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Abstract

Translating natural language requirements into
Signal Temporal Logic (STL) is essential for
safety-critical systems but requires mathemat-
ical expertise. We propose a translational
grammar mapping Universal Dependencies
(UD) structures to STL Operators through 17
theoretically-motivated patterns, evaluated on
the NL2TL benchmarking dataset of 7,002
expert-annotated sentence-STL pairs, and an
additional cross-domain analysis. We built
a parser guided by this grammar to explore
the formal deterministic relationship between
UDR Compositions and STL Operators, achiev-
ing ~99% sentence coverage, ~54% exact
matches (and ~97% similarity). Sentence-
level regression analyses predict STL state-
ments and STL Operator classes, considering
the co-occurance of UDR substructures (UDR
components) with an accuracy of more than
~T74% and ~81%, respectively. They uncover
a new logical grammatical link between tempo-
ral NL and formal logic, that is conditioned by
the sentence-level context, and provide insights
into how linguistic theory unfolds in practice
through temporal linguistic expressions.

1 Introduction

Formal specifications in temporal logic are essen-
tial for verifying safety-critical systems, synthesiz-
ing correct-by-construction controllers, and defin-
ing precise requirements for autonomous agents.
However, understanding how natural language
(NL) temporal expressions systematically corre-
spond to formal temporal logic operators of artifi-
cial languages like Linear Temporal Logic (LTL)
or Signal Temporal Logic (STL) raises fundamen-
tal questions for computational linguistics (Maler
and Nickovic, 2004; Sistla and Clarke, 1985). Con-
sider a seemingly simple requirement: "For each
moment within the first 2 to 46 time units, the sig-
nal must consistently stay above 8.9." Translating
this requires understanding that "for each moment"
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maps to a global operator (G), "within the first 2 to
46 time units" defines temporal interval [2, 46], and
"consistently stay" reinforces universal quantifica-
tion, yielding Gy 46) (signal > 8.9). This challenge
has motivated emerging research in recent NLP re-
search: Researchers fine-tune LL.Ms or train new
translation models (e.g. DeepSTL (He et al., 2022),
NL2TL (Chen et al., 2023), GraFT (English et al.,
2025)) to translate NL to STL accurately. How-
ever, these approaches provide insufficient insight
into how syntactic structures of NL systematically
encode temporal logic operators of artificial lan-
guages like STL, leaving the fundamental linguistic
mechanisms unexplained.

In this paper, we argue that Universal Depen-
dencies (UD) (De Marneffe et al., 2021; Nivre,
2020) enable a systematic mapping between natu-
ral language and temporal logic operators of LTL
or STL. Specifically, we ask: Is there a relationship
between UDR components and STL Operator com-
position? Rather than developing another system
for NL-STL Translation, we propose and empiri-
cally investigate a translational grammar that maps
a set of "UDR Compositions" to Signal Temporal
Logic, leveraging universal grammatical principles.
UDR Compositions combine UD syntax substruc-
tures (such as the adverbial modifiers "always",
"eventually", and "not") and associated semantics
(e.g., temporal words associated with certain struc-
tures) to capture the building blocks that constitute
temporal structures in natural language.

Our investigation focuses on empirically identi-
fying and analyzing this grammar to enhance our
understanding of how the structural theory of UDR
for natural language relates to STL. Our paper
makes two unique contributions:

First, we introduce a new grammar that defines
a (probabilistic) relationship between UDR Com-
positions and STL Operators. We introduce 17
theoretically-motivated Universal Dependency Re-
lationship Compositions ("UDR Composition(s)")
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defined independently based on UD syntactic the-
ory, ranging from single-relation Compositions sig-
naling operator categories to multi-relation con-
figurations indicating specific operators. We pro-
grammed a parser to automatically extract these
UDR Compositions and map them to STL Opera-
tors.

Second, we empirically examine this transla-
tional grammar based on two datasets, namely the
circuit_total_refined dataset with 7,002 NL-
STL pairs used in prior research (He et al., 2022;
Chen et al., 2023) and 100 handcrafted natural lan-
guage sentence-STL pairs from the TimeBank 1.2
Corpus (referred to as "NL2TL" "TimeBank 1.2"
and in this paper)(Pustejovsky et al., 2003, 20006).
In a first step, we examined our grammar assum-
ing a rule-based deterministic mapping between
UDR Compositions and STL Operators, using a
rule-based parser, with an exact match translation
of 53.84% into full STL sentences, and an average
similarity of complete STL statements of 96.70%
! In addition, we performed sentence-level statis-
tical analysis to examine how the seventeen core
UDR Compositions predict and explain the STL
Operators, as well as complete STL statements,
considering the co-occurrence of UDR-Cs in a sen-
tence. Logistic regression achieved an accuracy
of ~74.3% accuracy in translating UDR Compo-
sitions into complete STL statements. Additional
multinomial logistic regression mapped 17 UDR
Compositions into 10 STL Operators classes, and
successfully predicted STL Operators with an ac-
curacy of about ~81% confirming a probabilistic
relationship between multiple syntax substructures
in predicting STL, caused by variability in language
expression. For example, certain syntactic substruc-
tures like the UDR Composition "Conjunction" (/\)
increase prediction accuracy as they are used in
multiple contexts, and with different meanings to
express temporality.

Our research has important implications for fu-
ture research at the intersection of linguistic theory
as well as deep-learning-inspired NLP. It sets the
foundation for new theory-guided research on the
nature of temporal language expression, and also
guides future research on grammar-inspired NL-
STL translation in the realm of GraFT (English
et al., 2025).

"Here we assumed a 1:1 relationship between UDR Com-
positions and complete STL statements

2 Theoretical Foundations

2.1 Signal Temporal Logic

Signal Temporal Logic (STL) serves as the formal
target language for temporal specifications in cyber-
physical systems. Formally, STL extends First Or-
der Logic, which itself extends propositional logic
with quantifiers and predicates, by introducing tem-
poral operators that quantify over bounded dense-
time intervals. This extension accommodates real-
valued signals and continuous-time dynamics, en-
abling the mathematical precision required for veri-
fication of safety-critical systems while addressing
quantitative constraints ubiquitous in real-world
applications (Donze et al., 2013; Maler and Nick-
ovic, 2004). The bounded temporal operators with
explicit time windows address a fundamental lim-
itation of classical temporal logics when applied
to systems with strict timing requirements. STL
formulas follow the grammar:

pu=at | g | 1 Ap2 | d1V 2 | Flap)d | Glap)@ | 61U[a p)P2 (1)

where 7# represents atomic predicates (z ~ ),
¢ denotes STL formulas, and [a, b] specifies time
intervals. The temporal operators F[, 3 (Eventu-
ally), Gjq 5 (Always), and U, (Until) quantify
over time intervals, with Boolean connectives pre-
serving their classical semantics (Maler and Nick-
ovic, 2004). Complete formal definitions appear in
Appendix A.1.

2.2 Universal Dependencies

Universal Dependencies (De Marneffe et al., 2021;
Nivre et al., 2016), grounded in Tesni¢re’s depen-
dency grammar theory (1959), developed to for-
mally describe syntactic structures of natural lan-
guage. It represents syntax as directed graphs
G = (V,E, /) with word nodes V, dependency
edges F, and labels ¢ : £ — R from 37 universal
relations. Dependency patterns P = (r, h,d,C)
consist of relation 7, head/dependent constraints
h/d, and contextual constraints C', matching edges
when all constraints are satisfied. Complete formal
definitions are provided in Appendix A.1l.

2.3 Translational Grammar: UDR
Composition to STL Operators

We propose seventeen patterns (Table 1) that
provide comprehensive STL coverage for
cyber-physical system specifications. Each
pattern consists of two key components:
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the UDR Composition specifies the precise
syntactic structure using Universal Depen-
dencies relations (e.g., advmod(“always”),
mark (“if”)+advcl+mark(“then”)) that triggers
pattern detection in natural language text, whereas
the STL Operator defines the formal symbolic
representation (e.g., G, F, U, —) used in the
resulting temporal logic formula. This distinction
enables systematic mapping from linguistic
surface forms to formal Signal Temporal Logic
representations through dependency parsing.
These patterns, selected through theoretical
analysis of STL Operators (Maler and Nickovic,
2004) and empirical validation showing over 90%
coverage (Chen et al., 2023), systematically map
Universal Dependencies to STL, demonstrating
that dependency structures encode temporal
semantics at multiple levels of abstraction, from
atomic temporal operators to propositional-level
and hierarchical formula compositions: advmod
relations encode temporal quantification (Pattern
Nos. 1, 2, 6, 7, 8), mark+nummod capture bounded
constraints (Pattern Nos. 10, 11, 12, 13), lexical
patterns identify state transitions (Pattern Nos.
9, 13, 14, 15, 16, 17), and logical relationships
(Pattern Nos. 4, 5, 6).

No. | Pattern Name UDR Composition STL Op.

1 | Always advmod("always") g

2 | Eventually advmod("eventually") F

3 | Until mark("until")+advcl u

4 | Conjunction cc("and")+conj A

5 | Disjunction cc("or")+conj \Y

6 | Propositional Negation advmod("not") -

7 | Negated Always advmod("never") -G

8 | If-Then Implication mark("if")+advmod("then") —

9 | Become/Change Rise compound("become"/"change") T o
10 | Bounded After mark("after")+nummod Flk,00]
11 | Bounded For mark("for")+nummod Q[O’k]
12 | Bounded Within mark("within")+nummod Flo,k]
13 | When First Rise mark("when")+advmod("first") T o
14 | Universal Quantification det(specifications, Yo

"all")+nsubj(hold)

15 | Existential Quantification det(constraint, "a")+acl:relcl Bl
16 | Conditional Formula Selection advcl(apply, holds)+mark("if") | ctx = ¢,
17 | Specification Conjunction obj(require, both)+nsubj(system) | A, ¢

Table 1: Systematic correspondences between UDR Compositions and STL Operators.

The patterns exploit systematic correspondences
between linguistic quantification and temporal
logic. Determiners (any, every) parallel univer-
sal quantification (G), while indefinites map to
existential quantification (F') (Barwise and Cooper,
1981). Temporal adverbs directly lexicalize quanti-
fiers, prepositional phrases with numerals encode
metric constraints, and subordinating conjunctions
establish temporal ordering (Partee, 1984). The Un-
til operator’s dual requirements, eventual satisfac-
tion and continuous maintenance, mirror adverbial
clause structures that demonstrate how syntactic

subordination encodes semantic scope (Emerson
and Halpern, 1983).

Pattern design leverages formal semantic prin-
ciples: negation duality (—Gq ¢ = Fiqp7¢)
motivates Pattern No. 7’s never encoding (Horn,
2001); material conditional correspondence jus-
tifies Pattern No. 8’s if-then mapping (Kratzer,
1991); and edge operators (1 ¢ = —¢U¢@) capture
state transitions through inchoative/cessative predi-
cates (Dowty, 1979). This compositional approach
aligns with natural language semantics (Montague,
1973), where patterns serve as atomic operations
combining per STL formation rules, preserving
interpretability, which is essential for verification
tasks (Konrad and Cheng, 2005).

3 Methodology

We used SpaCy 3.8.7 (Honnibal and Montani,
2017) to develop a Universal Dependencies parser
and extract binary features for 17 theoretically moti-
vated Universal Dependency Construction Classes
(Table 1), along with 10 distinct STL Operator
classes, as well as full STL Statements. To exam-
ine the quality of our parser, we implement a man-
ual accuracy check on a 2% subsample of NL2TL
and the 100 sentences from TimeBank 1.2 (see ta-
bles 7 and 17 in Annex for this). We used this
parser to examine a deterministic 1:1 relationship
between UDR Compositions and STL Operators,
along with an exact STL statement. We evaluate the
NL-STL translation based on exact matches (string-
edit distance of 0 or 1), and similarity scores based
on regex pattern matching (Chapman and Stolee,
2016).

To examine the relationship between UDR Com-
positions and STL Operators, we performed a
binary true/false sentence-level (N = 7,002 sen-
tences, 80/20 train-test split) logistic regression
(Nick and Campbell, 2007), focused on UDR to
complete STL statements, followed by a sentence-
level multinomial (N = 7,002 sentences, 80/20
train-test split) logistic regression (Long, 1997)
to examine the UDR Composition-STL Operator
relationships considering multiple UDR Compo-
nents jointly in a sentence. We used the Scikit-
learn library and implemented the regression with
the 1bfgs solver and regularization (Lee et al.,
2006; Minka, 2003; Moritz et al., 2016; Pedregosa
et al., 2011). We report both the coefficients and
odds ratios to discuss the importance of different
UDR Components for predicting STL sentence, as
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well as STL Operator classes considering UDR
co-occurrences (Brunswicker and Haefliger, 2025).
Complete methodological details appear in Ap-
pendix A.2.

4 Results

4.1 Descriptives

We analyzed 7,002 natural language sentences
paired with STL formulas from NL2TL, and an
additional 100 hand-crafted pairs from TimeBank
1.2. Table 2 provides an overview of the re-
sults of our analysis. For the NL2TL dataset, we
identified 20,410 STL statements across 9 STL
classes, and 42,428 UDR statements across 17
UDR classes. Our composition detection analy-
sis achieved 99.94% coverage (6,998 out of 7,002
sentences). We achieved 53.84% exact matches
and 96.70% string similarity.

Dataset Characteristics NL2TL TimeBank 1.2

Domain Technical specs Narrative discourse

Sentences analyzed 7,002 100
Num. STL Statements analyzed 20,410 185
STL Classes 9 4

Sentences with no UDR Compositions detected 4 23
Types of UDR Compositions detected 17 13
Total UDR Compositions detected 42,428 137

99.94%
3,770 (53.84%) 1 (1.00%)
96.70% 95.8%

Sentence level coverage 77.00%
Exact matches

Average similarity

level STL Si
-level STL

Table 2: Basic Descriptives: NL2TL and TimeBank 1.2.

We performed a spot test on the quality of our
parser using a 2% subsample of the NL2TL dataset
and 100% of The TimeBank 1.2 revealed substan-
tial variation in composition detection performance.
It suggests that our parser has sufficient accuracy
in terms of the detection of UDR Compositions
and STL Operators (we achieved an average parser
accuracy of 86.28%). More details on this man-
ual evaluation for both datasets can be found in
Tables 7 and 17 in the Annex.

Pattern Pattern UDR No. of

No. Name Comp. Inst. %
1 Always advmod("always") 3,178 7.49

2 Eventually advmod("eventually") 658 1.55

3 Until mark("until")+advcl 3,879 9.14

4 Conjunction cc("and")+conj 6,208 14.63

5 Disjunction cc("or")+conj 1,540 3.63

6 Prop. Negation advmod("not") 3,986 9.40
7 Negated Always advmod("never") 102 0.24

8 If-Then Impl. mark("if")+advmod("then") 727 1.71

9 Become/Change compound("become"/"change") 1,185 2.79
10 Bounded After mark("after")+nummod 4,064 9.58
11 Bounded For mark("for")+nummod 802 1.89
12 Bounded Within mark("within")+nummod 3,061 7.22
13 ‘When First mark("when")+advmod("first") 2,915 6.87
14 Universal Quant. det("all")+nsubj 1,856 4.37
15 Existential Quant. det("a")+acl:relcl 206 0.49
16 Cond. Formula Sel. advcl+mark("if") 7,109 16.76
17 Spec. Conjunction obj("both")+nsubj 952 2.24
Total 42,428 100.00 %

Table 3: NL2TL: Composition frequency. Instances indicate of UDR Composition occur-
rences.

Table 3 describes our NL2TL’s 42,428 UDR
Composition instances and provides insight into
the variability in how syntax structures constitute
STL, and suggests a prominence of certain UDR
Compositions in expressing temporality. Condi-
tional Formula Selection (16.76%), followed by
Conjunction (14.63%), and Until (9.14%). The low-
est are Existential Quantification (0.49%), Negated
Always (0.24%), and Eventually (1.55%). An anal-
ysis of our second dataset, the TimeBank 1.2°s 137
instances (Table 15) exhibits a distinct distribution,
suggesting that the domain may impact the domi-
nance of certain UDRs for expressing STL in natu-
ral language. For example, in narrative discourse,
Bounded For (12.41%), Conjunction (24.82%), and
Propositional Negation (14.60%) dominate, while
several compositions present in NL2TL are entirely
absent. This distributional divergence reflects fun-
damental differences in temporal expression strate-
gies between technical circuit specifications and
narrative discourse.

4.2 Statistical Analyses of Patterns: UDR
Composition - STL Relationships

We examined our proposed patterns in multiple
ways. First, we explored the co-occurrence of UDR
Compositions and STL Operators per sentence in a
heatmap, then performed regression analysis to ex-
amine the probabilistic relationship between UDR
Compositions and STL at the sentence level, con-
sidering UDR Composition co-occurrences. We
first predicted full ground-truth STL StatementsWe
use the ground truth label from the NL2TL dataset
from the 17 UDR Components, using logistic re-
gressions. Then, we use a multinominal logistic
(MNL) regression to predict a particular STL Op-
erator considering all 17 UDR Components occur-
ring in a sentence assuming a deterministic rela-
tionship between UDR-STL Components based on
our parser.

4.2.1 UDR Composition and STL Operator
Co-occurence

UDR Composition and STL Operators co-
occurrences in NL2TL (Table 22) reveal distinct
frequency patterns and distributional characteris-
tics. The dataset shows substantial variation across
the 17x10 matrix, with frequencies ranging from
1 (UDR-C No. 15 with |) to 4,424 (UDR-C8 with
—). UDR-C No. 8 demonstrates the highest sin-
gle operator association at 4,424 instances with —,
followed by UDR-C12 with — at 3,377 instances,
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and UDR-C No. 8 with F;, ] at 3,259 instances.
The top frequency concentrations show UDR-C
No. 8’s strong performance across multiple op-
erators: 4,424 with —, 3,259 with F; o), 2,720
with G, and 1,966 with Q[O,k}. UDR-C No. 12 also
exhibits high frequencies, reaching 3,377 with —,
2,692 with G, 2,596 with F, and 2,418 with F;, .
UDR-C No. 11 shows notable concentration in
bounded always Gjg ) with 3,006 instances, while
UDR-C No. 1 peaks with G at 3,014 instances
and UDR-C No. 2 reaches 3,129 with F'. Lower
frequency patterns include UDR-C No. 7, showing
consistent low values across all operators (ranging
from 2 to 206), and UDR-C No. 15 with minimal
frequencies (1 to 97 across all operators). The —
operator consistently shows the lowest frequencies
across all compositions, with most values under
100. In contrast, — shows high activity across
multiple compositions, appearing with frequencies
above 1,000 in eight different UDR Compositions.

UDR Composition |F Flo,k] Flk,00] G G0,k UG T — |

1. advmod("always")

2. advmod("eventually")

3. mark("until")+advcl

4. cc("and")+conj

5. ce("or")+conj

6. advmod("not")

7. advmod("never")

8. mark("if")+advmod("then")

9. compound("become"/"change")
10. mark("after")+nummod

11. mark("for")+nummod

12. mark("within")+nummod

13. mark("when")+advmod("first")
14. det("all")+nsubj

15. det("a")+acl:relcl

16. advcl+mark("if")

17. obj("both")+nsubj

N
=

Color seale: ) 500 500 1000 1500 2000 2500 3500 4500

Table 4: NL2TL: UDR Compositions x STL Operators Co-occurrence heatmap. Color
intensity represents co-occurrence frequency from light yellow (low) to dark red (high,
max=4424).

TimeBank (Table 23) presents a strikingly dif-
ferent pattern with extreme sparsity. Of the 170
possible cells (17x10), only 22 contain non-zero
values. The highest frequency is UDR-C No. 11
with Gy 1 at 17 instances, followed by UDR-C No.
4 and UDR-C No. 6, each showing 4 instances with
Glo,x)- and the rest showing only 1 to 3 cases.

4.2.2 Regression Analyses

Precision Recall F-1 Score Support
False (No Match) 0.716 0.736 0.726 647
True (Match) 0.768 0.749 0.758 754
Accuracy 0.743 1,401
Macro Average 0.742 0.743 0.742 1,401
Weighted Average 0.744 0.743 0.743 1,401

Table 5: NL2TL: Logistic regression test classification report (n=1,401).

Our sentence-level logistic regression analyses
(Table 5) achieved an overall weighted accuracy
of ~74% (and a precision of true matches of
~76%). An examination of the odds ratio (see
Table 10) suggests that there are certain UDR Com-
positions, such as Conjunction (A) and If-Then
Implications(—), that are less likely to predict a
match, potentially because there is variability in
how they co-occur with other UDR Compositions.
The confusion matrix can be found in Table 9 and
the ROC Curve can be found in Figure 1.

The multinomial logistic regression, also per-
formed at the sentence-level (N=7,002 for the
NL2TL dataset), achieves 82.49% and 81.37%
overall accuracy on the training and test set of the
NL2TL dataset (Tables 6 and 12), with TimeBank
1.2 (Table 21) achieving a higher 90.00% accuracy.
For the NL2TL dataset, we see variability in the
STL Operator level classification accuracy with
F and Fj;, ) achieving the highest, and U and
=G achieving the lowest performance. F' operator
maintains perfect classification on NL2TL.

The primary confusion matrices (Tables 11
and 19) shows that confusion was highest be-
tween [, o) and G followed by Fjg 3 and Gg 3
caused by how the different UDR Components, the
syntatic substructures are combined.

STL Operator Precision Recall F1 Support
F* 1.00 1.00 1.00 626
Flo, k) 0.58 0.50 0.54 150
Flk, 00 0.92 0.66 0.77 295

0.66 0.60 0.63 179
G [0,k] 0.44 0.89 0.59 56
None 0.61 0.71 0.65 24
U 0.41 0.94 0.57 17
-G 0.60 1.00 0.75 3
1T 0.54 0.93 0.68 15
— 0.63 1.00 0.77 36
Macro Avg 0.64 0.82 0.70 1,401
‘Weighted Avg 0.84 0.81 0.82 1,401

Overall Accuracy: 81.37%

Table 6: NL2TL: Test set performance (n=1,401). Per-operator classification metrics on
held-out data. Training-test gap: 1.11% (82.49% vs 81.37%), indicating strong generalization
without overfitting. * " serves as the baseline reference category.

We also analyzed the odds ratios and the co-
efficient magnitudes (see Table 10) that indicate
how the likelihood of observing a particular UDR
Composition in a sentence, increase the predic-
tion of a particular STL Operator, holding other
UDR Components constant: For example, as ex-
pected, the UDR-C No. 2 (Eventually) may be
highly predictive for the F' operator, while UDR-C
No. 7 (Negated Always) is more likely to translate
into -G, in the realms of a 1:1 mapping assumed
by our grammar, rather independent from UDR-
Cs. However, for F|; .}, we find that that UDR-C
No. 12 (Bounded Within), with the highest coef-
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ficient/odds ratio, is closely followed by UDR-C
No. 1 (Always) with the second highest coeffi-
cient/odds value, suggesting they may be also be
impactful in predicting the FJ;, . (potentially be-
cause of co-occurrence). Further details on this
probabilistic relationship at the UDR Composition
and STL Operator level can be found in Table 14
in the annex.

5 Discussion

Our empirical investigation reveals new insights
into how syntactic theory for temporality translates
into formal temporal logic, defined by mathemat-
ical artificial language. The striking contrast be-
tween high pattern detection (99.94% coverage on
NL2TL, 77% on TimeBank 1.2) and variable accu-
racy rates (ranging from 0.00% to 100.00% across
patterns, with 81.37% overall accuracy on NL2TL)
shows a critical insight: The mapping between the
building blocks of temporal syntax, the UDR com-
ponents to STL Operators and full STL statements
is inherently probabilistic, not only because of the
domain context. Most importantly, we find that the
co-occurrence of UDR components at the sentence
level impacts the success of predicting STL oper-
ators. In other words, while there is some under-
lying logical relationship, the variability is caused
by both the combination of syntactic structures and
variability in semantic expression.

Our patterns demonstrate statistical tendencies
caused by the way UDR-Components are com-
bined: The mapping of UDR components to STL
Operator is conditioned by structural context and
linguistic variation. What is important is that the
variability is not the same for all UDR-STL rela-
tionships, indicating that rich linguistic phenomena
like temporal structures require the consideration
of temporal structural building blocks, structural
context, and semantics.

With that, we provide guidance to ongoing re-
search on NL-STL translation: Our findings reveal
new, valuable insights into how natural language
systematically varies across sentences and domains,
even when the data is decontextualized and the
system description is lifted. In our research, we
followed prior research (Chen et al., 2023) and
used lifted STL statements to examine the rela-
tionship between syntactic structures and formal
logic. However, even if we perform such lifting, we
observe unique probabilistic relationships and vari-
ability caused by the combination of UDR-C at the

sentence level. Technical domains exhibit highly
systematized temporal encoding, which our UDR
Compositions successfully capture, and precise
temporal constraints because engineering discourse
has evolved specialized syntactic conventions for
unambiguous temporal specification. The high sim-
ilarity scores (96.70% and 95.80%) across domains
indicate that our patterns successfully identify core
temporal structures, while our regression analysis
provides insights into the underlying probabilistic
relationship that causes variability.

Our findings address a key limitation in research
on how NL relates to STL by offering a new gram-
mar that provides a foundation for a logical map-
ping between syntax structure and STL Operators.
Our empirical analysis uncovers a new probabilis-
tic relationship between syntactic structures and
temporal logic operators that can improve future
theory development in computational linguistics.
Further, it may also set the stage for the design of
neurosymbolic frameworks like the one proposed
by (English et al., 2025) that encode a grammar into
the architecture of a neural network to improve not
only the accuracy but also the interpretability of
NL-STL translation models, based on the build-
ing blocks of temporal syntax structures, the UDR
Components.

6 Limitations

Our approach relies on several assumptions worth
discussing. We assume that UDR Composi-
tions can systematically connect to STL Operators
through our seventeen patterns, and examine how
the NL maps to STL, considering the co-occurrence
of the structural building blocks of temporal syn-
tactic structures. We do not perform a granular
STL-Operator level statistical analysis to exam-
ine the variability in the direct mapping further.
Additional empirical analysis, including mixed ef-
fect regression models, and Bayesian approaches
may offer new ways to examine the multi-level and
nested relationship between the substructures and
high-level sentences, as we as STL operators and
STL sentence statements. Such research can also
inspired deep-learning NLP research, that seeks to
consider such findings when building deep learn-
ing and neural models like GraFT (English et al.,
2025).

We examined our grammar using two English
language datasets: NL2TL with 7,002 sentence
pairs and 100 samples from TimeBank. We find
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differences between domains in terms of the per-
formance of our parser (53.84% complete matches
versus 1.00%), TimeBank showing only 137 UDR
Compositions compared to our full pattern set, and
the probabilistic relationships explored with regres-
sion analyses. This suggests that our grammar
needs to be studied and refined across additional
datasets and contexts to increase its rigor. We invite
others to explore our grammar from additional do-
mains, such as probabilistic grammar development
using our statistical relationships to assign confi-
dence scores rather than fixed mappings, domain-
adaptive composition discovery to address the sig-
nificant performance gap between technical speci-
fications and narrative text

Finally, hybrid interpretable systems integrating
UDR Compositions into deep learning and neural
approaches like GraFT for improved explainability
(English et al., 2025).
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A Appendix

A.1 Formal Preliminaries

A.1.1 Signal Temporal Logic

STL formulas are defined recursively using the
following grammar (He et al., 2022; Mao et al.,
2024; Chen et al., 2023):

pu= T d [P A2 | P11V 2

| Flap® | Glapn® | ¢1ljqp) P2

Where: (i) 7# represents atomic predicates (e.g.,
x ~ u where z is a variable, ~ is a comparison
operator, and g is a value); (i) ¢, ¢1, P2, ... O
are STL formulas, and (iii) [a, b] represents time
intervals where a,b € R and a < b.

2

A.1.2 Atomic Predicates

An atomic predicate 7# in STL is a basic compari-
son of the form = ~ p, where z is a real-valued sig-
nal variable, ~€ {<, <,=,>,> #} is a compari-
son operator, and ¢ € R is a constant, representing
the simplest testable condition that can be evaluated
as true or false at any given time instant (Maler and
Nickovic, 2004). In the context of cyber-physical
systems, atomic predicates typically express con-
straints on sensor readings (e.g., temperature >
25), actuator states (e.g., valve_position = 1), or
derived signals (e.g., velocity < 50).

A.1.3 Logical Operators

The logical operators within STL operate on STL
formulas ¢, ¢1, and ¢ as follows: (i) —¢, meaning
the negation of formula ¢, (ii) ¢1 A ¢2, meaning
the conjunction (and) of formulas ¢; and ¢9, (iii)
¢1 V ¢, meaning the disjunction (or) of formulas
¢1 and @9, (iv) ¢1 = @2, meaning the implica-
tion from ¢ to ¢2, and (v) ¢1 & ¢2, meaning the
equivalence between ¢, and ¢o (Maler and Nick-
ovic, 2004). These operators preserve their classi-
cal Boolean semantics at each time point, enabling
compositional specification of complex logical re-
lationships between temporal properties.

A.14 Temporal Operators

The temporal operators within STL are: (i) Fi, )¢
(Eventually/Finally), meaning the formula ¢ must
be true at least once within the time interval [a, b],
formally 3t € [a,b] : &(t); (i) Gy (Al-
ways/Globally), meaning the formula ¢ must be
true throughout the entire time interval [a, b], for-
mally V¢ € [a,b] : $(t); and (iii) ¢1U|4 p P2 (Un-
til), meaning ¢; must hold until ¢o becomes true

within the time interval [a, b], formally 3¢ € [a, b] :
G2(t) ANVt € [a,t) : ¢1(t') (Maler and Nickovic,
2004; Donze et al., 2013). Bounded time intervals
enable precise specification of real-time constraints,
which are essential for cyber-physical systems.

A.1.5 Extended Operators

For practical applications, STL often includes de-
rived operators that can be expressed using the core
grammar: (i) Rise operator T ¢ = —¢U ¢, detecting
positive edges; (ii) Fall operator | ¢ = ¢l ¢, de-
tecting negative edges; (iii) Weak Until o1 Weo =
Gp1 V (1l pa), where ¢1 holds indefinitely or un-
til ¢o; and (iv) Release ¢1 Ry = —(—p1UU—2),
the dual of Until (Pnueli, 1977).

A.1.6 Universal Dependencies

Universal Dependencies (De Marneffe et al., 2021;
Nivre et al., 2016), grounded in Tesniere’s depen-
dency grammar theory (1959), represents syntax as
directed graphs G = (V, E, ) with word nodes V/,
dependency edges E, and labels ¢ : E — R from
37 universal relations including core arguments
(nsubj, obj), modifiers (advmod, nmod), and func-
tion words (mark, det).

A.1.7 Dependency Relations

The 37 universal relations are organized into sev-
eral categories: (i) Core arguments: nsubj (nom-
inal subject), obj (object), iobj (indirect ob-
ject); (i) Non-core dependents: obl (oblique),
vocative, expl (expletive), dislocated; (iii)
Nominal dependents: nmod (nominal modifier),
appos (apposition), nummod (numeric modifier);
(iv) Clausal dependents: advcl (adverbial clause),
acl (clausal modifier), ccomp (clausal comple-
ment); (v) Modifier words: advmod (adverbial
modifier), amod (adjectival modifier); (vi) Func-
tion words: aux (auxiliary), cop (copula), mark
(marker), det (determiner), case (case marking)
(De Marneffe et al., 2021).

A.1.8 Dependency Patterns

A dependency pattern P = (r, h,d,C) consists
of relation r, head/dependent constraints h/d, and
contextual constraints C'. Pattern P matches edge
(u,v) when all constraints are satisfied. For tem-
poral expressions, key patterns include: (i) advmod
patterns for temporal adverbs (e.g., always, even-
tually); (i1) mark + nummod patterns for bounded
expressions (e.g., within 5 seconds); (iii) advcl pat-
terns for subordinate temporal clauses (e.g., until X
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happens); and (iv) compound patterns combining
multiple relations for complex expressions.

A.2 Detailed Methodology
A.2.1 Dataset

We utilize two datasets spanning technical spec-
ifications and narrative discourse domains. The
primary dataset is the circuit_total_refined
lifted NL-STL pairs dataset constructed by Chen
et al. (2023) evaluation? 3, containing 7,002 natu-
ral language sentences paired with their correspond-
ing Signal Temporal Logic (STL) formulas. Each
entry consists of six fields: (i) ID: unique sentence
identifier; (ii) Sentence: natural language express-
ing temporal properties; (iii) LTL: temporal logic
formula with English operators (e.g., “always”,
“eventually”); (iv) Logic Sentence: sentence with
marked atomic propositions; (v) Logic LTL: for-
mula with propositions as word spans (Span i, j);
and (vi) Propositions: list of atomic propositions.
The dataset provides comprehensive coverage of
temporal operators (G, F, U and bounded vari-
ants), diverse syntactic structures, varying proposi-
tion complexity (0 to 4 propositions per sentence),
and expert-annotated ground truth formulas for
evaluation.

The TimeBank 1.2 corpus (Pustejovsky et al.,
2003, 20006) is a widely used temporal event anno-
tation resource developed at Brandeis University,
containing 183 news articles annotated with tem-
poral information according to the TimeML spec-
ification. TimeBank 1.2 provides comprehensive
temporal annotations, including TIMEX3 tempo-
ral expressions (dates, times, durations), EVENT
tags marking eventive predicates, and temporal
relations (TLINK) capturing event ordering and
temporal anchoring. The corpus represents narra-
tive discourse from the news domain, fundamen-
tally distinct from technical specifications in tempo-
ral expression conventions: narrative text encodes
temporality through aspectual morphology, syntac-
tic subordination, and implicit temporal ordering
rather than the explicit temporal quantifiers charac-
teristic of formal specifications.

For cross-domain validation, we constructed
a handcrafted TimeBank 1.2 NL-STL dataset
through systematic sampling and annotation.
Dataset construction proceeded through four stages:

*This dataset originally came from He et al. (2022), which
was then processed by Chen et al. (2023) in their evaluation.

3Processed datasets and codes are available at: https:
//github.com/Purdue-AIDA3/NL2UD2TL

(1) TimeML Text Extraction parsed the Time-
Bank 1.2 corpus to extract natural language sen-
tences while removing temporal relation annota-
tions (TLINK, SLINK, ALINK tags) and preserv-
ing EVENT and TIMEX3 content; (2) Automated
Cleanup removed malformed annotations, HTML
entities, metadata patterns, and filtered sentences
through length and capitalization heuristics; (3)
Random Sampling selected 100 sentences through
random extraction from 2,624 total corpus sen-
tences; and (4) Handcrafted NL-STL Pairs cre-
ated temporal logic specifications for each sentence,
establishing handcrafted sentence-STL pairs for
narrative discourse.

A.2.2 Computational Infrastructure

All evaluations and analyses were conducted on
NVIDIA Saturn Cloud utilizing 2xNVIDIA A100
GPUs, 32 CPU cores, 512GB RAM, and 5TB disk
storage over approximately 514 hours of compute
time. The implementation employed SpaCy 3.8.7
with the en_core_web_lg model (Honnibal and
Montani, 2017) for dependency parsing follow-
ing Universal Dependencies v2 guidelines (Nivre,
2020), selected for its state-of-the-art accuracy
and comprehensive syntactic coverage. The soft-
ware stack comprised Python 3.x (Van Rossum and
Drake Jr, 2009) with core libraries including JSON
for data serialization (Charollais, 2017), regular ex-
pressions for pattern matching, difflib for similarity
computation, and explicit memory management
through garbage collection. The SpaCy pipeline
was configured with tokenization preserving ex-
act positions for ground truth alignment, part-of-
speech tagging using Penn Treebank tagset (Mar-
cus et al., 1994), dependency parsing, named entity
recognition, and lemmatization. This infrastruc-
ture supported a multi-stage processing pipeline en-
compassing data loading from the NL2TL dataset
(Chen et al., 2023), preprocessing for token align-
ment, linguistic analysis via dependency parsing,
UDR Composition extraction, STL formula con-
struction, and comprehensive evaluation through
similarity metrics. The substantial computational
resources enabled efficient batch processing and
in-memory caching strategies, ensuring both repro-
ducibility and computational efficiency across the
7,002 sentence dataset.

A.2.3 Universal Dependencies Parsing

Each sentence undergoes preprocessing to main-
tain word-span alignment with the ground truth
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annotations. SpaCy’s pipeline transforms text into
annotated linguistic structures through tokenization
(preserving position information), part-of-speech
tagging (providing grammatical categories), and
dependency parsing (constructing directed graphs
with 17 UD relation types). The parser produces
dependency trees that capture both local and long-
distance relationships crucial to temporal expres-
sions. This structured representation enables the
identification of systematic correspondences be-
tween syntactic structures and temporal-logic oper-
ators.

A.2.4 Universal Dependencies Feature
Extraction

The feature extraction pipeline employs SpaCy
3.8.7 to generate Universal Dependencies parses
from which we extract binary presence/absence
indicators for the 35 theoretically-defined syntac-
tic Classes. Each sentence undergoes dependency
parsing to construct directed graphs with 17 UD re-
lation types, capturing both local and long-distance
syntactic relationships. The Class detection system
traverses dependency trees to identify structural
configurations corresponding to temporal expres-
sions (e.g., “always,” “eventually,” “within”), logi-
cal connectives (A, V, -, —), and temporal-logical
structures. We apply frequency filtering (1% occur-
rence threshold) to retain 17 Classes for statistical
modeling, avoiding numerical instability from rare
Classes. This approach encodes which syntactic
structures are present in each sentence as binary
feature vectors, where 1 indicates the presence of
a syntactic structure and O indicates its absence,
allowing the statistical model to discover proba-
bilistic correspondences between syntactic features
and temporal operators through data-driven learn-
ing.

A.2.5 STL Formula Construction

The STL formula construction employs
a compositional approach through the
construct_stl_formula_independent  func-
tion, which processes extracted components
in three stages. First, semantic role extraction
analyzes the Universal Dependencies parse to
identify whether propositions serve as conditions,
assertions, or temporal bounds based on depen-
dency markers (mark, aux, advcl) and modal
expressions. Second, the logical structure-building
process determines operator precedence and scope
by analyzing the syntactic hierarchy: temporal

operators are applied according to their position
in the dependency tree, and logical connectives
maintain their syntactic scope. Third, the system
constructs the final STL formula by recursively
combining atomic propositions with temporal
operators (G, F, U) and logical connectives (A, V,
-, —), applying bounded intervals where numeric
modifiers are present. The construction process
handles nested temporal expressions by traversing
the logical structure depth-first, ensuring correct
operator precedence (negation > temporal >
conjunction > disjunction > implication) while
preserving the semantic relationships encoded in
the dependency parse. Formula normalization
standardizes spacing, operator symbols, and
parenthesization to enable consistent comparison
with ground truth annotations.

A.2.6

To validate system performance, we conducted a
manual evaluation on stratified samples from both
datasets. For NL2TL, we performed a 2% strati-
fied subsample from each of the 17 retained Com-
position classes, yielding 860 instances for com-
prehensive human review. For TimeBank 1.2, we
conducted a 100% manual evaluation of all 100
sentences. Two expert annotators independently
verified that each generated STL operator correctly
captured the intended temporal semantics. Annota-
tors also rated their confidence for each evaluation
using a 3-point inter-rater reliability scale (1=low
confidence, 2=moderate confidence, 3=high confi-
dence), providing a measure of annotator certainty
regarding the correctness of both the operator as-
signment and the complete formula generation.

Manual Evaluation

A.3 Cross-Domain Validation

Cross-domain validation employs the handcrafted
TimeBank 1.2-STL dataset to assess whether
syntax-semantics correspondences learned from
technical specifications generalize to narrative dis-
course. We developed a two-stage STL lifting
pipeline that emulates the methodology of Chen
et al. (2023) to transform narrative temporal ex-
pressions into formal STL formulas via systematic
predicate abstraction. The pipeline processes the
TimeBank 1.2_NL-STL.json dataset containing
100 handcrafted sentence-STL pairs: (1) Predicate
Name Extraction uses regex pattern matching to
identify all unique predicate function names from
ground truth STL formulas, extracting predicate
identifiers while discarding argument structures; (2)
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Lifted Formula Construction performs system-
atic abstraction to propositional variables through
deterministic mapping (predicate ¢ — prop_z), cre-
ating predicate-to-proposition mappings while pre-
serving complete STL Operator structure, temporal
bounds, and logical composition. The pipeline out-
puts lifted formulas with UTF-8 encoded Unicode
operators alongside tokenized sentence representa-
tions for downstream parsing analysis.

Following lifting, the TimeBank 1.2 sample un-
derwent identical processing to the NL2TL dataset:
UD parsing via SpaCy 3.8.7 with the same 17-
Composition taxonomy, binary feature vector ex-
traction, and co-occurrence matrix computation.
Cross-domain evaluation applies keyword-based
pattern-detection rules to TimeBank 1.2 for com-
position detection and operator generation, testing
whether NL2TL-derived correspondences transfer
to narrative discourse. Separately, in-domain multi-
nomial logistic regression training exclusively on
TimeBank 1.2 data enables comparison of statis-
tical correspondences across domains, revealing
whether narrative temporal structures encode opera-
tors through fundamentally different Composition-
Operator mappings. This parallel methodology
isolates domain transfer effects from procedural
differences, enabling direct comparison of syntax-
semantics correspondences across technical and
narrative temporal reasoning domains while test-
ing whether the Universal Dependency Composi-
tion taxonomy encodes temporal logic operators
independently of domain-specific vocabulary or
discourse structure. We designated ’None’ (the ab-
sence of a temporal operator) as the reference cate-
gory, serving as the natural baseline for coefficient
interpretation in multinomial logistic regression.

A.4 Evaluation of UDR and STL
Relationships

The evaluation framework employs multiple com-
plementary metrics to assess UD-STL correspon-
dences. Exact match accuracy uses advanced for-
mula normalization and handles operator equiv-
alences and structural variations, providing a bi-
nary assessment of formula correctness. Similarity
scores via SequenceMatcher provide gradient cor-
rectness measures (0 to 1), enabling fine-grained
analysis of partial matches. Component-wise eval-
uation separately assesses temporal operators, logi-
cal connectives, atomic propositions, and temporal
bounds, isolating specific aspects of the syntax-

semantics mapping. Error severity classification
categorizes results into five levels based on simi-
larity thresholds: complete failure (< 0.2), major
errors (0.2 — 0.4), moderate errors (0.4 — 0.6), mi-
nor errors (0.6 — 0.8), and near matches (> 0.8).

A.4.1 Regression Analyses

To examine probabilistic relationships between
UDR Compositions and STL Operators, we ap-
plied two complementary sentence-level logistic
regression approaches (N = 7,002 sentences, 80/20
train-test split). First, binary logistic regression
with a One-vs-Rest (OVR) strategy created separate
models for each STL Operator class, treating each
as an individual classification problem against all
other operators (Nick and Campbell, 2007). Sec-
ond, multinomial logistic regression (MNL) simul-
taneously modeled all operator classes within a
single framework, following established protocols
for nominal categorical outcomes (Long, 1997;
Brunswicker and Haefliger, 2025).

Both models used identical feature sets: binary
vectors encoding the presence or absence of each
of the 17 Classes per sentence. Target variables
consisted of STL Operator classes extracted from
ground truth annotations for the binary approach
(5 classes) and from our STL output for the multi-
nomial model (10 classes). Model implementa-
tion relied on scikit-learn’s LogisticRegression
with the 1bfgs solver (Moritz et al., 2016), 1,000
maximum iterations, and balanced class weights to
address substantial operator frequency imbalances
(Lee et al., 2006; Minka, 2003; Moritz et al., 2016;
Pedregosa et al., 2011). The binary model speci-
fied multi_class=’ovr’, while the multinomial
model used multi_class="multinomial’.

Dataset partitioning followed an 80/20 train-test
split with fixed random seeds for reproducibility.
The binary approach removed stratification due to
rare classes with insufficient samples, while the
multinomial model maintained stratified sampling
to preserve class distributions. Rather than relying
on predetermined Class-operator mappings, both
approaches discovered probabilistic relationships
through coefficient estimation. We report coeffi-
cients and odds ratios where positive values indi-
cate increased operator probability when the pat-
tern is present, while negative values indicate de-
creased probability (Brunswicker and Haefliger,
2025). For the multinomial model, we designated
F' (Eventually) as the reference category given its
frequency dominance (44.7%, N=2,503), provid-
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. . . . . Predicted
ing a natural baseline for coefficient interpretation 3 -
~
across all other operators. ) s & v
Actual K & o 0 z =) r P T
. F* 626 0 0 0 0 0 0 0 0 0
A.4.2 Additional Tables Flo,k] o 75 13 12 3% 10 0 7 4
Fli, 0] 0 31 196 43 5 0 2 1 2 15
G 0 20 3 107 21 9 14 1 3 1
UDR Inst. Cor. Acc. Conf. ;;0[[?5’ k] 8 g é 8 Sg 12 3 g 8 g
Comp. No. Op. % U 0 0 0 0o 0 1 16 0 0 0
1 64 64 100.00 261 -G 0 0 0 0 o0 0 3 0 0
2 82 65 79.27 275 T 0 0 0 0 o 0 0 o0 M 1
3 17 13 76.47 243 — 0 0 0 0 0 0 0 o0 o0 36
4 62 53 85.48 2.63
5 59 55 93.22 2.62 Table 11: NL2TL: Multinomial logistic regression confusion matrix (Test Set, n=1,401).
6 38 36 94.74 247 Rows represent actual STL Operators, columns represent predicted operators. Diagonal
7 5 4 80.00 2.52 values (bold) indicate correct predictions. * F" serves as the baseline reference category in the
8 143 124 86.71 2.75 multinomial logistic regression model.
9 20 19 95.00 2.56
10 14 11 78.57 2.33
11 78 68 87.18 2.64
12 125 104 83.20 2.80
13 31 29 93.55 2.87
14 80 62 77.50 2.79
15 3 2 66.67 2.48
16 15 11 73.33 2.59
17 24 22 91.67 2.87
Total 860 742 86.28% 2.63

Table 7: NL2TL: Composition generation accuracy analysis on a ~2.00% stratified subsam-
ple on all occurrences. Note: Comp. No. = Composition Number; Inst. = Instances; Cor. Op.
= Correct Operators; Acc. = Accuracy (%); Conf. = Confidence (inter-rater score of 1 to 3).

STL Operator Count %
F (Eventually) 663 325
Flo, k) (Bounded Within) 2,471 12.14 STL Operator  Precision  Recall F1 Support
G (Always) 5,267 25.81 FE 1.00 1.00 1.00 2,503
G, ] (Bounded For) 2,623 12.85 Flo, k] 0.63 0.55 059 598
U (Until) 345 1.69 Flk, 00 0.93 0.67 0.78 1,179
— (If-Then Implication) 4,424 21.68 G ’ 0.72 0.65 0.68 715
A(Conjunction) 3,331 16.32 Glo,k] 0.49 0.95 0.64 223
V (Disjunction) 1,280 6.27 Noné 0.49 0.62 0.55 97
U 0.45 0.94 0.61 69
Total 20,410 100.0% G 045 1.00 062 14
1T 0.48 0.81 0.60 62
Table 8: NL2TL: STL Operator distribution in dataset (N=20,410) — 0.56 099 071 141
Macro Avg 0.62 0.82 0.68 5,601
Weighted Avg 0.85 0.82 0.83 5,601
Overall Accuracy: 82.49%
Predicted Table 12: NL2TL: Training set performance (n=5,601). Per-operator classification metrics.
False True Total *F serves as the baseline reference category. Weighted averages account for class imbalance.
Actual False 476 171 647
True 189 565 754

Total | 665 736 | 1401

Table 9: NL2TL: Logistic regression confusion matrix (n=1,401).

Composition Coefficient Predictive Direction

Compositions Favoring Match (Positive Coefficients)

Become/Change Rise +0.317 Higher presence; more likely match
Specification Conjunction +0.134 Higher presence; more likely match
Universal Quantification +0.108 Higher presence; more likely match
When First Rise +0.038 Higher presence; more likely match
Propositional Negation +0.034 Higher presence; more likely match
Negated Always +0.014 Higher presence; more likely match

Compositions Favoring No Match (Negative Coefficients)

Pos. UDR-C No.

Neg. UDR-C No.

Conjunction -2.673 Higher presence; less likely match STL Operator (Coef. | OR) (Coef. | OR)
If-Then Implication -2.526 Higher presence; less likely match F* 2(9.102918,981.2458) 12 (-0.177010.8378)
Until -0.934 Higher presence; less likely match F[O,k] 12 (3.4892132.7597) 3(-1.752810.1733)
Eventually -0.775 Higher presence; less likely match Tk, 0] 8(3.4732132.2397) 2 (-1.661910.1898)
Bounded For -0.755 Higher presence; less likely match 1 (4.9611 1142.7503) 16 (-1.551210.2120)
Bounded Within -0.629 Higher presence; less likely match Glo,k] 11 (6.2521 1519.0996) 1(-1.918610.1468)
Disjunction -0.466 Higher presence; less likely match U ’ 3(5.2661 1 193.6585) 8 (-1.7446 1 0.1747)
Bounded After -0.431 Higher presence; less likely match -G 7 (7.3607 1 1,572.9294) 1(-2.221610.1084)
Existential Quantification -0.353 Higher presence; less likely match 1 13 (3.4939 | 32.9140) 11 (-2.685710.0682)
Always -0.215 Higher presence; less likely match N 8 (4.8546 | 128.3289) 9 (-3.722810.0242)
Conditional Formula Selection -0.067 Higher presence; less likely match

None (No Temporal Operator) 14 (0.847512.3338) 8 (-4.929210.0072)

Table 10: NL2TL: Logistic regression coefficients. Composition effects on exact match
probability. Positive coefficients increase match likelihood; negative coefficients decrease it.
Ordered by coefficient magnitude within each group.

Table 13: NL2TL: Top and Bottom Ranked Composition Predictors per STL Operator
(Coefficient | Odds Ratio). *The F'| was used as the baseline. * F* Represents the baseline
measurement for the MNL.
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Rank F* (Coef. | OR) Flo, 5] (Coef. 10R) Fljg, 0] (Coef. OR) STL Operator Count %

1 UDR-CNo.2 (+9.1018981)  UDR-CNo. 12 (+3.49132.76)  UDR-C No. 8 (+3.47132.24) -
2 1(+1.7015.46) 1(+3.2812659) 16 (+3.42130.59) A (Conjunction) 068 36.76
3 10 (+12913.63) 16 (+2.48 1 11.99) 14 (+2.86 1 17.51) G, %) (Bounded For) 44 23.78
4 16 (+12513.50) 10 (+2.46 1 11.71) 1 (+2.58113.20) y ati
5 11 (+1.211335) 14 (+2.2119.08) 10 (+1.7215.58) = (f-Then Implication) 19 1027
6 13 (+0.59 1 1.80) 11 (+1.7615.82) 6 (+0.3311.39) — (Negation) o 18 9.73
7 9 (+0.56 1 1.76) 9 (+0.2511.29) 9 (+0.3111.37) F[O,k] (Bounded Within) 16 8.65
8 14 (+048 1 1.61) 7(+0.1011.11) 17 (+0.18 1 1.20) F (Bounded After) 10 541
9 15 (+0.2511.28) 4(+0.0911.10) 7(+0.0711.07) [k, 00] 1
10 17 (+0.171 1.18) 17 (+0.2311.25) 15 (-0.0210.98) V (Disjunction) 9 4.86
1 8 (+0.101 1.11) 15 (+03111.36) 4(-0.041096) U (Until) 1 0.54
12 3.(+0.00 1 1.00) 5(-0.141087) 5(:0.031097) 1 (Rise) 0 0.00
13 4(+0.0311.03) 3 11(-0.2010.82)
14 5(-:0.0011.00) 13(-0.2410.78) 4 (Fall) 0 0.00
15 6(+0.0111.01) 8(-1411025) 3(-0.111090)
16 7(-0.0910.91) 3(-1.7510.17) 12 (-1.5010.22) Total 185 100.00%
17 12 (-0.1810.84) 2(-16910.18) 2(-1.6610.19)
Rank G (Coct. 10R) Glo,) (Coct- 10R) U (Coet. 10R) Table 16: TimeBank 1.2: STL Operator distribution in dataset (N=185)
1 UDR-C No. 1 (+4.961142.8)  UDR-CNo. 11 (+6251519.1)  UDR-C No. 3 (+5.271193.7)
2 11 (+1.8716.50) 13 (+1.7015.46) 14 (+0.9312.54)
3 13 (+0.8912.43) 9 (+0.6211.87) 12 (+0.46 1 1.59)
4 3(+0.7512.12) 7(+0.2511.28) 5 (+0.38 1 1.46)
5 7 (+0.39 1 1.47) 6(+0.1411.15) 17 (+0.0211.02)
6 9(+0.1011.10) 4(+0.1211.13) 15 (-0.0110.99)
7 4(+0.2211.25) 17 (-0.0210.98) 10 (-0.26 10.77) UDR Inst. Cor. Acc. Conf.
8 17 (+0.001 1.00) 5(-:0.081093) 16 (-0.3010.74) Comp. No. Op. (%)
9 5(+0.0311.03) 5(-0.121088) 4(:02310.79)
10 6(-0.081092) 8(-:02710.77) 9(:03610.70)
11 15 (-0.2910.75) 12 (-0.6310.53) 2(:02810.76) 1 5 3 100.00 3.00
12 12 (-0.7310.48) 14 (-0.7310.48) 6(-0.9710.38) 2 0 0 N/A N/A
13 14 (-0.7410.48) 10 (-0.9210.40) 13 (-0.7910.45) 3 1 1 100.00 3.00
14 2(-1.0510.35) 3(-1.0610.35) C (-0.8410.43) 4 34 19 55.88 237
1s 8(-1231029) 16 (-1.0310.36) 11(-0.8810.41)
16 10 (-1.5210.22) 2(-1.131032) 1(-1371025) 5 9 7 71.78 2.09
17 16 (-1.5510.21) 1(-19210.15) 8 (-1.7410.17) 6 20 0 0.00 2.45
7 0 0 N/A N/A
Rank | —G (Coef. | OR) 1 (Coef. | OR) —5 (Coef. | OR) 3 3 3 100.00 267
1 UDR-C No. 7 (+73611,573)  UDR-CNo. 13 (+34913291)  UDR-C No. 8 (+4.85 | 128.3) 9 1 0 0.00 3.00
2 6 (+0.5311.70) 9.(+2.91118.33) 4(+0.5311.70) 10 3 0 0.00 267
3 9(+0.1911.21) 8 (+1.0612.88) 6 (+0.131 1.14)
4 8 (+0.0911.09) 5 (+0.8512.35) 15(:0.0210.98) 1 17 0 0.00 2.76
5 15 (-0.0110.99) 6 (+0.3711.45) 12 (-0.0810.93) 12 27 0 0.00 2.44
6 10 (-0.0710.93) 17 (+03011.35) 17(-0.1610.85) 13 0 0 N/A N/A
7 5(:02610.77) 4(:0.5110.60) 2(:0431065)
8 4(:03810.68) 12 (-0.0910.91) 5(:0.6210.54) 14 8 1 12.50 230
9 2(-03110.73) 10 (:0.7410.48) 3(-0.6210.54) 15 1 0 0.00 3.00
10 3 (-0.0510.95) 16 (-1.3110.27) 13 (-0.7010.50) 16 0 0 N/A N/A
1 12 (-0.6410.53) 2(-1351026) 10 (-0.9410.39) 17 3 2 25.00 1.88
12 17 (-0.6910.50) 14 (-1.5710.21) 16 (-1.9410.14)
13 16 (-0.9010.41) 7(-2.1610.12) 14(-22510.11)
14 13 (-1.1210.33) 3(-2.2710.10) 7(-2.5610.08) Total | 137 38 27.74% 2.60
15 14(-2.0310.13) 1(-2.5110.08) 1(:3.1010.05)
16 11(-1.8910.15) 14 (-1.5710.21) 11(-2.3710.09)
17 1(-22210.11) 11(-2.6910.07) 9(-3.7210.02) Table 17: TimeBank 1.2: Composition-Operator pair accuracy across 100 sentences.
Rank | None (Coef. | OR)
1 UDR-C No. 14 (+0.85 1 2.33)
2 4(+0.1711.18)
3 15 (-0.0210.98)
g g ::g:‘ﬁ } g:g;; Rank Flj,,00) (Cocf. 10R) G (Coef. | OR) Gio,x) (Coef. 10R)
o 16(-0.1210.88) 1 UDR-C No. 8 (+243111.35)  UDR-CNo. 1 (+2.64113.94)  UDR-C No. 9 (+2.72115.13)
7 6(0.1310388) 2 3(+0.7912.21) 2(0.0011.00) 5(+0.381147)
8 5(0.131088) 3 2(0.0011.00) 12 (-0.0210.98) 13 (+0.19 1 1.21)
9 3(0.151086) 4 12 (-0.0110.99) 7(:0.0210.98) 7(+0.1611.18)
10 9(-0871042) 5 4(:0.0310.97) 4(-0.0610.94) 11 (+0.141 1.15)
11 10 (-1.0110.36) 6 7(:0.0410.96) 13 (-0.1110.90) 2(0.0011.00)
12 2(-1211030) 7 13 (-0.091091) 11(-0.1110.89) 12 (-0.031097)
i;‘ ! E;g } 3'33{ 8 11(-0.1510.86) 5(:0.2610.77) 4(0.071093)
i 101005, 9 5(-:02710.77) 6(-:03210.73) 6(-:0.1610.85)
" 1303501009 10 9(-:0.3810.68) 3(:04010.67) 10 (-0.1910.82)
s 219100 11 6(:0.4010.67) 8(:0.4810.62) 8 (:0.4110.67)
9310/ 12 1(-0.4810.62) 9(:04910.61) 1(-:0.4910.61)
13 10 (-0.6210.54) 10 (-0.5810.56) 3(:0.5010.61)
Table 14: NL2TL: Ranked UDR Composition predictors per STL Operator (Coefficient | Rank | — (Coef. | OR) None* (Coef. | OR)

Odds Ratio). Note: Coef. = coefficient (log-odds); OR = odds ratio (exponentiated coeffi-

. O . . e . X UDR-C No. 6 (+2.0317.61) UDR-C No. 5 (+0.34 1 1.40)
cient). Positive coefficients (OR > 1) increase operator probability; negative coefficients

1
2 10 (+1.3513.85) 11 (+0.2611.29)

(OR < 1) decrease it. 3 3(+0.7512.12) 4(+0.2211.24)
4 2(0.0011.00) 13 (+0.151 1.16)
5 12 (-0.00 1 1.00) 12 (+0.05 1 1.06)
6 7(-0.0210.98) 10 (+0.05 1 1.05)
7 4(-0.0610.94) 2(0.0011.00)
8 11 (-0.1310.88) 7(-0.0810.92)
9 13 (-0.1410.87) 3(-0.6510.52)
10 5(-0.2010.82) 6(-1.151032)
11 1(-0.2710.76) 8(-1.171031)
12 8 (-0.3710.69) 1(-1.3910.25)
13 9 (-0.4310.65) 9(-1.4210.24)

Table 18: TimeBank 1.2: Ranked UDR Composition predictors per STL Operator (Coeffi-

Pattern Pattern UDR No. of cient | Odds Ratio). Note: Coef. = coefficient (log-odds); OR = odds ratio (exponentiated
No. Name Comp. Inst. % coefficient). Positive coefficients (OR > 1) increase operator probability; negative coeffi-
1 Always advmod("always") 5 3.65 cients (OR < 1) decrease it.
Eventually advmod("eventually") 0 N/A
3 Until mark("until")+advcl 1 0.73
4 Conjunction cc("and")+conj 34 24.82
5 Disjunction ce("or")+conj 9 6.57
6 Prop. Negation advmod("not") 20 14.60 Predicted
7 Negated Always advmod("never") 0 N/A — .
8 If-Then Impl. mark("if")+advmod("then") 3 2.19 % % by
9 Become/Change compound("become"/"change") 1 0.73 5 = S
10 Bounded After mark("after")+nummod 3 2.19 Actual 2 ~ O = T
11 Bounded For mark("for")+nummod 17 12.41 None* 12 0 0 [
12 Bounded Within mark("within")+nummod 27 19.71 Flk, 00 0 2 o 0 0
13 ‘When First mark("when")+advmod("first") 0 N/A G[O,k] 0 0 4 0 0
14 Universal Quant. det("all")+nsubj 8 5.84 U 1 0 0 0 0
15 Existential Quant. det("a")+acl:relcl 1 0.73 — 1 0 0 0 0
16 Cond. Formula Sel. advcl+mark("if") 0 N/A
17 Spec. Conjunction obj("both")+nsubj 8 5.84

Table 19: TimeBank 1.2: Confusion matrix (Test Set, n=20). Rows represent actual STL

Total 137 100.00% Operators, columns represent predicted operators. Diagonal values (bold) indicate correct
predictions. *None serves as the baseline reference category in the multinomial logistic
Table 15: TimeBank 1.2: UDR Composition frequency and summary regression model. Only 4 operators appear in test set (N/A indicates not present).
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STL Operator Precision Recall F1 Support
None* 1.00 1.00 1.00 62
Fli, 00] 1.00 1.00 1.00 1
G 1.00 1.00 1.00 3
Glo,k] 1.00 1.00 1.00 13
— 1.00 1.00 1.00 1
Macro Avg 1.00 1.00 1.00 80
Weighted Avg 1.00 1.00 1.00 80

Overall Accuracy: 100.00%

Table 20: TimeBank 1.2: Training set performance (n=80). Per-operator classification
metrics. *None serves as the baseline reference category. Only 4 operators appear in training
set (N/A indicates not present). Perfect accuracy indicates model memorization of training
patterns.

STL Operator Precision Recall F1 Support
None* 0.86 1.00 0.92 12
Fli, 00] 1.00 1.00 1.00 2
G[o,k] 1.00 1.00 1.00 4
U 0.00 0.00 0.00 1
— 0.00 0.00 0.00 1
Macro Avg 0.57 0.60 0.58 20
Weighted Avg 0.81 0.90 0.85 20

Overall Accuracy: 90.00%

Table 21: TimeBank 1.2: Test set performance (n=20). Per-operator classification metrics
on held-out data. Training-test gap: 10.00% (100.00% vs 90.00%), indicating potential
overfitting. *None serves as the baseline reference category. Only 4 operators appear in test
set (N/A indicates not present).

A.4.3 Heatmaps

UDR Composition

1. advmod("always")

ot
7. advmod("never")

8. mark("if"}+advmod("then")

9. compound("become”/"change")
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15. det("a")+acl:relcl 97 43 57 52 50 14 3 34 75 1
16. advel+mark("if") 331 159 725 453 320 4 03 195 [ 727 16
17. obj("both")+nsubj 612 335 589 590 495 83 49 403 | 724 22

Table 22: NL2TL: UDR Compositions x STL Operators co-occurrence heatmap
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Table 23: TimeBank 1.2: UDR Compositions x STL Operators co-occurrence heatmap
(Subset, Raw Counts)

A.4.4 Figures

ROC Curve: UD Compositions = STL Translation Quality
Binary Logistic Regression Model
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Figure 1: NL2TL: ROC Curve. Logistic regression model discriminating exact matches
(AUC = 0.86) based on UDR Composition features. Strong performance indicates syntactic
patterns are informative predictors of translation quality.
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