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Abstract

Self-attention mechanisms have become foun-
dational across modern deep learning archi-
tectures. Recent efforts focus on improving
their efficiency, particularly for signal process-
ing tasks. The existing approaches employ
complex-valued representations for inputs and
weights and achieve higher accuracy at the cost
of increased model size and inference latency.
Dual-numbered algebra offers a promising al-
ternative that allows efficient multiplication
and faster inference with the same represen-
tational capacity. Inspired by previous studies
in the field of hypercomplex neural networks,
we introduce a generalized hypercomplex at-
tention block and integrate it into Transformer-
based models for EEG classification. Our ex-
periments include adaptation of the hypercom-
plex models, so that the number of parame-
ters is equal to that of their real-valued coun-
terparts. Across all scenarios, the dual- and
complex-numbered models consistently outper-
form the real ones, demonstrating superior ac-
curacy. This work presents hypercomplex at-
tention as a competitive and computationally
efficient strategy with potential value to solve
multiple NLP tasks.

1 Introduction

Complex numbers inevitably appear in signal pro-
cessing and time series tasks, since Fourier Trans-
form (FFT) is the most common way of operating
with signal sequences. This type of numbers allows
to describe the full picture of the signal, which is
comprised of both time and frequency represen-
tation. The nature of input values encourages re-
searchers to use complex-valued neural networks
in speech enhancement [Zhao et al., 2021b; Hu
et al., 2020], seismic interpretation [Dramsch et al.,
2021], radar velocity estimation [Cho et al., 2021]
and MusicNet [Yang et al., 2020] tasks.

Attention is an ultimate mechanism that allows
neural networks to focus on any parts of the in-

put, emphasizing its specific ones that are the most
relevant to the task at hand. Nowadays, multiple
works concentrate their efforts on improving the
efficiency of attention. There are several works
dedicated to extension of transformers to the com-
plex domain that obtain promising results in the
field of sequence processing [Yang et al., 2020; Tay
et al., 2020; Zhang et al., 2021; Li et al., 2023]. De-
veloping of complex-valued transformers is crucial
because usually speech, signal and audio data are
naturally complex-valued through Fourier Trans-
form. The main reason for performance improve-
ment provided by transition to complex numbers
is that we can capture more information from the
input data, including the phase component.

Despite all the advantages, complex-valued neu-
ral networks are more than 4 times slower com-
pared to the corresponding real-valued models with
the same architecture, due to the increased compu-
tational complexity required by complex-valued
arithmetic operations. We define a complex linear
operator as a matrix multiplication of a complex
multi-dimensional tensor c = x + iy and a com-
plex weight matrix W = A+iB with an additional
complex-valued bias z = a+ ib, which can be ex-
pressed as the following:

cW + z = (x+ iy)(A+ iB) + (a+ ib) =

= (xA− yB + a) + i(yA+ xB + b)

To reduce the computational overhead and save
the two-component nature of complex numbers,
we turn to dual numbers. They are a special kind
of numbers, which can be written as z = x + εy,
where x, y ∈ R, and ε is a nilpotent element, which
satisfies the conditions ε2 = 0 and ε ̸= 0. A dual
linear layer computes a product of a dual vector
d = x+εy and a dual weight matrix W = A+εB
with an additional bias k = a+ εb as follows:

dW + k = (xA+ a) + ε(yA+ xB + b)
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The dual-valued multiplication requires fewer
real-valued multiplications than the complex one.
So, replacement of complex operators with the cor-
responding dual ones theoretically provides a 25%
inference time improvement. The definition and
applications of dual convolutional neural networks
were presented in [Kozlov et al., 2022; Pavlov et al.,
2023]. In this research, we focus on second-order
hypercomplex numbers and introduce a novel self-
attention block, referred to as hypercomplex atten-
tion. Our proposed block processes inputs with
dual or complex values.

In the original attention mechanism [Vaswani
et al., 2023] the SoftMax function is used to nor-
malize the output probabilities and to emphasize
the highest attention scores, thus stimulating the
model to focus on the most relevant elements of the
input sequence. Here, we study some extensions
of SoftMax to the dual and complex domains with
similar properties and find out that Component-
wise SoftMax show good results.

2 Related work

2.1 Complex-valued neural networks

Multiple researches show promising results of us-
ing complex-valued models, such as faster learn-
ing [Arjovsky et al., 2015] and larger representa-
tional capacity [Nitta, 2003], comparing with the
real-valued networks. Most of the existing mod-
els and real-valued layers were extended to the
scope of complex-valued numbers. Basic opera-
tors for convolutional, fully-connected, and LSTM
complex-valued architectures are defined in [Tra-
belsi et al., 2018]. The implementation of complex-
valued transformers is mentioned in [Wang et al.,
2020], but the article is focused on comparing ways
of encoding text into complex-valued tokens. In
[Yang et al., 2020], the authors offer a complex-
valued model for the automatic music transcription
task.

Complex numbers and quaternions are also used
for high-level compression of deep learning models
(×2 and ×4) by exploiting the matrix representa-
tion of these hypercomplex spaces, achieving com-
parable performance for NLP [Zhang et al., 2021;
Tay et al., 2020].

2.2 Dual-valued neural networks

The idea to use dual numbers in deep learning was
introduced in [Okawa and Nitta, 2021]. The build-
ing blocks needed to construct dual-valued convo-

lutional neural networks were presented in [Kozlov
et al., 2022]. It includes the definitions of Linear,
Convolution, Average Pooling, ReLU layers in the
dual domain. In addition, [Kozlov et al., 2022]
contains an algorithm for dual-valued Batch Nor-
malization. The authors of [Kozlov et al., 2023]
selected a subclass of dual-valued operators, which
satisfy the equivalent of the Cauchy-Riemann equa-
tions for the dual domain.

To the best of our knowledge, we are the first
researchers who propose to use dual numbers in
the attention layer.

3 Definition of hypercomplex attention

3.1 Hypercomplex input

In all of our experiments we use FFT before the
hypercomplex attention layers. FFT converts the in-
put into a complex spectrogram, which has real and
imaginary parts. Dual numbers, just like complex
ones, are two-component. This property makes it
possible to treat the spectrogram as dual-valued
data and feed them into the dual-valued attention.

We use an additional dimension to represent the
hypercomplex input, which is stored as real-valued
tensors:

Z = X + τY ∈ Hb×s×d =>

Z = [X,Y ] ∈ R2×b×s×d,

where the first dimension is used to denote the real
or the imaginary part, τ = ε or τ = i correspond-
ingly, b is the batch size, s is the length of a token
sequence, d is the dimension of a token vector, H
is the notation of Hypercomplex numbers.

3.2 Hypercomplex attention block

Creating the hypercomplex attention mechanism
requires two steps: developing a method for rep-
resenting matrix multiplication of weights and to
design a hypercomplex polarization function. The
SoftMax is used as a polarization function in the
real-valued attention, but we show below in this
section that it is not suitable for the hypercomplex
algebra.

Previous studies have identified the approach to
forming the complex-valued attention layer with
complex weights [Zhao and Ma, 2023].

We define the Hypercomplex attention for a
model with complex-valued or dual-valued weights
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W{Q,K,V } = W{Q,K,V }r + τW{Q,K,V }d ∈ H as:

f [QKT ]V = f [((X + τY )(WQr + τWQd))

((X + τY )(WKr + τWKd))
T ]

((X + τY )(WV r + τWV d))

Figure 1 presents the hypercomplex atten-
tion mechanism, implemented with hypercomplex
weight matrix.

One of the essential elements of Transformer
architecture is SoftMax operator. It serves the pur-
pose of emphasizing the closest matches between
the rows of Query and Key matrices. In the domain
of real numbers the SoftMax function is defined as:

(SoftMax(x))k =
exk

∑n
j=1 e

xj
, k ∈ {1, 2, ..., n}

(1)
However, this definition is hardly scalable beyond
the field of real numbers. In the case of complex
numbers it is not well-defined because, unlike for
the real-valued domain, the sum of exponents in the
denominator can be too close to zero. For example,
eiπ + e0 = −1 + 1 = 0. For the domain of dual
numbers this problem does not exist. However,
there is a different issue with definition (1). The
exponent of a given number x+ εy can be derived
using the Taylor series formula:

ex+εy = ex · eεy = ex ·
∞∑

j=0

(εy)j

j!
=

= ex · (1 + εy) = ex + εyex

(2)

One can see that the real part of the sum of expo-
nents can never be equal to zero, and this is enough
to be able to divide over it:

x1 + εy1
x2 + εy2

=
(x1 + εy1)(x2 − εy2)

(x2 + εy2)(x2 − εy2)
=

=
x1
x2

+ ε
x2y1 − x1y2

x22
, x2 ̸= 0

Therefore, (1) is well-defined for dual numbers.
However, from (2) it is clear that this definition
only emphasizes the real component of the input
vector, effectively making the imaginary part neg-
ligible. At the same time, that part is responsible
for storing the information about signal frequency,
which is very important. That is why in this paper
we consider other approaches to the definition of
the hypercomplex polarization function. We look
for possible ways of highlighting important text
parts that employ both components of a hypercom-
plex number. As a result, we suggest the following
methods:

• ScaleMax = Re(X)−min(Re(X))
max(Re(X))−min(Re(X)) +

τ Im(X)−min(Im(X))
max(Im(X))−min(Im(X)) , where

τ = i or τ = ε.

• Component-wise SoftMax =
SoftMax(Re(X)) + τSoftMax(Im(X)),
where τ = i or τ = ε.

• NormMax = X2∑
X2 , where X is complex or

dual norm.

3.3 Hypercomplex Conformer architecture

Convolutional neural networks or transformers are
typical solutions to a task of decoding electroen-
cephalograph (EEG) data. However, as the authors
of [Song et al., 2023] claim, with this approach the
model is able to encapsulate either local or global
features but not both, thereby missing some depen-
dencies. To improve this, a Convolutional Trans-
former architecture called the EEG Conformer was
proposed. This architecture is capable of perform-
ing efficient classification of EEG data. The model
takes EEG signals as input. The result is the likeli-
hood of belonging of the signal to each of the EEG
categories. We plug the hypercomplex blocks (Fig-
ure 2) in place of their real-valued equivalents into
the original Conformer architecture, because they
are able to capture more information from the sig-
nal data and learn temporal-spatial features more
efficiently. The most suitable and natural represen-
tation of signal data for complex and dual networks
is its representation in the amplitude-frequency do-
main, which is easily obtained by FFT.

In order to evaluate the effectiveness of Con-
former model with hypercomplex attention, two
different public EEG datasets were used: BCI com-
petition IV 2a [Brunner et al., 2008] and BCI com-
petition IV 2b [Leeb et al., 2008].

We trained Conformer with hypercomplex atten-
tion using the same learning procedure as for the
original solution [Song et al., 2023]. An important
change is to halve the number of encoder blocks so
our model has approximately the same number of
parameters as the real-valued one (Table 1). It is
worth noting that the inference time of these mod-
els also turned out to be almost the same. This
similarity in inference time is explained by several
factors, which do not allow to observe the max-
imum theoretical speedup in practice. The limit
of 25% theoretical inference speedup is based on
replacing complex-number operations with dual-
number arithmetic. While both formats contain

1847



Figure 1: Hypercomplex attention

two components, dual numbers are algebraically
simpler. For example, complex multiplication typ-
ically involves 4 real-valued multiplications (and
2 real-valued summations/subtractions), whereas
dual multiplication is computationally equivalent
to only 3 multiplications (and 1 summation). In
attention and SoftMax mechanisms, this simplifi-
cation translates to approximately 25% fewer arith-
metic operations per linear layer. However, the
actual gain depends on how much the linear op-
erators take compared to the whole computation
graph. In Conformer model the linear layers are
not the only consumers of computational power,
that is why the total gain is less than 25%. Be-
sides, in PyTorch dual-valued tensors are treated
as pairs of regular tensors, and their operations are
executed using standard vectorized routines. To un-
lock the full speedup, a dedicated low-level kernel
optimized for dual-numbered operations should be
implemented. This kernel would directly encode
dual arithmetic—such as component-wise summa-
tion, matrix multiplication, and SoftMax—without
relying on high-level abstractions. By integrating
this kernel it will be possible to achieve the full
theoretical efficiency in practice.

Table 4 demonstrates the results of experiments
with different polarization types for models with
hypercomplex attention. The best accuracy value
can be achieved using the Component-wise Soft-
max function on the BCI competition IV 2a and
the BCI competition IV 2b datasets. In EEG signal
processing, the real part typically encodes ampli-
tude, while the imaginary part captures frequency
characteristics, such as those derived via Fourier
transform. Neglecting the imaginary part—as in
naive extension of the traditional SoftMax to dual
numbers — results in loss of frequency informa-
tion, reducing the model’s ability to distinguish
patterns like alpha or beta rhythms. Component-
wise SoftMax addresses this by applying SoftMax
independently to the real and imaginary parts. The

real part yields amplitude-based weights, while the
imaginary part captures frequency-related contribu-
tions. This preserves the hypercomplex structure
and minimizes loss of information. In contrast,
ScaleMax normalizes by min-max range without
exponential weighting, losing probabilistic sharp-
ness. NormMax reduces to squared norm, which
emphasizes energy but discards distributional de-
tail. In Transformer architectures, attention weights
are computed via SoftMax. The component-wise
variant enables simultaneous modeling of ampli-
tude and frequency in multidimensional space, im-
proving the ability to capture long-range depen-
dencies in time-series data like EEG. Theoretically,
this relates to the entropy:

H = −
∑

k

pk log pk

the standard SoftMax yields entropy over the real
part, but incorporating the imaginary component
reduces effective entropy, allowing sharper focus
on frequency-dependent features-explaining the ob-
served accuracy gains.

In Table 2 we compare our proposed model with
multiple neural networks of different architectures:
convolution-based (ConvNet [Schirrmeister, 2017],
EEGNet [Lawhern et al., 2018]), FBCNet [Mane,
2021] spatial data filtering, DRDA [Zhao et al.,
2021a] and others.

We can observe that the average accuracy of our
Conformer model with the complex-valued atten-
tion is 1.2% higher than that of Conformer with the
real-valued one and 5% higher than the average ac-
curacy of the convolution-based models. Moreover,
the model with dual-valued attention achieves the
average accuracy, which is by 0.2% even higher.

The average accuracy of Conformer with the
complex-valued attention on BCI Competition IV
Dataset 2b (Table 3) is 2.1% higher than that of
Conformer with the real-valued one; our model
exceeds other methods in accuracy for almost all
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Figure 2: The architecture of Conformer with
hypercomplex-valued attention.

the subjects. The model with the dual-valued atten-
tion also surpasses all the others, achieving a new
state-of-the-art accuracy value of 87%.

4 Conclusion

In this study, we generalize the Transformer archi-
tecture to the algebra of dual and complex numbers.
Specifically, we suggest and implement a new hy-
percompex attention mechanism. Then we inte-
grate it into Transformer model, that we designed
for the EEG classification task. We compare accu-
racy of the models with the hypercomplex atten-
tion against the value of the same metric shown
by the corresponding models with the traditional
real-valued attention with the same number of pa-
rameters.

Then, we built the novel type of hypercomplex
attention mechanism into Conformer - a specific
Transformer-based model architecture. Our experi-
ments show that on BCI_competition_IV2a dataset
our Conformer model overcomes the state-of-the-
art real-valued network by 1.2% in accuracy metric
for complex algebra and 1.4% for dual algebra.
On BCI_competition_IV2b dataset the model with
the complex-valued Attention surpasses the real-
valued one by 2.1% in accuracy. At the same time,
Conformer with the dual-valued Attention reaches
the state-of-the-art metrics value on this dataset.

Novel hypercomplex polarization functions are
designed, revealing that for Conformer models with

hypercomplex attention the best accuracy value can
be achieved using the Component-wise Softmax
function.

We conclude that extending self-attention mecha-
nism to the space of hypercomplex numbers within
the same model’s architecture proves its efficiency,
since it leads to better metrics than the original
network.

5 Limitations

The discussion of hypercomplex transformers in
this study is limited to the Conformer model ap-
plied to the EEG signal classification task. Al-
though promising preliminary results were ob-
tained, the proposed method has not yet been tested
across diverse domains or alternative architectures.

As part of the further research, we intend to ex-
tend the developed hypercomplex attention mecha-
nism for solving other tasks by integrating it into a
wide variety of models, including modern LLMs.
We expect to achieve improvements in quality met-
rics, such as accuracy, perplexity, and others.
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A Appendix with attendant tables
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model, MB time, s size

Real 790 0.09 72
Complex 793 0.11 72

Dual 793 0.1 72

Table 1: Comparison of Conformer models by the num-
ber of parameters and inference time on CPU
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Method S01 S02 S03 S04 S05 S06 S07 S08 S09 Avg
FBCSP [Ang et al., 2012] 76.0 56.5 81.3 61.0 55.0 45.3 82.8 81.3 70.8 67.8

ConvNet [Schirrmeister, 2017] 76.4 55.2 89.2 74.7 56.9 54.2 92.7 77.1 76.4 72.5
EEGNet [Lawhern et al., 2018] 85.8 61.5 88.5 67.0 55.9 52.1 89.6 83.3 86.8 74.5

C2CM [Sakhavi et al., 2018] 87.5 65.3 90.3 66.7 62.5 45.5 89.6 83.3 79.5 74.5
FBCNet [Mane, 2021] 85.4 60.4 90.6 76.4 74.3 53.8 84.4 79.5 80.9 76.2

DRDA [Zhao et al., 2021a] 83.2 55.1 87.4 75.3 62.3 57.2 86.2 83.6 82.0 74.7
Conformer [Song et al., 2023] 88.2 61.5 93.4 78.1 52.1 65.3 92.4 88.2 88.9 78.7

Complex Conformer 87.8 59.4 94.4 77.4 68.0 62.8 92.8 87.5 86.9 79.7
Dual Conformer 88.8 63.2 94.8 78.5 61.1 65.7 95.4 88.2 88.8 80.1

Table 2: Comparison With State-of-the-Art Methods on
BCI Competition IV Dataset 2a

Method S01 S02 S03 S04 S05 S06 S07 S08 S09 Avg
FBCSP [Ang et al., 2012] 70.0 60.4 60.9 97.5 93.1 80.6 78.1 92.5 86.6 80.0

ConvNet [Schirrmeister, 2017] 76.6 50.0 51.6 96.9 93.1 85.3 83.8 91.6 85.6 79.4
EEGNet [Lawhern et al., 2018] 75.9 57.6 58.4 98.1 81.3 88.8 84.1 93.4 89.7 80.5

DRDA [Zhao et al., 2021a] 81.4 62.9 63.6 95.9 93.6 88.2 85.0 95.3 90.0 83.9
Conformer [Song et al., 2023] 82.5 65.7 63.8 98.4 86.6 90.3 87.8 94.4 92.2 84.6

Complex Conformer 83.8 64.6 74.0 98.0 96.5 88.4 89.3 94.0 91.3 86.7
Dual Conformer 83.1 65.7 73.8 98.0 97.2 90.3 91.5 95.0 91.3 87.0

Table 3: Comparison With State-of-the-Art Methods on
BCI Competition IV Dataset 2b

Dataset Model Polarization Avg Accuracy, %
ScaleMax 78.9

Complex Component-wise Softmax 79.7
BCI Competition IV 2a NormMax 74.4

ScaleMax 79.7
Dual Component-wise Softmax 80.1

NormMax 75.0
ScaleMax 86.3

Complex Component-wise Softmax 86.7
BCI Competition IV 2b NormMax 85.5

ScaleMax 86.3
Dual Component-wise Softmax 87.0

NormMax 86.0

Table 4: Results of experiments with different polariza-
tion types

While our main focus was EEG classification,
we also evaluated the model on automatic music
transcription task using the MusicNet dataset.
Our experiments show the applicability of our
model in sequential symbolic domains, which
share structural parallels with NLP tasks such
as sequence labeling and multi-label classi-
fication. The results are available in Table 5.

Weights Real Avg Dual Avg Real Dual
Precision Precision Time Time

Real 70.5 72.1 9.6 43.7
Dual N/A 73.7 N/A 41.4

Table 5: Comparison of average precision (%) and in-
ference time (ms) of real- and dual-valued Transformer
models with real and dual weights on MusicNet dataset
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