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Abstract
The vast majority of the world’s languages,
particularly low-resource and tribal ones like
Bhili, remain critically underserved by mod-
ern language technologies. The primary bottle-
neck is the lack of large-scale corpora required
for standard pre-training. To address this gap,
we introduce cross-lingual contrastive distil-
lation, a novel and data-efficient, compute-
efficient paradigm for creating powerful lan-
guage models without a massive monolingual
corpus. Our method adapts a pre-existing mul-
tilingual model (MuRIL) by using a fixed, ex-
pert teacher model (HindBERT) to distill se-
mantic knowledge from a related high-resource
language (Hindi) via a contrastive objective on
a modest parallel corpus. Through compre-
hensive experiments, we show that our result-
ing model, GARuD-Bhili, significantly outper-
forms strong zero-shot and MLM-only base-
lines on a suite of evaluations, including in-
trinsic language modeling, downstream senti-
ment analysis, and cross-lingual benchmarks
(Tatoeba, XNLI). Our work presents a scalable
blueprint for linguistic empowerment, offering
a practical pathway to develop robust language
technologies for other underserved languages
globally.

1 Introduction
India boasts remarkable linguistic diversity, with
the 2011 census documenting over 1,369 distinct
mother tongues and 22 official languages. Yet, this
linguistic wealth faces a critical challenge: numer-
ous indigenous and tribal languages are critically
endangered due to a severe lack of digitized re-
sources and parallel corpora. These languages are
vital to cultural heritage, making robust translation
systems essential not only for clear communication
and social inclusion but also for equitable access to
government services. Effective translation is cru-
cial for implementing policies, welfare programs,
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legal processes, and educational efforts, thereby
supporting national unity in India’s complex mul-
tilingual setting.

The advent of large pre-trained language mod-
els like BERT (Devlin et al., 2019) has revolution-
ized NLP by learning rich contextual representa-
tions from vast amounts of text. For the Indian
subcontinent, specialized multilingual models like
MuRIL (Khanuja et al., 2021) have been developed
to capture the shared linguistic and structural prop-
erties across 17 major Indian languages. However,
the effectiveness of these powerful models does not
extend to the hundreds of languages, like Bhili, that
were absent from their pre-training corpora. The
primary bottleneck is the data itself: developing
a language model for Bhili from scratch is infea-
sible due to the non-existence of a large monolin-
gual corpus required for standard self-supervised
pre-training. This creates a critical gap, leaving
Bhili speakers digitally disenfranchised.

To bridge this representation gap with the
limited corpus we have, we propose a novel
and data-efficient training paradigm leveraging a
modest-sized, community-curated Bhili-Hindi Par-
allel Corpus of approximately 142,000 sentence
pairs. We adapt the powerful MuRIL model
through a process of cross-lingual distillation, us-
ing a framework inspired by the mechanics of Mo-
mentum Contrastive Learning (MoCo) (He et al.,
2019). In this setup, the MuRIL model acts as a
student, which learns to represent Bhili sentences.
Its goal is to align its outputs with the representa-
tions from a fixed teacher model that is already pro-
ficient in Hindi. By treating a Bhili sentence and
its Hindi translation as a positive pair within this
contrastive objective, we compel the student model
to map Bhili into the teacher’s rich, pre-existing
semantic space. This allows for an efficient and
targeted transfer of knowledge to understand the
unique lexical and grammatical nuances of Bhili.
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2 Related Work

Our work is situated at the intersection of three
key areas in modern NLP: adapting large multi-
lingual models, the paradigm of knowledge distil-
lation, and the methodology of cross-lingual con-
trastive learning.

2.1 Adaptation of Multilingual Models for
Low-Resource Languages

The dominant approach for supporting low-
resource languages is to adapt large, pre-trained
multilingual models like mBERT (Devlin et al.,
2019) or XLM-R (Conneau et al., 2020). For the
Indian context, region-specific models such as
MuRIL (Khanuja et al., 2021) and IndicBERT
(Doddapaneni et al., 2023) have proven to be
more effective starting points, as their pre-training
on diverse Indic languages helps capture the
subcontinent’s shared typological features.

However, even these specialized models face sig-
nificant challenges. The most common adaptation
strategies include:

• Zero-Shot Transfer: This involves directly
applying a pre-trained model to a language it
has never seen. While simple, performance
is often poor due to vocabulary mismatch
and the model’s lack of exposure to the tar-
get language’s specific syntax and semantics.
This degradation is particularly pronounced
for common linguistic phenomena in the In-
dian context like code-mixing and translitera-
tion (Khanuja et al., 2021; Joshi et al., 2020).

• Continued Pre-training: This strategy in-
volves further training the multilingual model
on a monolingual corpus of the target lan-
guage using an objective like Masked Lan-
guage Modeling (MLM). While a strong base-
line method for adapting a model’s vocabu-
lary and representations (Adelani et al., 2022),
it requires a substantial monolingual corpus,
which is often unavailable for extremely low-
resource languages like Bhili.

The limitations of these standard approaches ne-
cessitate exploring more data-efficient adaptation
techniques that can explicitly teach cross-lingual
alignment.

2.2 Knowledge Distillation as a Path for
Transfer

Knowledge Distillation (KD) offers a powerful
framework for knowledge transfer. Originally pro-
posed for model compression, KD involves train-
ing a smaller ”student” model to mimic the be-
havior of a larger, more capable ”teacher” model
(Hinton et al., 2015; Sanh et al., 2019). This prin-
ciple can be adeptly repurposed for cross-lingual
learning. The goal shifts from merely compressing
knowledge to transferring it across a language bar-
rier. In this setup, a student model learning a low-
resource language (e.g., Bhili) is trained to align its
representations with those produced by an expert
teacher model for a high-resource language (e.g.,
Hindi). This provides a rich, stable supervisory sig-
nal, guiding the student’s learning in an otherwise
data-scarce environment.

2.3 Cross-Lingual Contrastive Learning
Recently, contrastive learning has emerged as a
state-of-the-art method for learning high-quality
sentence embeddings by pulling similar inputs to-
gether and pushing dissimilar ones apart. In the
cross-lingual domain, this is powerfully realized
by using parallel sentence pairs from different lan-
guages as positive examples. Leading frameworks
like LaBSE (Feng et al., 2020), InfoXLM (Chi
et al., 2021), and XLCo (Wang et al., 2022) use
this principle to learn a shared, language-agnostic
embedding space.

For low-resource scenarios, this contrastive
paradigm offers compelling advantages over tra-
ditional MLM-based pre-training. By explic-
itly leveraging a parallel signal, contrastive meth-
ods can achieve robust cross-lingual alignment
with significantly less data and compute. While
MLM provides powerful generalized representa-
tions when data is abundant, contrastive learning
is often a more direct and efficient path to strong
cross-lingual understanding when data is scarce.

Our work synthesizes these threads in a novel
way. We argue that for extremely low-resource lan-
guages like Bhili, the most effective strategy is nei-
ther continued pre-training (due to data scarcity)
nor training a large contrastive model from scratch
(due to computational cost). Instead, we com-
bine the strengths of knowledge distillation and
cross-lingual contrastive learning. We propose a
highly efficient adaptation framework where we
use a MoCo-style contrastive objective to distill
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the knowledge from a fixed, expert teacher model
into an existing, powerful student model (MuRIL).
This specific configuration–using teacher-student
contrastive distillation to adapt, rather than retrain,
a multilingual model–represents a distinct, practi-
cal, and highly effective methodology for resource-
scarce environments.

3 Dataset

3.1 Dataset Creation and Purpose
Developing foundational language technologies
for extremely low-resource languages is fundamen-
tally constrained by the scarcity of high-quality,
digitized text (Nekoto et al., 2020). This data gap
has historically hindered the creation of robust lan-
guage models for communities like the Bhili speak-
ers. To address this challenge for Bhili, a cultur-
ally significant tribal Indic language, a large-scale,
gold-standard Bhili-Hindi Parallel Corpus (Singh
et al., 2025) was previously curated through ex-
tensive community-led initiatives involving native
speakers. This dataset is the cornerstone of our
study, it provides the essential cross-lingual signal
required to train a powerful Bhili language repre-
sentation model via our proposed knowledge dis-
tillation framework.

The source sentences in Hindi were primarily
drawn from the Bharat Parallel Corpus Collec-
tion (BPCC) (Gala and Chitale, 2023), and sup-
plemented with text from diverse public sources,
including Legislative Assembly Speeches (Siripra-
gada et al., 2020), the PMIndia corpus (Haddow
and Kirefu, 2020), and NCERT textbooks. A
team of 10 professional translators, all native Bhili
speakers, meticulously translated these sentences
between May 2024 and March 2025, contributing
over 27,000 hours of work to ensure high semantic
fidelity and contextual accuracy. This rigorous pro-
cess yielded the high-quality parallel corpus that
enables our work. To assess the quality of our man-
ually curated Hindi–Bhili gold references, we con-
ducted an inter-annotator agreement (IAA) study.
For more details, refer to Appendix E.

3.2 Data Preprocessing
To ensure the quality of the data used for training,
the corpus underwent a thorough preprocessing
pipeline. This process involved normalizing Bhili
homophones to maintain linguistic consistency, re-
moving extraneous characters, and implementing
strict de-duplication to eliminate highly similar

sentence pairs. We enforced sentence length lim-
its, retaining only pairs with 6 to 80 words. To
further reduce redundancy, we applied cosine sim-
ilarity filtering on sentence embeddings to detect
and remove near-duplicate source-target combina-
tions. Tokenization was performed using the orig-
inal SentencePiece vocabulary from the MuRIL
base model to ensure alignment with the model’s
pre-existing embeddings.

3.3 Dataset Statistics
A statistical overview of the Bhili-Hindi Parallel
Corpus is presented in Table 1. The final dataset
contains 142,817 sentence pairs, partitioned into
a training set of 128,535 and a test set of 14,282
pairs.

Analysis reveals linguistic characteristics rele-
vant to our modeling task. Bhili sentences are, on
average, longer than their Hindi counterparts (e.g.,
≈34 vs. ≈27 tokens in the training set), suggest-
ing structural differences that a model must learn
to align. The substantial number of unique tokens
in both languages (Hindi: ≈27K, Bhili: ≈26.8K)
highlights a rich vocabulary, which is vital for
learning nuanced language representations. Fur-
thermore, the high standard deviation in sentence
length points to considerable variation in complex-
ity, making the dataset a challenging and represen-
tative resource for building and evaluating a foun-
dational language model for Bhili.

Statistic Train Set Test Set
Hindi Bhili Hindi Bhili

Number of Sentence Pairs 128,535 14,282
Number of Sentences 128,535 128,535 14,282 14,282
Total Tokens 3,473,762 4,419,784 346,759 449,280
Unique Tokens 27,215 26,774 14,312 14,582
Avg. Sentence Length (Tokens) 27.03 34.39 24.28 31.46
Min. Sentence Length (Tokens) 1.00 1.00 1.00 1.00
Max. Sentence Length (Tokens) 390.00 509.00 159.00 181.00
Std. Dev. Sentence Length (Tokens) 14.75 18.49 12.43 16.28
Overall Unique Tokens in Dataset

Hindi: 27,215
Bhili: 26,872

Table 1: Key statistics of the Bhili-Hindi Parallel Cor-
pus.

4 Methodology

Our objective is to develop a powerful contex-
tual representation model for Bhili, an extremely
low-resource language. We leverage the signifi-
cant typological and lexical overlap between Bhili
and Hindi by adapting a strong Indic multilin-
gual model, MuRIL (Khanuja et al., 2021). Since
MuRIL is pre-trained on 17 Indic languages includ-
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ing Hindi, it provides a robust starting point with a
shared sub-word vocabulary.

We formulate our investigation as a comparative
study between two adaptation approaches on our
Bhili-Hindi Parallel Corpus (BHPC): a standard
baseline and our proposed contrastive distillation
method.

4.1 Baselines
We establish two baseline models to contextualize
the performance of our proposed approach.

4.1.1 Zero-Shot Inference
Our first baseline measures the zero-shot perfor-
mance of the original, off-the-shelf MuRIL model.
This involves no additional training or fine-tuning
whatsoever. The model is evaluated directly on
the downstream Bhili tasks. This approach es-
tablishes the lower-bound performance and quanti-
fies the model’s out-of-the-box capabilities (or lack
thereof) for a language it has never seen, relying
solely on its cross-lingual transfer abilities learned
during pre-training.

4.1.2 Continued Pre-training with MLM
As a strong baseline, we perform continued pre-
training on the base MuRIL model using a stan-
dard Masked Language Modeling (MLM) objec-
tive. This adaptation approach, common for low-
resource languages, fine-tunes the model to the spe-
cific vocabulary and syntax of the target language.

For this setup, we use only the Bhili portion of
our parallel corpus (xBh). The model is trained on a
masked token prediction task using a cross-entropy
loss. Details of training are provided in Appendix
F.

4.2 Proposed Method: GARuD (Contrastive
Distillation with a Memory Queue)

To learn richer, semantically-aware sentence em-
beddings, we introduce GARuD- a novel train-
ing framework that synergizes MLM with a cross-
lingual contrastive objective. The goal is to force
the sentence representations of Bhili to align with
the high-quality semantic space of Hindi, a lan-
guage for which strong models exist. This con-
trastive alignment acts as a powerful semantic reg-
ularizer, guiding the model to learn meaningful
sentence-level representations beyond simple to-
ken prediction (Chen et al., 2023; Miao et al.,
2024).

Our framework is a teacher-student knowledge
distillation setup, whose mechanics are inspired by
Momentum Contrast (MoCo) (He et al., 2019). It
consists of three main components:

• A Student Encoder (ENCstudent): The base
MuRIL model, whose parameters (ΘS) we
are training. It processes Bhili sentences.

• A Frozen Teacher Encoder (ENCstudent): A
powerful, pre-trained Hindi model whose pa-
rameters (ΘT ) are frozen during training. For
this role, we use HindBERT (Joshi, 2022),
which is essentially MuRIL finetuned on pub-
licly available Hindi monolingual datasets,
and reportedly performs better than MuRIL
on some downstream classification and NER
tasks.

• A Memory Queue (Q): A FIFO queue that
stores a large number of recent Hindi sentence
embeddings produced by the teacher. This al-
lows for a large pool of negative samples for
the contrastive loss, decoupled from the batch
size. This allows our method to be trained
effectively on consumer-grade hardware with
limited GPU memory.

A schematic of our proposed method is pre-
sented in Figure 1.

Training Process: For each parallel pair
(x

(i)
Bh, x

(i)
Hi ) in a batch of size B, the process unfolds

as follows:
The student encoder processes the Bhili sen-

tence to produce its [CLS] token embedding,

h
(i)
Bh = ENCstudent(x

(i)
Bh) (1)

Similarly, the frozen teacher encoder processes
the corresponding Hindi sentence to produce the
positive key,

h
(i+)
Bh = ENCstudent(x

(i)
Bh) (2)

The negative keys, h(j−)
Bh }Kj=1, are the K embed-

dings of other Hindi sentences currently stored in
the memory queue Q.

The student is then trained using a contrastive
loss that encourages the Bhili embedding h

(i)
Bh to

be more similar to its positive Hindi key h
(i)
Hi than

to all negative keys in the queue. We use the NT-
Xent (Normalized Temperature-scaled Cross En-
tropy) loss (Chen et al., 2020):
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)

(3)
where B is the batch size, ℓ(i)pos is the cosine sim-

ilarity between the embeddings of the ith anchor
and its positive key. Likewise, ℓ(i)neg is the similarity
score between ith anchor and jth negative key and
τ is a temperature parameter. The gradient flows
only through the student encoder, while the teacher
and queue remain detached. After each step, the
queue is updated with the Hindi embeddings from
the current batch. This MoCo-style mechanism
provides a computationally efficient way to utilize
a large number of negatives (K >> B), which is
critical for effective contrastive learning.

Combined Objective: The student model is
trained jointly on both the MLM task (using only
the Bhili inputs) and the contrastive task. The final
loss is a weighted sum:

Ltotal = αLMLM + βLcontrastive (4)

where α and β are hyperparameters that weight the
contribution of each loss term. Training hyperpa-
rameters are given in Appendix F.

5 Evaluation
To comprehensively evaluate the quality of the
Bhili language representations produced by our
models, we designed a multi-faceted evaluation
strategy. Our approach includes an intrinsic mea-
sure of training quality, performance on a prac-
tical downstream application, standardized cross-
lingual benchmarks, and a qualitative analysis of
the embedding space.

5.1 Intrinsic Evaluation: Masked Token
Prediction

As a direct measure of how well each model has
learned the statistical properties of the Bhili lan-
guage, we report the final accuracy on the Masked
Language Modeling (MLM) task on the test set.
This intrinsic metric helps quantify the fundamen-
tal language understanding captured during the
adaptation phase for both the MLM-only baseline
and our proposed joint-training method.

5.2 Downstream Task: Sentiment Analysis
To assess the utility of the learned embeddings for
practical applications, we evaluate them on a 3-way

sentiment analysis task (positive (49%), negative
(26%), neutral (24%)).

• Dataset: We created a sentiment analysis
dataset by manually translating 8000 Hindi
sentences from a standard sentiment corpus
into Bhili. This translation was performed by
native speakers to ensure high quality and con-
textual accuracy.

• Protocol: For our proposed model (and the
baselines), we freeze the entire encoder back-
bone and add a lightweight classification head
on top, consisting of a BiLSTM layer fol-
lowed by a single MLP layer. Only the pa-
rameters of this classification head are trained
on the Bhili sentiment dataset. This feature-
extraction setup ensures that we are evaluat-
ing the intrinsic quality of the pre-trained rep-
resentations themselves, without significant
influence from task-specific fine-tuning. We
report the accuracy, precision, recall and F1-
score as our metrics.

5.3 Cross-Lingual Benchmark Evaluation
To measure the cross-lingual alignment and reason-
ing capabilities of our models, we evaluate them
on a curated set of sentence-level benchmark tasks
adapted from XTREME (Hu et al., 2020).

Task Selection Rationale: Our primary objec-
tive is to validate the semantic enrichment of our
model. We follow a ”translate-test” or ”translate-
train” approach where necessary. However, this
methodology proved untenable for tasks that rely
on precise alignment between labels and text spans.
This includes token-level classification tasks like
NER (PAN-X) and POS tagging (UDPOS), as
well as extractive question-answering tasks like
XQuAD and MLQA. The brittleness of projecting
token-level or span-level labels under translation—
a process sensitive to tokenization mismatches
and syntactic reordering—would require a manual,
resource-intensive data verification step. To ensure
a reliable and robust evaluation, we exclusively se-
lected sentence-level classification tasks where the
label depends on the holistic meaning of the text,
which is more resilient to the translation process.

Tasks and Protocols:

• Tatoeba (Sentence Retrieval): We evaluate
the model’s ability to perform cross-lingual
sentence retrieval. We use the Hindi-English
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Figure 1: An illustration of our GARuD framework for cross-lingual contrastive distillation. The Student
Encoder (MuRIL) is trained to produce Bhili sentence embeddings hBh that align with the high-quality embeddings
hHi from a frozen, expert Teacher Encoder. A MoCo-style memory queue provides a large set of negative samples
for the contrastive loss. The total loss combines this sentence-level contrastive objective with a token-level MLM
objective, but the gradient only updates the student, effectively enabling a one-way distillation of knowledge from
the teacher.
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Figure 2: Visualization of Bhili sentence embedding spaces learned by different models. Sentence level em-
beddings created by mean pooling token embeddings, from the test set are projected into two dimensions using
Principal Component Analysis (PCA). Colors correspond to four semantic clusters identified in an unsupervised
fashion via K-Means clustering, with ’x’ marking the cluster centroids. The plots show the embedding distributions
for: (a, top-left) the Zero-Shot baseline, (b, top-right) the MLM-only baseline, and (c, bottom) our proposed con-
trastive distillation method. The superior inter-cluster separation in (c) demonstrates strong qualitative evidence of
a more semantically meaningful and organized representation space for Bhili. This, in turn explains its stronger
performance on downstream tasks.
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sentence pairs from the Tatoeba dataset, man-
ually translate the English sentences into
Bhili using a translator tool 1, and then eval-
uate the model’s zero-shot performance at
matching the correct Bhili-Hindi translation
pairs. Success on this task directly measures
the quality of the cross-lingual embedding
alignment.

• XNLI (Natural Language Inference): To test
cross-lingual reasoning, we first fine-tune our
models on a translated version of the English
MNLI dataset (Wang et al., 2018). Subse-
quently, we evaluate the model’s zero-shot
transfer performance on the official XNLI test
set for Hindi (Conneau et al., 2018), using
Bhili sentences as input. Performance is mea-
sured by classification accuracy.

6 Results and Analysis
We now present the results of our comprehensive
evaluation, comparing our proposed Contrastive
Distillation method against the Zero-Shot and
MLM-only baselines. The findings consistently
demonstrate the superiority of our approach across
all evaluation axes, confirming that our method
produces more robust and semantically meaning-
ful representations for Bhili.

6.1 Main Quantitative Results: Intrinsic and
Downstream Performance

The primary quantitative results for both intrinsic
(MLM accuracy) and downstream (sentiment anal-
ysis) tasks are summarized in Table 2.

Our analysis of these results reveals two key find-
ings. First, in terms of intrinsic language model-
ing capability, our joint-training approach achieves
a higher MLM accuracy (0.789) than the MLM-
only baseline (0.756). This suggests that the cross-
lingual contrastive objective acts as a semantic reg-
ularizer, helping the model learn more effective
token-level representations for Bhili. It is syner-
gistic with the MLM objective,

Second, this enhanced representation quality di-
rectly translates to superior downstream perfor-
mance. On the sentiment analysis task, our model
achieves a weighted F1-score of 0.671, signifi-
cantly outperforming both the MLM-only baseline
(0.656) and the Zero-Shot model (0.525), whose
performance is only marginally better than ran-
dom chance. This confirms that the embeddings

1https://aadivaani.tribal.gov.in/

produced by our method are not only statistically
sound but also more useful for practical applica-
tions.

6.2 Cross-Lingual Benchmark Performance
To validate the cross-lingual alignment learned by
our model, we present the results on the Tatoeba
and XNLI benchmarks in Table 3. It provides
the clearest and most compelling evidence of our
method’s effectiveness in creating a high-quality,
aligned representation space for Bhili.

Our model demonstrates superior performance
over both baselines across these tasks. The mon-
umental improvement on the Tatoeba sentence
retrieval task is particularly telling. This re-
sult directly validates our core hypothesis: the
contrastive training objective successfully aligns
the Bhili and Hindi embedding spaces, allowing
the model to recognize sentence translations with
much higher accuracy than the baselines.

Furthermore, success in the XNLI logical rea-
soning task shows that these high-quality, aligned
embeddings serve as a stronger foundation for com-
plex downstream reasoning. Unlike the token-
focused MLM objective, our approach creates
a more meaningful sentence-level representation
space. These well-structured representations make
it easier for the model to learn and transfer ab-
stract concepts like entailment and contradiction to
the low-resource language. While the performance
gains on this task are more modest than on Tatoeba,
they are nonetheless critical. Natural Language In-
ference requires not just recognizing semantic simi-
larity, but also understanding logical relationships.

6.3 Qualitative Analysis of Embedding Space
A qualitative view of the embedding space, visu-
alized via KMeans and PCA in Figure 2, corrobo-
rates our quantitative findings. The number of clus-
ters was fixed to four for the sake of comparison.
The visualization reveals three distinct patterns:

Zero-Shot: The embeddings from the baseline
model exhibit representation collapse. The points
are clustered into a single, undifferentiated mass,
indicating the model has no semantic understand-
ing of Bhili.

MLM-only: The model adapted with only
MLM shows emergent structure. Some separation
is visible, but the clusters corresponding to differ-
ent semantic topics show significant overlap.

Our Method: In stark contrast, our model
trained with the contrastive objective yields clearly
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Method Accuracy Accuracy Precision Recall F1 Training time
(MLM) (Sentiment) (avg. no. of epochs)

Zero-shot – 0.598 ± 0.01 0.587 ± 0.03 0.525 ± 0.02 0.525 ± 0.03 13.8
MLM-only 0.756 0.681 ± 0.01 0.679 ± 0.02 0.647 ± 0.01 0.656 ± 0.01 8.2
GARuD-Bhili 0.789 0.693 ± 0.02 0.691 ± 0.02 0.659 ± 0.02 0.671 ± 0.02 6
(proposed)

Table 2: Performance of models on sentiment classification. The best metrics for each column are shown in bold.
Accuracy reported on a scale of 0–1. Additionally, improvement in masked token prediction accuracy from proposed
method over MLM pretraining is also reported. Sentiment metrics are the mean ± standard deviation over 5 runs.
Training efficiency is reported as the average number of epochs to convergence with early stopping.

Model Tatoeba XNLI
(Acc.) (Acc.)

Zero-shot 2.5 60.09
MLM-only 11.4 63.59
GARuD-Bhili 38.8 65.36
(proposed)

Table 3: Performance on cross-lingual benchmark tasks. Our proposed method shows substantial gains on both
sentence retrieval (Tatoeba) and natural language inference (XNLI) compared to the baselines.

partitioned clusters. While there is natural vari-
ance within each cluster, the inter-cluster separa-
tion is demonstrably superior. This visual evi-
dence strongly indicates that our contrastive dis-
tillation method is highly effective at inducing a
semantically organized representation space for a
low-resource language.

6.4 Analysis of Training Efficiency
An interesting and practical benefit observed dur-
ing our experiments is a marked improvement in
training efficiency. As shown in the final col-
umn of Table 2, our joint-training model converges
to its optimal performance in significantly fewer
epochs (6.0 on average) compared to the MLM-
only model (8.2). We hypothesize that the explicit,
sentence-level supervisory signal from the cross-
lingual contrastive loss provides a clearer and more
direct learning path for the model, allowing it to
reach an optimal state more rapidly than with the
diffuse MLM objective alone. This finding, sup-
ported by similar observations in other contrastive
learning literature (Jiang et al., 2024), suggests our
method is not only more effective but also more ef-
ficient.

7 Conclusion

In this work, we presented a novel and highly effec-
tive training paradigm, cross-lingual contrastive
distillation, to address the critical lack of founda-

tional language models for extremely low-resource
languages like Bhili. Our method successfully
adapts a pre-trained multilingual model by using
a fixed, expert teacher to distill semantic knowl-
edge from a related high-resource language (Hindi)
into a student model learning the target language
(Bhili). Through comprehensive experiments, we
demonstrated that our resulting model, GARuD-
Bhili, significantly outperforms strong baselines
on intrinsic, downstream, and cross-lingual bench-
mark tasks, creating a well-structured and seman-
tically robust representation space for Bhili. The
core contribution, however, is not a model for a
single language, but rather an effective case study
and a scalable blueprint for linguistic empower-
ment. The architectural components of our method
are fundamentally language-agnostic. The success
of this framework is not predicated on any unique
property of Bhili or Hindi, but on the principle that
the existence of a higher-resource language can act
as a semantic bridge to its lower-resource neigh-
bor. This makes our approach a replicable strat-
egy for any scenario where such a modest paral-
lel corpus can be curated and the source language
is already well-represented in a publicly available
multilingual model. Therefore, this work offers a
practical, data-efficient and compute-efficient path-
way for developing high-quality language models
for the world’s most underserved linguistic com-
munities. It is our hope that it will not only cat-
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alyze further research for extremely low-resource
Indic languages but also inspire and enable simi-
lar efforts to bring the benefits of modern NLP to
the vast number of languages that remain on the
fringes of the digital age.

Limitations

While our work successfully demonstrates a pow-
erful new paradigm for an ultra-low-resource lan-
guage, we acknowledge its current limitations.

First, our evaluation, though comprehensive, did
not extend to complex span-based tasks like extrac-
tive Question Answering. The brittleness of pro-
jecting answer spans across translations makes this
a methodologically challenging evaluation to per-
form reliably without extensive manual annotation,
which was beyond the scope of this initial study.

Second, the effectiveness of our GARuD frame-
work has been demonstrated on a single, albeit
highly representative, language pair: Bhili-Hindi.
While this provides a strong proof-of-concept, fur-
ther experiments are needed to validate its general-
izability across a wider range of language families
and typological distances.

Finally, the performance of our model is intrin-
sically tied to the diversity of the parallel corpus.
While the Bhili-Hindi Parallel Corpus is a monu-
mental resource, its domain coverage may not fully
encompass informal or conversational genres. The
model’s robustness on out-of-domain text is there-
fore an area for further investigation.

Future Work

Our future work will advance along three main
directions. First, we aim to scale the GARuD
framework to other ultra-low-resource Indian lan-
guage pairs such as Gondi–Telugu and Santali–
Bengali, testing its robustness and generalizabil-
ity. Second, we plan to develop a unified mul-
tilingual model trained on multiple parallel cor-
pora, enabling shared representation learning and
positive transfer across India’s underserved lan-
guages. Finally, we envision a community-led
data and benchmark initiative focused on ex-
panding domain-diverse parallel corpora and estab-
lishing standardized token- and span-level evalua-
tion datasets. Such collaborative benchmark cre-
ation is essential for ensuring meaningful, repro-
ducible progress in low-resource NLP.

Ethical Considerations

The development of NLP technologies for low-
resource and tribal languages entails a deep eth-
ical responsibility. Our work on Bhili—a lan-
guage central to its community’s cultural identity—
was guided by the principles of linguistic accu-
racy, cultural respect, and community participa-
tion. The Bhili-Hindi Parallel Corpus (BHPC) was
curated in collaboration with native Bhili speakers
from Jhabua, Madhya Pradesh, ensuring authentic-
ity and contextual relevance. Annotators provided
informed consent and received fair compensation
aligned with government standards. The dataset in-
tegrates culturally significant expressions such as
“बोकड़ा पाळवा” (goat-rearing) and “जौहार” (a lo-
cal salutation), preserving cultural nuance along-
side linguistic precision. This community-driven
and ethically grounded approach reflects our com-
mitment to inclusive, responsible NLP research for
underrepresented languages.

Acknowledgements

We gratefully acknowledge the Ministry of Tribal
Affairs, Government of India, and Shri Vibhu Na-
yar, Secretary, for their visionary leadership and
pivotal guidance in shaping this research under the
Adi Vaani Project, which laid the foundation for
the preservation and technological empowerment
of India’s tribal languages. We thank the Tribal Re-
search Institute, Bhopal, and all officials and trans-
lators for their invaluable assistance in data coor-
dination and creation of the BHEPC benchmark.
We are deeply grateful to Prof. Parag Singla, Prof.
Vivek Kumar, and Dr. Vipul Rathore for their con-
tinuous guidance. This work was supported by the
Yardi School of Artificial Intelligence, Indian Insti-
tute of Technology Delhi, through research fund-
ing and computational infrastructure.

References
D. I. Adelani and 1 others. 2022. Afriberta: Large-scale

self-supervised pretraining for african languages.
arXiv preprint arXiv:2204.06487.

Nuo Chen, Linjun Shou, Tengtao Song, Ming Gong,
Jian Pei, Jianhui Chang, Daxin Jiang, and Jia Li.
2023. Structural contrastive pretraining for cross-
lingual comprehension. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023,
pages 2042–2057, Toronto, Canada. Association for
Computational Linguistics.

1875

https://doi.org/10.18653/v1/2023.findings-acl.128
https://doi.org/10.18653/v1/2023.findings-acl.128


Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for con-
trastive learning of visual representations. Preprint,
arXiv:2002.05709.

Zewen Chi, Li Dong, Furu Wei, Wenhui Wang, Xian-
Ling Mao, Heyan Huang, and Ming Zhou. 2021.
Infoxlm: An information-theoretic framework for
cross-lingual language model pre-training. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics, pages 3576–3588. Association for Com-
putational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451. Association for Computational Linguistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. XNLI: Evaluating
cross-lingual sentence representations. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2475–2485,
Brussels, Belgium. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 4171–4186. Association for Computa-
tional Linguistics.

Sumanth Doddapaneni, Rahul Aralikatte, Gowtham
Ramesh, Shreya Goyal, Mitesh M. Khapra, Anoop
Kunchukuttan, and Pratyush Kumar. 2023. Towards
leaving no Indic language behind: Building monolin-
gual corpora, benchmark and models for Indic lan-
guages. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 12402–12426,
Toronto, Canada. Association for Computational Lin-
guistics.

F. Feng and 1 others. 2020. Language-agnostic bert sen-
tence embedding. arXiv preprint arXiv:2007.01852.

Jivnesh Gala and Pranjal Chitale. 2023. Bharat paral-
lel corpus collection (bpcc): A comprehensive mul-
tilingual resource for indian languages. In Proceed-
ings of the 2023 Conference on Machine Translation
(WMT), pages 45–55. Association for Computational
Linguistics.

Barry Haddow and Faheem Kirefu. 2020. Pmindia:
A parallel corpus of indian languages. In Proceed-
ings of the 2020 Conference on Machine Translation

(WMT), pages 224–230. Association for Computa-
tional Linguistics.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2019. Momentum contrast for un-
supervised visual representation learning. arXiv
preprint arXiv:1911.05722.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning
Workshop.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-task
benchmark for evaluating cross-lingual generaliza-
tion. Preprint, arXiv:2003.11080.

Xin Jiang, Xu Cheng, and Zechao Li. 2024. Why pre-
training is beneficial for downstream classification
tasks. Preprint, arXiv:2410.08455.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the nlp
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6282–6293.

Raviraj Joshi. 2022. L3cube-hindbert and devbert:
Pre-trained bert transformer models for devanagari
based hindi and marathi languages. arXiv preprint
arXiv:2211.11418.

Simran Khanuja, Diksha Bansal, Sarvesh Mehtani,
Savya Khosla, Atreyee Dey, Balaji Gopalan,
Dilip Kumar Margam, Pooja Aggarwal, Rajiv Teja
Nagipogu, Shachi Dave, Shruti Gupta, Subhash
Chandra Bose Gali, Vish Subramanian, and Partha
Talukdar. 2021. Muril. Preprint, arXiv:2103.10730.

Zhongtao Miao, Qiyu Wu, Kaiyan Zhao, Zilong Wu,
and Yoshimasa Tsuruoka. 2024. Enhancing cross-
lingual sentence embedding for low-resource lan-
guages with word alignment. In Findings of the
Association for Computational Linguistics: NAACL
2024, pages 3225–3236, Mexico City, Mexico. As-
sociation for Computational Linguistics.

Wilhelmina Nekoto, Vukosi Marivate, Terence Mat-
sila, and 1 others. 2020. Participatory research for
low-resourced machine translation: A case study in
african languages. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2144–2160. Association for Com-
putational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Pooja Singh, Shashwat Bhardwaj, Vaibhav Sharma,
and Sandeep Kumar. 2025. Leveraging the cross-
domain & cross-linguistic corpus for low resource

1876

https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://aclanthology.org/2021.naacl-main.278
https://aclanthology.org/2021.naacl-main.278
https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/2020.acl-main.747
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.18653/v1/2023.acl-long.693
https://doi.org/10.18653/v1/2023.acl-long.693
https://doi.org/10.18653/v1/2023.acl-long.693
https://doi.org/10.18653/v1/2023.acl-long.693
https://aclanthology.org/2023.wmt-1.4
https://aclanthology.org/2023.wmt-1.4
https://aclanthology.org/2023.wmt-1.4
https://aclanthology.org/2020.wmt-1.23
https://aclanthology.org/2020.wmt-1.23
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2003.11080
https://arxiv.org/abs/2003.11080
https://arxiv.org/abs/2003.11080
https://arxiv.org/abs/2410.08455
https://arxiv.org/abs/2410.08455
https://arxiv.org/abs/2410.08455
https://arxiv.org/abs/2103.10730
https://doi.org/10.18653/v1/2024.findings-naacl.204
https://doi.org/10.18653/v1/2024.findings-naacl.204
https://doi.org/10.18653/v1/2024.findings-naacl.204
https://aclanthology.org/2020.emnlp-main.172
https://aclanthology.org/2020.emnlp-main.172
https://aclanthology.org/2020.emnlp-main.172
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://doi.org/10.48550/arXiv.2511.00486
https://doi.org/10.48550/arXiv.2511.00486


nmt: A case study on bhili-hindi-english parallel cor-
pus. arXiv preprint arXiv:2511.00486. Accepted at
EMNLP 2025.

Shashank Siripragada, Gowtham Ramesh, and 1 others.
2020. A multilingual parallel corpus of legislative as-
sembly proceedings in indian languages. In Proceed-
ings of the 12th Language Resources and Evaluation
Conference, pages 308–316. European Language Re-
sources Association.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 353–355, Brussels, Belgium. Association for
Computational Linguistics.

Yaushian Wang, Ashley Wu, and Graham Neubig.
2022. English contrastive learning can learn univer-
sal cross-lingual sentence embeddings. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 9122–9133,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

A Ultra Low-Resource Languages

Languages with extremely limited resources suffer
from a serious lack of accessible data and proper
documentation. This issue is particularly evident
in many Indian regional languages, which often
fall into this category. Unlike widely studied lan-
guages, these lesser-known languages have mini-
mal resources—many are unpublished or contain
very little available data. They are commonly
described as under-documented, under-resourced,
or under-digitized. As a result, collecting and
processing raw textual data in these languages
presents significant challenges.

B Bhili Language

Bhili, a Western Indo-Aryan language spoken by
approximately 13 million people across Rajasthan,
Gujarat, Maharashtra, and Madhya Pradesh, is
written in the Devanagari script and deeply em-
bedded in Bhil cultural heritage. The dataset
we present focuses on the Bhili dialect from the
Jhabua region of Madhya Pradesh. Despite the
language’s cultural and demographic importance,
Bhili remains largely unexplored in Natural Lan-
guage Processing (NLP) due to the lack of publicly
available parallel corpora.

C Translation Guidelines

To maintain consistency and preserve the seman-
tic integrity of translations, we established a com-
prehensive set of guidelines that balance linguis-
tic precision with the practical constraints posed
by the scarcity of Bhili-specific glossaries, litera-
ture, and linguistic resources. Translators are in-
structed to faithfully retain the meaning and stylis-
tic tone of the source content without introducing
new material or omitting any part of the original.
Special care was taken when handling named enti-
ties, numbers, dates, and technical terminology in
accordance with the conventions of the target lan-
guage. The core principles include:

• General Principles: Accurately convey the
source text’s meaning, tone, style, and level
of formality—whether formal, informal, or
emphatic—without making additions or dele-
tions. Minor grammatical errors or typo-
graphical mistakes may be corrected as long
as factual inconsistencies in the source are
preserved. The translation should read flu-
ently and naturally in the target language.

• Named Entities: Use standardized, widely
accepted translations where they exist. If
unavailable, entities should be precisely
transliterated into the target script following
language-specific conventions. Translators
must avoid creating alternative or novel ren-
derings.

• Numbers and Units: Reproduce numeri-
cal expressions exactly as they appear in the
source, whether spelled out or written in dig-
its. Apply local numbering conventions for
large numbers where appropriate, while re-
taining terms like “billion” and “trillion” in
English or using recognized equivalents in the
target language. All original units of measure-
ment must be preserved.

• Dates: Maintain the original date format as it
appears in the source, whether in fully written
or numeric form. Year lengths should not be
altered, and no expansion or abbreviation of
dates is permitted.
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D Annotation Guidelines Based on
MQM (Multidimensional Quality
Metrics): Error Categories and
Severities

Translation quality was evaluated at the segment
level, where each segment could consist of one or
multiple sentences. Translations were aligned side-
by-side with their corresponding source texts, en-
abling annotators to examine them in parallel. A
well-defined hierarchy of error types was presented
in Table 8 to guide annotators in consistently identi-
fying and categorizing issues. Each error type was
assigned a severity score on a five-point scale—
Very Low, Low, Medium, High, and Very High—
allowing for fine-grained distinctions in impact.

To translate qualitative assessments into nu-
meric scores, we used the following mapping:
Very Low = 1, Low = 2, Medium = 3, High = 4,
and Very High = 5. Each error category—such as
Accuracy, Fluency, Terminology, and Style—was
scored independently, and all were treated with
equal importance. Errors unrelated to translation
were given a score of zero, and any sentence con-
taining a critical error in the source text was ex-
cluded from scoring.

Instructions for Annotators
• Annotators were required to closely inspect

each translated segment and identify all
present errors, with a strict limit of five errors
per segment. If more than five were found,
only the five most critical errors were to be
reported.

• Each error span was to be precisely high-
lighted using color coding, followed by as-
signing the correct error category and subcate-
gory, along with an appropriate severity level.
If the issue originated from the source sen-
tence or involved omission, the corresponding
source text span was to be marked instead.

• Errors had to be captured at the most granular
level possible. For example, if two separate
words were mistranslated, annotators had to
log them as two individual errors rather than
one.

• In cases where multiple errors overlapped in
the same span, only the most severe error was
recorded. If two errors had the same sever-
ity, the first matching category in the MQM

hierarchy (e.g., Accuracy, then Fluency, then
Terminology) was selected.

• Special Categories:

– Non-translation: If a translation was
highly distorted or entirely unrelated
to the source, and individual errors
couldn’t be meaningfully identified, an-
notators were instructed to mark the en-
tire segment as a single Non-translation
error. No other errors should be logged
for that segment.

– Source Error: When an error was due to
flaws in the source text, the problematic
span in the source was highlighted, and
such segments were excluded from scor-
ing (though the source error still needed
to be documented).

• After completing all annotations for a seg-
ment, annotators assigned a final quality score
out of 25 and recorded this value in the final
score column.

E Data Quality Control

In order to rigorously assess the quality of our man-
ually curated Hindi–Bhili gold references, we con-
ducted an inter-annotator agreement (IAA) study.
Following the MQM/DA protocol, we randomly
sampled 250 sentences across our three domains.
Two independent professional translators (Transla-
tor A and Translator B), both native Bhili speak-
ers, translated each Hindi sentence into Bhili. Sub-
sequently, each translator rated the other’s render-
ing on the MQM scale. This evaluation yielded
an IAA coefficient of 0.68 for the Hindi→Bhili
gold references, indicating substantial agreement
and confirming the high quality of our dataset.

F Training Details

Both the MLM-only and proposed models were
trained on an NVIDIA L40S GPU only once. Early
stopping was used in both cases. Hyperparameters
are provided in the following table:
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Hyperparameter Value
max_seq_length 128
Masking Probability 0.15
max_epochs 1000
batch_size 32
learning_rate 5e-5
Optimizer AdamW
Scheduler Linear Decay with warmup
Early Stopping Yes
queue_size (for MoCo) 2048
α 1
β 1

The loss and accuracy plots are presented in Fig-
ure 3 for MLM-only and in Figure 4 for our pro-
posed method. The notable sharp dip in the con-
trastive loss curve can be explained by the presence
of learning rate reduction due to scheduling during
training.

0 50 100 150 200 250
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Train Accuracy
Validation Accuracy

0 50 100 150 200 250
Epoch

1

2

3

4

5

6

Lo
ss

Train Loss
Validation Loss

Figure 3: Accuracy and loss plots for continued pre-
training of MuRIL with MLM
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Figure 4: Accuracy and loss plots for training with
GARuD, our proposed method. The total loss, MLM
loss and the contrastive loss have been shown individu-
ally.

G Fine-tuning Details

Fine-tuning for the sentiment classification down-
stream task was done on an NVIDIA A5000 GPU.
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The hyperparameter settings are provided in the fol-
lowing table:

Hyperparameter Value
max_seq_length 64
max_epochs 100
batch_size 64
learning_rate 2e-3
Optimizer AdamW
hidden_dim (for LSTM) 256
Dropout 0.2
Patience 3

For the XNLI task, we fine-tuned on the MNLI
dataset using the standard training pipeline from
HuggingFace’s transformers library and then
performed inference on the Hindi language split of
the XNLI dataset. The task was performed on an
NVIDIA L40S GPU. The hyperparameters are in
the following table:

Hyperparameter Value
num_epochs 5
batch_size 32
gradient_accumulation_steps 2
learning_rate 2e-5
weight_decay 0.01
warmup_ratio 0.1
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