MNLI)

The MNLI dataset tests a model’s capability to
predict the relationship between sentence pairs, de-
termining whether a premise entails, contradicts,
or is unrelated to a hypothesis (neutral). The
dataset was created by translating the Stanford Nat-
ural Language Inference Corpus (Bowman et al.,
2015) from the GLUE Benchmark into Nepali us-
ing GPT-40-mini and Gemini-2.5-flash, with man-
ual intervention for precision (Appendix B & C).
The dataset contains 51k sentence pairs, equally di-
vided among entailment, contradiction, and neutral
classes. We report accuracy and Macro F1-score,
as described in Table 1.

4.3.2 Question-Answering NLI (QNLI)

The QNLI dataset evaluates a model’s capability
to determine whether a context sentence contains
the answer to a given question. The dataset has
been adapted for Nepali from the GLUE bench-
mark by translating the original English dataset
using GPT-40-mini and Gemini-2.5-flash, with
manual verification for accuracy (Appendix B &
C), which originates from the Stanford Question
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Model Params MNLI QNLI RTE CR
Acc F1 Acc F1 Acc F1 Acc F1

Distilbert-Nepali (Maskey et al., 2022) 67M 68.57 68.61 79.61 79.46 56.06 55.63 52.82 52.63
NepBERT (Rajan, 2021) 82M 5193 51.09 60.04 59.96 5388 53.85 55.63 39.70
NepaliBERT (Pudasaini et al., 2023) 110M  63.27 6325 77.58 7743 51.89 51.80 55.63 55.63
BERT Nepali (Thapa et al., 2025) 110M  71.80 7192 81.26 81.22 53.28 53.27 59.15 51.63
NepBERTa (Timilsina et al., 2022) 110M  71.87 71.85 81.24 81.15 55.07 53.33 58.52 57.33
RoBERTa Nepali (Thapa et al., 2025) 125M  73.10 73.07 81.86 81.78 5249 5244 4929 49.12
DeBERTa-Nepali (Maskey et al., 2022) 139M  74.01 74.01 82.64 82.64 53.88 53.04 50.70 50.67
Multilingual BERT (Devlin et al., 2019)  172M  71.60 71.85 83.47 83.46 68.19 68.00 47.89 47.38
XLM-R Base (Conneau et al., 2020) 270M 7523 7522 83.13 83.13 57.06 54.86 50.00 49.80
m-DeBERTa-v3 (He et al., 2023) 276M  78.76 78.84 86.65 86.65 57.85 57.80 4648 32.84

Table 4: Model Performance across Inference Tasks

Answering Dataset (Rajpurkar et al., 2016) that
contains question-paragraph pairs sourced from
Wikipedia. The dataset contains 35k question-
sentence pairs, equally split between entailment
and non-entailment pairs, ensuring a balanced class
distribution, and evaluated using accuracy and
Macro F1-score metrics, as reported in Table 1.

4.3.3 Recognizing Textual Entailment (RTE)

The RTE dataset evaluates a model’s ability to pre-
dict whether a hypothesis logically follows from
a given premise. The dataset for this benchmark
is converted to Nepali by translating the GLUE
benchmark’s RTE dataset, combined from RTE1
(Dagan et al., 2006), RTE2 (Bar-Haim et al., 20006),
RTE3 (Giampiccolo et al., 2007), and RTES (Ben-
tivogli et al., 2009) using GPT-40-mini, with man-
ual corrections to maintain translation accuracy
(Appendix B & C), containing 2.51k data points,
equally distributed between two classes (entailment
and non-entailment). We evaluate the model using
Accuracy and Macro Fl-score, as discussed in Ta-
ble 1.

4.3.4 Coreference Resolution (CR)

This CR dataset tests the model’s ability to resolve
coreference relationships within a Nepali text. We
developed the coreference resolution dataset by
manually translating the Winograd Schema Chal-
lenge (Levesque et al., 2011) from the GLUE
Benchmark. The dataset has 706 data points, bal-
anced between two classes, evaluated with Accu-
racy and Macro F1-score, as mentioned in Table 1.

4.4 General Masked Evaluation Task
(GMET)

The General Masked Evaluation Task (GMET)
dataset evaluates the zero-shot capabilities of lan-
guage models in recognizing word relationships,

understanding contextual nuances, and maintain-
ing grammatical precision without fine-tuning. It
serves as a benchmark for assessing logical reason-
ing and proficiency with complex linguistic con-
structs, critical for reliable language understanding
across diverse scenarios. The GMET dataset com-
prises 1,500 authentic sentences from real-world
contexts, ensuring ecological validity. These sen-
tences are organized into 75 distinct categories,
with 20 sentences per category, covering various
topics and regional linguistic variations. Each sen-
tence contains a missing word, challenging mod-
els to predict the appropriate word based on con-
text, testing their inherent contextual understand-
ing and language comprehension, particularly with
nuanced expressions across communities. As the
missing word may not always have a single correct
answer, native speakers assisted in manual evalua-
tions to ensure accurate and fair assessment.

Model Params Acc C. Acc
Distilbert-Nepali (Maskey et al., 2022) 67M 51.47 42.84
NepBERT (Rajan, 2021) 82M 13.60 12.52

NepaliBERT (Pudasaini et al., 2023)
BERT Nepali (Thapa et al., 2025)
NepBERTa (Timilsina et al., 2022)
RoBERTa Nepali (Thapa et al., 2025)
DeBERTa-Nepali (Maskey et al., 2022)
Multilingual BERT (Devlin et al., 2019)
XLM-R Base (Conneau et al., 2020)
m-DeBERTa-v3 (He et al., 2023)

110M 44.53 37.99
110M 49.40 42.63
110M 46.40 39.89
125M 57.27 48.76
139M 52.60 44.56
172M 14.13 12.80
270M 53.27 44.75
276M 45.33 42.77

Table 5: Model Performance in GMET

Model performance on the GMET dataset is eval-
uated using two key metrics: overall accuracy and
a combined score. Overall accuracy measures the
proportion of correct predictions across all sen-
tences, providing a straightforward performance
indicator. The combined score integrates overall
accuracy with an equality score, reflecting con-
sistency across categories and penalizing uneven
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performance to ensure balanced contextual under-
standing across diverse topics and linguistic vari-
ations. Further details are provided in Appendix
F.

5 Experiments
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Figure 1: Different training config based on parameters
with initial FC Layer
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Figure 2: Different training config based on parameters
without initial FC Layer

We experimented with eight distinct finetuning con-
figurations (Configs I-VIII), each controlling the
subset of model parameters that are updated dur-
ing training, as illustrated in Figure 1 and Fig-
ure 2. These configuration choices were driven
by our available datasets to mitigate overfitting
risks, which ranged widely from just under 1,000
to 80,000 data points. For larger datasets like
QADSM and SA, training only the classification
layer was insufficient, while for smaller datasets
like CR and RTE, training all layers risked overfit-
ting. Therefore, at least three configurations were
tested per dataset to ensure robust performance
comparisons and validate generalizability.

As part of our ablation study, we systematically
examined how performance was affected by vary-
ing the number and type of layers updated during
training, ranging from tuning only the top classi-
fication layer to progressively unfreezing interme-
diate and lower transformer layers. This analysis
helped isolate the contributions of different layers

to downstream performance. Specifically, we also

experimented with Config IV both with and with-

out the initial fully connected (FC) layer to assess

its specific role in feature transformation.
Hyperparameter Search Space:

* Learning rate: {le—5,2e—5,1le—4,2e—4}
* Batch size: {8, 16, 32}

* Training epochs: Up to 15, with early stop-
ping after three consecutive epochs of non-
improving validation loss

For each configuration, we performed 5-fold
cross-validation to select optimal hyperparameters
and evaluate model performance. For each fold, we
trained models with all hyperparameter combina-
tions and selected the configuration that achieved
the lowest validation loss. The best average hyper-
parameters across folds were used for final training.
Test evaluation was done only after hyperparam-
eter selection. Optimal hyperparameter settings
and configuration for each dataset and model are
reported in Appendix E.

6 Result and Analysis

We evaluate 10 language models on the NLUE
benchmark across four task categories: Single-
Sentence Classification, Similarity and Paraphrase
Detection, Inference Tasks, and the GMET. For
Classification Tasks, we report accuracy to measure
overall correctness and macro-F1 to ensure bal-
anced performance across potentially imbalanced
classes. For the Regression Task, we use Spear-
man and Pearson correlation coefficients to assess
monotonic and linear relationships, respectively,
between predicted and actual continuous scores,
and R? to quantify the proportion of variance in
actual similarity scores explained by the model’s
predictions. For GMET, we report a combined
score, integrating overall accuracy with an equal-
ity score, to evaluate consistency across diverse
categories.

Across Single Sentence tasks, m-DeBERTa-v3
achieves the highest overall scores, with an SA
Macro-F1 of 88.93, WG Macro-F1 of 67.44, and
CoLA Macro-F1 of 85.64. Among Nepali-specific
models, RoOBERTa-Nepali performs competitively
in SA and WG, indicating that moderate-scale mod-
els can effectively handle single-sentence under-
standing in Nepali. Results reported in Table 2.
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m-DeBERTa-v3 consistently achieves the high-
est scores across Similarity and Paraphrase Tasks
with top Macro-F1 scores in QQP (83.82), MPRC
(81.93), QADSM (66.42), and the highest correla-
tion metrics in STS-B (90.22 Spearman, 89.57 Pear-
son). Among Nepali-specific models, DeBERTa-
Nepali performs strongly on QQP and MRPC,
while RoBERTa-Nepali shows better results on
STS-B and QADSM. Overall, multilingual mod-
els dominate in performance, which suggests that
semantic similarity detection in Nepali demands
sophisticated representational capabilities beyond
what current Nepali-specific models provide. Re-
sults reported in Table 3.

In Inference Tasks, m-DeBERTa-v3 achieves the
strongest performance on MNLI (78.84 Macro-F1)
and QNLI (86.65 Macro-F1), while Multilingual
BERT achieves a strong 68 Macro-F1 on RTE, sug-
gesting that multilingual pretraining enhances en-
tailment and contradiction processing capabilities.
However, their performance drops notably on the
CR task, with no model exceeding 59.15% Accu-
racy (BERT Nepali), mainly due to its complexity
in Nepali and limited dataset size (706 data points),
which indicates that all models struggle with gen-
eralization from small datasets. Results reported in
Table 4.

All evaluated models demonstrated suboptimal
performance on the GMET dataset. These results
indicate that zero-shot tasks in Nepali present sig-
nificant challenges for current language models,
even when processing straightforward conversa-
tional sentences. Notably, multilingual models and
those with larger parameter counts failed to achieve
superior performance compared to their monolin-
gual counterparts. This performance gap may be
attributed to tokenization limitations, as multilin-
gual models typically contain fewer Devanagari
tokens in their vocabularies relative to monolingual
Nepali models. Results reported in Table 5.

7 Conclusion

The NLUE benchmark reveals distinct performance
trends across models and tasks, with model size cor-
relating strongly with performance. Larger models
with multilingual pretraining, such as m-deberta-
v3 (276M parameters) and XLM-r-base (270M pa-
rameters), consistently outperform smaller Nepali-
specific models, particularly in tasks requiring nu-
anced semantic understanding (e.g., STS-B, QNLI).
However, RoBERTa-Nepali (125M parameters)

achieves competitive results despite its smaller size,
suggesting that quality pretraining can outweigh
parameter count.

Tasks like RTE and CR remain challenging,
due to smaller dataset sizes, highlighting the need
for enhanced datasets and improved modeling of
Nepali textual entailment and coreference resolu-
tion. These results underscore the potential of
multilingual models for low-resource languages
like Nepali, while also revealing the importance of
better Nepali-specific models to address language-
specific challenges. Future work should prioritize
creating larger, more diverse Nepali datasets and
exploring techniques like cross-lingual transfer to
enhance model robustness. The NLUE benchmark
provides a valuable framework for evaluating and
improving language models, paving the way for
advancements in Nepali NLP.

8 Limitations

While the Nepali Language Understanding Evalua-
tion (NLUE) benchmark significantly advances the
evaluation of Natural Language Processing models
for the Nepali Language, several limitations must
be acknowledged to contextualize the findings and
guide future research.

First, the datasets introduced in the NLUE bench-
mark were primarily created by translating existing
English-language datasets from benchmarks such
as GLUE and XGLUE, using automated tools like
GPT-40-mini and Gemini2.5-flash, supplemented
by manual corrections. Although efforts were made
to ensure translation accuracy, subtle linguistic nu-
ances, cultural contexts, and idiomatic expressions
specific to Nepali may not have been fully cap-
tured. The small size of certain datasets (e.g., CR
and RTE) limits model performance and shows
models’ lack of generalization on smaller datasets.
Second, the study evaluates a range of models with
varying parameter sizes (67M to 276M), but re-
source constraints prevented the inclusion of larger,
state-of-the-art models or extensive hyperparameter
tuning. Finally, the reliance on specific evaluation
metrics (e.g., accuracy, Macro-F1 score, Spearman,
and Pearson correlations) may not fully capture the
models’ performance across all dimensions of lan-
guage understanding. For example, the GMET task
relies on manual evaluations by native speakers,
which might introduce subjectivity and potential
inconsistencies.
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A Dataset Description

A.1 Sentiment Analysis (SA)

To evaluate the sentiment understanding capabili-
ties of language models, we developed a sentiment
analysis dataset by combining existing Nepali sen-
timent datasets and translating several high-quality
examples from English to Nepali.

{

text: ‘T GelY 1Edh wOq Udd Iud e a1 widw
AU T Henen! diel ar fAaErefte T s9measy e we
TSI,

'label": 1

}

{

‘text': "TINE T TRE<! TG4 DRV ATTAGEHAT TRRT
IERER FET T RulE ammar dF Afgar am awai
TR U [OET8 AUTeligeat ATHTai- [Heh! T el SheA
TRE! NI Sl B,

'label’: O

}

Figure 3: SA Positive (1) and Negative (0) Sample

Sentiment analysis requires models to grasp not
just the literal meaning of words but also their emo-
tional undertones and contextual implications. It is
particularly challenging in Nepali, where sentiment
is often conveyed through subtle linguistic cues and
cultural context that may not be immediately appar-
ent. Using this, we can better understand whether
models truly comprehend the nuanced ways emo-
tions are expressed in Nepali text, rather than sim-
ply memorizing surface-level patterns. This evalu-
ation helps us gauge how well these models might
perform on real-world applications involving sub-
jective content analysis.

A.2 Corpus of Linguistic Acceptability
(CoLA)

The Corpus of Linguistic Acceptability (CoLA)
is a dataset originally developed for the GLUE
benchmark to assess a model’s ability to judge
the grammatical acceptability of English sentences.
We incorporated CoLA-Nepali into our evaluation
suite because understanding grammatical structure
is fundamental to language comprehension. Un-
like other benchmarks that primarily test semantic
understanding or task performance, CoLLA directly
probes whether models have internalized the syn-
tactic rules that govern sentence formation.
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{

'text: 'WEl Uch W, Il huled WUl T AfSgada wuar
It I AEERT AT syt

label”: 1

}

{

‘text’: "I €% ThameE ° H}E@maﬂﬁﬁﬂﬁ wfe €
F Ugsl,

'label": O

H

Figure 4: CoLA Positive (1) and Negative (0) Sample

This evaluation is especially crucial for Nepali,
where limited training data often contains grammat-
ical inconsistencies or errors. By testing linguistic
acceptability, we can determine whether our mod-
els have learned to distinguish well-formed Nepali
sentences from those that violate grammatical con-
straints. This provides valuable insight into how
deeply the models understand Nepali’s structural
patterns, beyond their ability to perform specific
NLP tasks.

A.3 WinoGrande (WG)

The WinoGrande dataset is a large-scale collection
of Winograd Schema Challenge-style problems de-
signed to evaluate commonsense reasoning and
contextual disambiguation in natural language un-
derstanding.

{

'sentence’ 'BTHT Tiiaet fO=afg @ Tlﬂfh"‘r TET =t fianfg
= T, e _ et faE,

'optionl": "=,

'option2": TS,

"answer”: 2

}
Figure 5: WG Sample

We translated & added the WinoGrande dataset
into our evaluation benchmark to assess models’
ability to perform commonsense reasoning and re-
solve linguistic ambiguities. The dataset’s adver-
sarial construction reduces reliance on superficial
statistical patterns, ensuring models rely on deep
semantic and commonsense reasoning, which is
essential for real-world applications like dialogue
systems or conversational agents in Nepali. Includ-
ing WinoGrande in the Nepali benchmark allows
us to evaluate model strengths and limitations in
handling nuanced linguistic structures and cultural

contexts specific to Nepali, thereby improving their
robustness for practical, context-sensitive applica-
tions.

A.4 Quora Question Pairs (QQP)

This dataset consists of pairs of questions that are
labeled as either paraphrases (semantically equiva-
lent) or not.

{
'question]': ETEHTER TR ATSh! AT G IET T

HE?,

'question2"; "EIEHT ATFSSh! AN G- Jedeh Hara# 817",
label’: 1

}

{
'question]": ‘@ Siaas! AHIaTE: Siaqm! aear e T

Tt T HeEw=T s R H B

'question2"; "qUTSe! AT S IG=THT T Hard=aT Shid— G &
&2,

label": O

}

Figure 6: QQP Positive (1) and Negative (0) Sample

We incorporated QQP into our benchmark to
evaluate paraphrase detection capabilities, which
are fundamental for robust language understanding
systems. This task is particularly challenging in
Nepali due to its morphological richness and lim-
ited resources. The dataset allows us to examine
whether models can identify semantic equivalence
beyond surface-level token matching or basic lexi-
cal similarity.

A.5 Microsoft Research Paraphrase Corpus
(MRPC)

The MRPC dataset consists of pairs of sentences
extracted from news sources, labeled as either para-
phrase (semantically equivalent) or not. It is widely
used to evaluate a model’s ability to detect seman-
tic equivalence between sentence pairs, particularly
in formal and factual text domains.

MRPC challenges models to identify nuanced
semantic similarities beyond superficial word over-
lap, requiring a deep understanding of sentence
structure and meaning in Nepali. Its inclusion in
the Nepali benchmark ensures robust evaluation of
models’ ability to handle formal news text.
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{

'sentencel’: e ATgEa Jaa-t Ruar &4 & vaer 7t
a-Afes o sereul s =y hfeust =, Siewme!
ATEIETEEHT HEITTSha! SHeTeh! 0H1 T d ga 1,
'sentence2": 'Ueh T gH SoddedlY dig g thivgsT o,
THigcislal ATSehieres! s e foas! sha woat A
e, Ufeas Adaess 9imar 1=,

label”: 1

}

{
'sentencel’: WX SMHEH ToellghR Toik GeRA W= &

ARGAR HH A S ®, 7 & fral gl
g,

'sentence?" A7 ST Herllgahlt TR FeeRe 9= &R
IARITTIeh! T It TR Ut S THAE1 81,
"label”: O

H

Figure 7: MRPC Positive (1) and Negative (0) Sample

A.6 Semantic Textual Similarity Benchmark
(STS-B)

The STS-B dataset consists of pairs of sentences
annotated with a similarity score that reflects their
semantic closeness on a continuous scale, typically
from O (completely dissimilar) to 5 (semantically
equivalent).

{

'sentencel': 'BIYTH e, 0= S9! Sfdhed, A SR 04
& e aEe & BT wdes T3 gatet e 3@
R,

'sentence2": "53['141? "t f&q wEes | g’ﬂﬁﬁ Eﬁ'ﬁﬂ?{ ISET
g, vftren afthe S TR =

label”: 4.5

H

{

'sentencel": TaRaMT G- @,

'sentence2": '3 v, Syw! fRraya-taar o,
'label’: 1.4

H

Figure 8: STS-B High (4.5) and Low (1.4) Similarity
Sample

Unlike binary paraphrase detection tasks, the
Semantic Textual Similarity Benchmark (STS-B)
requires models to assess fine-grained semantic
similarity between sentence pairs on a continuous
scale. This makes STS-B a valuable benchmark for
evaluating nuanced language understanding. This
task challenges models to understand subtle dif-
ferences and degrees of meaning overlap, which
is essential for many real-world applications such

as information retrieval, question answering, and
summarization.

A.7 Query-Ad Matching (QADSM)

The QADSM dataset is incorporated into the
NLUE benchmark to assess models’ ability to align
semantic meaning between queries and advertise-
ments in a binary classification task.

{

"query’: At T,

‘ad_title": "B UEeT: T,

'ad_description”: "€t u@erar @t BeeE them urfgEl
quTEet fong ofe 3fRa e adery,

relevance_label: 1

}

{

'query’: Tl 99 gz fAfsar,

ad_title": Wt 4 {2181,

'ad_description: "Of86 UcU@HEES! AT AFHRT U
TR Thel - (211 hthAEE J19d e,

relevance label: 0

}

Figure 9: QADSM Positive (1) and Negative (0) Sample

QADSM challenges models to discern semantic
relevance beyond superficial keyword matching,
requiring a detailed understanding of user intent
and contextual meaning in Nepali. This is a critical
capability for many real-world applications such
as targeted advertising, search result optimization,
and personalized content delivery in Nepali, where
accurate query-ad alignment is critical.

A.8 Multi-Genre Natural Language Inference
(MNLI)

The MNLI dataset consists of sentence pairs, each
containing a premise and a hypothesis, labeled with
one of three classes: entailment, contradiction, or
neutral.

We include MNLI in our benchmark to evaluate
a model’s ability to reason about the relationship
between sentences across diverse domains. This
task extends beyond surface-level similarity, requir-
ing models to capture subtle semantic distinctions,
such as entailment, contradiction, and neutrality,
which are essential for applications like question
answering, summarization, and dialogue systems.
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{

'premise’:  TREMHT HRUT WRED  §9T  USHGEEEE
mduaTeral daEE ung THare afsad a1,

"hypothesis’: ﬂmmmmﬁﬂﬂﬁﬁl',
'label’: O

}

{

'premise”: ﬁﬁuﬁaﬁ@——g aﬂm:rﬁlzmqr,

"hypothesis’; "SRIGH SEeAIUSH! TR AR =gt
g,

'label’: 1

t

{

'premise’:. FR-AFA AoHs! N (o EEHE EeiX
HTREHTeETA a1 Ucieh TIUT WA A1 & §SHE Sl
'hypothesis' F[dI THEHceHaE @RGET R Iered
&1,

"label: 2

}

Figure 10: MNLI Entailment (0), Neutral (1) and Con-
tradiction (2) Sample

A.9 Question-Answering Natural Language
Inference (QNLI)

The QNLI dataset is a sentence pair classification
benchmark designed to evaluate a model’s ability to
perform natural language inference in the context
of question answering.

{

'question”: '23 & sSR! Aless oW AftgEr =<E\x
'sentence’:  '?9, i UAEEET TH UEHEUUR, HEH
ufEa thelia fEfermm S et

'label’: O

t

{

'question’: ' ITSAT HEATAT ATealciRTEs HEUF g7,
'sentence’: 'FH T HEUET AT l-aieht AaH AT 58 T
THAT I ANHES U] TaT=1 AT AFAT Y13 ge
feger,

'label” 1

}

Figure 11: QNLI Entailment (0) and Non-Entailment
(1) Sample

We include the QNLI dataset in our benchmark
to evaluate a model’s ability to reason over ques-
tion—answer pairs. This task requires understand-
ing the intent behind a question and determining
whether a candidate sentence contains information

that answers it, thereby testing the model’s grasp of
both question semantics and contextual relevance.

A.10 Recognizing Textual Entailment (RTE)

The Recognizing Textual Entailment (RTE) dataset
is a benchmark designed to evaluate a model’s abil-
ity to determine whether the meaning of one text
fragment (the hypothesis) can be inferred from an-
other text fragment (the text).

{
'sentencel’: "SR! eleliet §¥ ST TUEHEEYT £0,E¥3

T Ucdel saardi eyt faat,

'sentence?: ‘ShEiEEh! dieilel ¥ ST fo,000 Wl Tol
TOEREEY T Aaid feTdent fEat,

'label’: O

}

{
'sentencel’: '8¢ & A Bmmm ge w4, 98a efdy

FOAT RBEAET UR T @ifoRgst A-s 1,

'sentence?"”; ﬂ‘ﬁ:ﬁﬁl’ﬁﬁ gy wuEr fBEEr R T Ant
T B,

'label": 1

}

Figure 12: RTE Entailment (0) and Non-Entailment (1)
Sample

Including RTE in a Nepali benchmark is impor-
tant because entailment recognition is a core aspect
of natural language understanding, especially in
low-resource settings where explicit reasoning and
semantic alignment are critical. It helps assess
whether models trained on Nepali data can capture
subtle logical relationships.

A.11 Co-reference Resolution (CR)

Co-reference resolution is the task of identifying
when two or more expressions in a text refer to the
same entity. This is essential for understanding the
meaning of a passage, as natural language often
relies on pronouns and noun phrases that depend
on previous context.

We include the co-reference resolution dataset in
our evaluation benchmark to assess a model’s abil-
ity to understand and maintain coherence across
sentences. In the context of the Nepali language,
this task is particularly challenging due to the flex-
ible and context-sensitive nature of referential ex-
pressions shaped by discourse. Evaluating models
on this task allows us to probe their understand-
ing of entity continuity, pronoun grounding, and
broader contextual reasoning.

1918



{

'sentencel’: 'Medel e fiigs Geemgean AR m=dt)
FHiew BRma arpsiay =R e e e 9,
'sentence2": u;ﬁﬁ ELEna E'I"'rr_ﬂﬂ'ﬁ'él R A9 7ETE 715
g,

'label’: 1

H

{

'sentencel": 'FEH SIREE AEReT Gy ot ‘Eﬁ%ﬁ@@l',
‘sentence2" &= 8 H‘TE(’[ @,

'label’: O

H

Figure 13: CR Positive (1) and Negative (0) Sample

A.12 General Masked Evaluation Task

(GMET)

We developed the General Masked Evaluation Task
(GMET) dataset, and it is designed to test whether
a model understands context. As the task is to
predict masked tokens, we test our models on this
task without fine-tuning. Given a mask, any word
or phrase could plausibly fit the blank depending
on the context, so the model must deeply under-
stand the meaning and structure of the sentence
to make an accurate prediction. Including GMET
in the benchmark is important because it evalu-
ates general language modeling capabilities, such
as contextual comprehension, lexical choice, and
syntactic fluency skills that are essential for strong
performance across a wide range of downstream
tasks in Nepali.

{
‘sentence’: "H WT-GTAT AT URdE el s=me @y [MASK] I

}
Figure 14: GMET Sample

B Dataset Translation Approach

Given the unfunded nature of this research, we re-
lied on personal resources and utilized the APIs
of two large language models, GPT-40-mini and
Gemini2.5-flash, to translate datasets into Nepali’.
We processed data in batches of 50 to 100 rows,
each containing text and its corresponding label,
using automated scripts to manage batching, API
interactions, and output collection. For tasks requir-
ing nuanced understanding, such as Co-reference
Resolution, manual translation and review were
employed to ensure accuracy.

Translation Repository

B.1 Translation Problems

During the translation process, we encountered sev-
eral challenges:

B.1.1 Label Mismatch

Despite instructions to preserve labels, models pro-
duced correct Nepali translations that differed in
meaning from the English source, resulting in label
mismatches. In some cases, models also corrected
errors in the original English texts, requiring man-
ual review to ensure consistency. Examples are
provided in Figure 15, Figure 16 and Figure 17.

{

"English Sentence": "What did Bill buy potatoes and ?",
"EN Label": 0

"Nepali Sentence": "féretet a1 T o famgt?”,

"NE label™: 1

}

Figure 15: Incomplete coordination in English becomes
a well-formed question in Nepali, causing label mis-
match.

{

"English Sentence": "Who do you think that will question
Seamus first?"”,

"EN Label": 0

"Nepali Sentence”: "dUEAE & @FS Sbc (AT Tiget
U THe?",

"NE label™: 1

}

Figure 16: English
complementizer-trace is absent in Nepali,
ing to label mismatch.

ungrammaticality from
lead-

{

"English Sentence": "many evidence was provided.",
"EN Label": 0

"MNepali Sentence: "€ THTOTEE He TTREet At
"NE label": 1

!

Figure 17: Plural-subject agreement error in English is
resolved in Nepali, resulting in label mismatch.

B.1.2 Literal Translations

Some translations were overly literal, failing to
capture contextual nuances. This issue arises when
translation models prioritize word-by-word equiv-
alence rather than interpreting the sentence as a
whole. As a result, idiomatic expressions, cultur-
ally specific phrases, or context-dependent mean-
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ings are mistranslated, leading to loss of intended
meaning. Examples are provided in Figure 18, Fig-
ure 19, Figure 20 and Figure 21.

{

"English Sentence”: "on all cylinders”,
"MNepali Sentence": Eor %ﬁm’,
}

Figure 18: English idiom “on all cylinders” meaning
“working perfectly or at full capacity” becomes too lit-
eral in Nepali translation, losing its sentiment.

{

"English Sentence": "hide new secretions from the parental
units",

"Nepali Sentence”: "HTEEH SHEeEAlc A4 WEEE
}

Figure 19: Teen slang that means hiding new secrets
from parents, when translated, talks about bodily fluid,
losing the context.

{

"English Sentence™: "of saucy”,
"Nepali Sentence": "=e-1 &l",
}

Figure 20: Wordplay lost in translation, English slang
becomes nonsensical in Nepali.

{

"English Sentence": "a doa",
"Nepali Sentence”: "Udn ﬂa-ﬂk'{
}

Figure 21: English slang phrase transliterated in Nepali,
losing its negative sentiment.

B.1.3 Temporal Expression Mismatch

Abbreviated years in English, when translated liter-
ally into Nepali numerals, are often misinterpreted
as regular numbers rather than references to spe-
cific years. This results in a loss of temporal con-
text, which is especially problematic in historical
or review texts where accurate time representation
is crucial. Such misinterpretations can alter the
meaning of the text and reduce the effectiveness of
models trained on this data. Careful handling of
these expressions is necessary to preserve the in-
tended temporal information in Nepali translations.
Examples are provided in Figure 22.

{
"English Sentence": “stale retread of the '53 original”,
"Nepali Sentence": "43 o TH¥ehUTeR! aTE g,
}

{

"English Sentence"”: “(like Saturday morning TV in the
'60s)",

"Nepali Sentence": "(§e @t 1=aR fgmt fEft o),

}

Figure 22: Examples of temporal expression mis-
matches due to literal translation of abbreviated years.

B.1.4 Named Entities and Cultural
References

Inconsistent translations of named entities and cul-
tural references often disrupted the semantic in-
tegrity of the text and required manual corrections
to maintain relevance and consistency within the
Nepali context. These inconsistencies, if left un-
corrected, could mislead models during training or
evaluation. Examples are provided in Figure 23,
Figure 24 and Figure 25.

{

"Premise": "The Old One always comforted Ca'daan, except
today.",

"Hypothesis": "Ca'daan knew the Old One very well."

}

{

"Premise": "UXA! Afaere B wraFas Al &Y, 3
FEFI",

"Hypothesis": "&I'&el QIHT SAfeeels TH&T ="

}

Figure 23: Example of cultural reference mismatch:
mythological connotation of "The Old One" is weak-
ened in Nepali translation.

{
"Sentencel™: "A plane is taking off.”,
"Sentence2": "An air plane is taking off.”

}

{

"Sentencel": "feAT IEEH 1,
"Sentence?": "§ATE SETS Ire<edt @1
H

Figure 24: Example of lexical ambiguity in named enti-
ties: English terms like "plane” and "airplane" in Nepali
have a subtle semantic distinction.
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{

"English Sentence": "Yet another entry in the sentimental
oh-those-wacky-Brits genre that was ushered in by The Full
Monty and is still straining to produce another smash hit.",
"Nepali Sentence": "Gl Hledh GRT T RSN UG HI-l-
URTA-fEfeEEa! WA I Uder udel, T ST SRl gl
HheTaTaR! JeaTE 7 698 Tas |,

}

Figure 25: Example of idiomatic mismatch: “oh-
those-wacky-Brits” referring to eccentric British cul-
tural traits becomes ‘“‘oh-those-crazy-British-people,”
sounding awkward or negative in Nepali.

B.2 Suggestions on Translation

To improve translation quality and accuracy, we
recommend the following strategies:

* Use detailed prompts: Instruct models to
translate into clear, natural Nepali while pre-
serving the original meaning and sentence
structure.

Handle untranslatable terms: For words
or phrases without direct Nepali equivalents,
allow romanization as a fallback strategy.

* Batch size optimization: Process 50-100
examples per API request (assuming each
has 80-100 tokens) to balance efficiency with
translation quality. Avoid exceeding 100 ex-
amples to prevent degradation.

* Class-wise translation: Translate examples
belonging to the same class in separate re-
quests, and assign labels after translation to
avoid mismatches due to grammatical differ-
ences across languages.

Ensure output consistency: Implement au-
tomated checks to verify that the number of
translated outputs matches the input exam-
ples, minimizing the risk of data loss during
batch processing.

C Dataset Quality
C.1 Multilingual Content Filtering

We employed automated language detection to
identify and remove any English or non-Nepali
text remnants from the translated outputs. This fil-
tering process ensures the purity of the translation
by flagging code-switching instances, incomplete
translations, or processing errors that leave the arti-
facts of the source language.

C.2 Statistical Quality Sampling with Manual
Validation

A random sampling approach was used to select
1% of the translated corpus for manual quality as-
sessment by native Nepali speakers. Each sam-
pled translation was evaluated using standardized
rubrics covering adequacy, fluency, and cultural
appropriateness. It was decided that if more than
10% of the samples were found to be unacceptable,
retranslation would be performed with an updated
prompt. However, no such cases were encountered,
indicating high confidence in the translation quality
achieved using GPT-40-mini and Gemini-2.5-flash
for Nepali language translation.

C.3 Bidirectional Translation Validation
(Back-translation)

Back-translation validation was performed on a
randomly sampled 1% subset by translating Nepali
outputs back to English using a different transla-
tion system. Semantic preservation was measured
through automated similarity metrics, including
BLEU scores between original and back-translated
English texts. Some divergences indicated potential
quality issues such as semantic drift or ambiguity
resolution errors in the forward translations, but no
significant concerns were seen.

D Experiment Stats

We utilized 1,200 GPU hours on NVIDIA T4
GPUs for our experiments. This includes fine-
tuning 10 distinct model variants on 11 benchmark
datasets, on the configurations outlined in the ex-
periments (section 5).

E Hyperparameter Settings

This section details the optimal hyperparameters
identified for each model and dataset combination
in our benchmark evaluation for reproducibility.
Tuning config is written in the following order:
Model Config, Learning Rate, Epoch, Batch Size.
For model config, see Figure 1 and Figure 2.

E.1 Single Sentence Tasks

Best hyperparameter settings (model config, learn-
ing rate, epochs, batch size) for each model on SA
(Sentiment Analysis), CoLA (Corpus of Linguistic
Acceptability), and WG (WinoGrande) tasks are
reported in Table 6.
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Model Params SA CoLA WG
Distilbert-Nepali (Maskey et al., 2022) 67TM I, 2e-5,3,16 1, 2e-5,5, 16 II, 2e-5, 8, 32
NepBERT (Rajan, 2021) 82M I, 2e-5,2,16 1, 2e-5,8, 16 11, 2e-5, 4, 32
NepaliBERT (Pudasaini et al., 2023) 110M  1,2e-5,2,16 1,2e-5,8, 16 1I, 2e-5,5,32
BERT Nepali (Thapa et al., 2025) 110M I, 2e-5,2,16 1, 2e-5,10,16 II, 2e-5, 10, 32
NepBERTa (Timilsina et al., 2022) 110M  1,2e-5,2,16 1, 2e-5,8,16 I, 2e-5,9, 32
RoBERTa Nepali (Thapa et al., 2025) 125M 1,2e-5,2,16 1,2e-5,9, 16 I, 2e-5, 9, 32
DeBERTa-Nepali (Maskey et al., 2022) 139M I,2e-5,3,16 1, 2e5,5,16 II, 2e-5, 8, 32
Multilingual BERT (Devlin et al., 2019) 172M I, 2e-5,3,16 1, 2e-5,10,16 II, 2e-5, 10, 32
XLM-R Base (Conneau et al., 2020) 270M  1,2e-5,3,16 1, 2e-5,5,16 I, 2e-5, 8, 32
m-DeBERTa-v3 (He et al., 2023) 276M I,2e-5,3,16 1, 2e5,5,16 I, 2e-5, 8, 32
Table 6: Best hyperparameter settings for Single Sentence Tasks.
Model Params QQP MRPC STS-B QADSM
Distilbert-Nepali (Maskey et al., 2022) 67M VI, 2e-5,3,16 VI, 2e-5,4,16 1, 2e-5,15,16 VI, 2e-5,4,16
NepBERT (Rajan, 2021) 82M VI, 2e-5,2,16 VI, 2e-5,3,16 1, 2e-5,15,16 VI, 2e-5,3, 16
NepaliBERT (Pudasaini et al., 2023) 110M VI, 2e-5,4,16 VII, 2e-5,5,16 1,2e-5,14,16 VI, 2e-5,5,16
BERT Nepali (Thapa et al., 2025) 110M VI, 2e-5,2,16 VII, 2e-5,5,16 1, 2e-5,15,16 VI, 2e-5,5,16
NepBERTa (Timilsina et al., 2022) 110M VI, 2e-5,4,16 VII, 2e-5,4,16 1, 2e-5,15,16 VI, 2e-5, 3, 32
RoBERTa Nepali (Thapa et al., 2025) 125M VI, 2e-5,2,16 VI, 2e-5,6,16 11, 2e-5,12,8 VI, 2e-5, 3,32
DeBERTa-Nepali (Maskey et al., 2022) 139M VI, 2e-5,2,16 VII, 2e-5,4,16 1,2e-5,5,16 VI, 2e-5,5,16
Multilingual BERT (Devlin et al., 2019) 172M VI, 2e-5,2,16 VII, 2e-5,3,16 1, 2e-5,5,16 VI, 2e-5,5,16
XLM-R Base (Conneau et al., 2020) 270M VI, 2e-5,2,16 VI, 2e-5,4,16 1,2e-5,13,16 VI, 2e-5, 3,32
m-DeBERTa-v3 (He et al., 2023) 276M VI, 2e-5,3,16 VII, 2e-5,6,16 1, 2e-5,14,16 VI, 2e-5,3,16
Table 7: Best hyperparameter settings for Similarity and Paraphrase Tasks.
Model Params MNLI QNLI RTE CR
Distilbert-Nepali (Maskey et al., 2022) 67M VI, 2e-5,3,16 VI, 2e-5,2,16 V,2e-5,10,32 V, le-5,4, 16
NepBERT (Rajan, 2021) 82M VI, 2e-5,4,16 VI, 2e-5,3,16 V,2e-5,12,32 V, le-5,3,16
NepaliBERT (Pudasaini et al., 2023) 110M VI, 2e-5,3,16 VI, 2e-5,2,16 V,2e-5,9,32 1V, 1e-5,3,16
BERT Nepali (Thapa et al., 2025) 110M VI, 2e-5,3,16 VI, 2e-5,2,16 V,2e-5,11,32 V, le-5,2,16
NepBERTa (Timilsina et al., 2022) 110M VI, 2e-5,3,16 VI, 2e-5,2,16 V,2e-5,10,32 V, le-5,2,32
RoBERTa Nepali (Thapa et al., 2025) 125M  VII, 2e-5,7,16 VI, 2e-5,2,16 V,2e-5,15,32 V,2e-5,5,32
DeBERTa-Nepali (Maskey et al., 2022) 139M VI, 2e-5,5,16 VI, 2e-5,4,16 V,2e-5,10,32 1V, 2e-5,5,32
Multilingual BERT (Devlin et al., 2019) 172M VI, 2e-5,3,16 VI, 2e-5,2,16 V,2e-5,10,32 1V, 2e-5,3, 32
XLM-R Base (Conneau et al., 2020) 270M  VII, 2e-5,5,16 VI, 2e-5,3,16 V,2e-5,15,32 1V, 2e-5,3,32
m-DeBERTa-v3 (He et al., 2023) 276M VI, 2e-5,3,16 VI, 2e-5,2,16 1V, 2e-5,12,32 1V, 1e-5,4,8

Table 8: Best hyperparameter settings for Inference Tasks.
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E.2 Similarity and Paraphrase Tasks

Best hyperparameter settings (model config, learn-
ing rate, epochs, batch size) for each model on QQP
(Quora Question Pairs), MRPC (Microsoft Re-
search Paraphrase Corpus), STS-B (Semantic Tex-
tual Similarity Benchmark), and QADSM (Query
Ad Matching) tasks are reported in Table 7.

E.3 Inference Tasks

Best hyperparameter settings (model config, learn-
ing rate, epochs, batch size) for each model on
MNLI (Multi-Genre Natural Language Inference),
QNLI (Question-answering Natural Language In-
ference), RTE (Recognizing Textual Entailment),
and CR (Co-reference Resolution) tasks are re-
ported in Table 8.

F More on GMET

F.1 Dataset Categories

The GMET dataset is organized into the following
75 categories, grouped into seven thematic areas,
presented here in English:

¢ Daily Life & Home: Family, House, Kitchen,
Food, Clothing, Market, Shop, Daily Rou-
tine, Furniture, Health, Dream, Cleanliness,
Medicine

¢ Nature & Environment: Weather, Animals,
Birds, Insects, Fruits, Vegetables, Trees, Flow-
ers, Nature, Water, River, Mountain, Forest,
Sky, Earth, Ocean/Sea, Weather Conditions

* Society & Culture: School, Village, City,
Sports, Festivals, Music, Art, Friendship,
Society, Language, Nepali Culture, Movies,
Books

* Concepts & Knowledge: Colors, Body Parts,
Time, Numbers, Days of the Week, Months,
Feelings, Shapes, Directions, Senses, Oppo-
sites, Geography, Science

* Work & Activities: Work, Professions, Agri-
culture, Learning, Cooking, Hobbies, Com-
munication, Travel

* Broader World: Transportation, Money, His-
tory, Government, Technology, Space (sun,
moon), Tools, Materials (wood, metal)

* Nepal Specific: Geography of Nepal, Ani-
mals of Nepal, Festivals of Nepal

F.2 Evaluation Metrics for GMET

The General Masked Evaluation Task (GMET)
employs two primary metrics to assess language
model performance: overall accuracy and a com-
bined score. These metrics are formalized as fol-
lows:

F.2.1 Overall Accuracy

The overall accuracy is defined as the proportion
of correct predictions across all sentences in the
dataset. Given a dataset with N = 1500 sentences,
where each prediction is scored as 1 (correct) or
0 (incorrect), let s; represent the score for the 7"
sentence. The overall accuracy A is calculated as:

1 N
A:N;Sl

F.2.2 Combined Accuracy

The combined score integrates the overall accuracy
with an equality score that measures consistency
across categories. The dataset is divided into K
=75 categories, with each category containing 20
sentences. For the k" category, the category-wise
accuracy Ay is computed as:

1 20
Ap=—3 s
k 20 ; Sik

where s; j, is the score for the it" sentence in
the k" category. The standard deviation of the
category-wise accuracies, o, is calculated as:

1 XK
— 2S04 — A2
7=\ & oA
=1
where A is the mean of the category-wise accu-
racies:

. 1 X

The equality score, F, is derived by transform-
ing the standard deviation to map lower deviation
values to higher scores, with the score ranging be-
tween 0 and 1. The equality score is defined as:

E=e"°

This function ensures that lower standard de-
viations (indicating more consistent performance
across categories) yield higher equality scores. In
the edge case of a single category, where o is unde-
fined, F is set to 1. The combined score, C, is then
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NepaliBERT

= Accuracy/Correlation (Avg: 66.71)
SA = = F1/R2/Combined (Avg: 63.72)

computed as the product of the overall accuracy
and the equality score:

GMET 87.1 CoLA

C A E RTE WG
. . QNLI 7 77.4 QqP
This combined score balances overall perfor-
mance with consistency, penalizing models that
exhibit uneven performance across the diverse lin-

guistic and topical categories of the GMET dataset.

G Performance Visualization of
Individual Models on each task

DistilBERT
—— Accuracy/Correlation (Avg: 70.72)
SA = = F1/R2/Combined (Avg: 68 36)
GMET 86.3 CoLA

RTE WG
onu | 796gf7as 81L1p 816 qop
MNLI MRPC

QADSM

Figure 26: DistillBERT across all tasks

NepBERT

—— Accuracy/Correlation (Avg: 57.71)
SA == F1/R2/Combined (Avg: 52.28)

GMET

MNLI MRPC

QADSM

Figure 27: NepBERT across all tasks

R STS-B

QADSM

Figure 28: NepaliBERT across all tasks

Bert Nepali
—— Accuracy/Correlation (Avg: 71.65)
sA — = F1/R2/Combined (Avg: 68.76)
GMET G coLA

MNLI

cR STS-B

QADSM

Figure 29: BERT Nepali across all tasks

NepBERTa
=== Accuracy/Correlation (Avg: 72.12)
SA = = F1/R2/Combined (Avg: 68.64)
GMET B86.6 ColA

MNLI MRPC

R STS-B

Figure 30: NepBERTa acrosss all tasks
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RoBERTa Nepali
= Accuracy/Correlation (Avg: 72 27}
SA = = F1/R2/Combined (Avg: 70.05)

GMET T CoLA

RTE WG
oQNLI 819 s0.6be12 | qqp
MNLI MRPC

[ STS-B

QADSM

Figure 31: RoBERTa Nepali across all tasks

DeBERTa Nepali
—— Accuracy/Correlation (Avg: 71 23}
sA — = F1/R2/Combined (Avg: 68 64)

GMET & CoLA

MNLI MRPC

R STS-B

QADSM

Figure 32: DeBERTa Nepali across all tasks

Multilingual BERT
=== Accuracy/Correlation (Avg: 69.62)
SA == F1/R2/Combined (Avg: 66 66)

GMET 863 ColA

RTE WG
~
onu 8350835 . a16% 623 QP
MNLI MRPC

<3 STS-B

QADSM

Figure 33: Multilingual BERT across all tasks

XLM-R-Base
= Accuracy/Correlation (Avg: 71 64)
SA = = F1/R2/Combined (Avg: 69.37)
GMET "3 ColLA

RTE we
onu 831l - Di3l QP
MNLI MRPC

[=3 STS-B

QADSM

Figure 34: XLM-R-Base across all tasks

mDeBERTa-v3
= Accuracy/Correlation (Awg: 73.63)
SA = = F1/R2/Combined (Avg: 71 20)

GMET CoLA

onL 857 §f86.7 g38P 843 qqp

MNLI

(=3 STS-B

QADSM

Figure 35: mDeBERTa-v3 across all tasks



