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Abstract

Federated large language models (FedLLMs)
enable cross-silo collaborative training among
institutions while preserving data locality, mak-
ing them appealing for privacy-sensitive do-
mains such as law, finance, and healthcare.
However, the memorization behavior of LLMs
can lead to privacy risks that may cause cross-
client data leakage. In this work, we study the
threat of cross-client data extraction, where
a semi-honest participant attempts to recover
personally identifiable information (PII) memo-
rized from other clients’ data. We propose three
simple yet effective extraction strategies that
leverage contextual prefixes from the attacker’s
local data, including frequency-based prefix
sampling and local fine-tuning to amplify mem-
orization. To evaluate these attacks, we con-
struct a Chinese legal-domain dataset with fine-
grained PII annotations consistent with CPIS,
GDPR, and CCPA standards, and assess extrac-
tion performance using two metrics: coverage
and efficiency. Experimental results show that
our methods can recover up to 56.6% of victim-
exclusive PII, where names, addresses, and
birthdays are particularly vulnerable. These
findings highlight concrete privacy risks in
FedLLMs and establish a benchmark and evalu-
ation framework for future research on privacy-
preserving federated learning. Code and data
are available at https://github.com/SMILELab-
FL/FedPII.

1 Introduction

Federated large language models (FedLLMs) (Ye
et al., 2024a,b; Zhang et al., 2023; Chen et al.,
2024; Yao et al., 2024) have recently emerged
as a promising approach for cross-silo federated
learning (FL) (Li et al., 2024c), enabling collab-
orative model training while maintaining data lo-
cality and institutional privacy. In cross-silo FL,
organizations, such as courts, banks, and hospitals,

*Corresponding author.

collaboratively fine-tune1 a shared model without
exchanging private records. Prior studies mainly
focused on improving algorithmic efficiency and
convergence (Bai et al., 2024; Wu et al., 2025; Li
et al., 2020), while the privacy vulnerabilities of
FedLLMs remain largely unexplored.

A growing body of work has shown that large
language models (LLMs) tend to memorize and
reproduce fragments of their training data, in-
cluding PII such as names, addresses, and dates
of birth (Carlini et al., 2021, 2023; Shao et al.,
2024; Kim et al., 2023; Nakka et al., 2024). Al-
though FL mitigates privacy risks by exchanging
model updates instead of raw data, our prelim-
inary experiments (Appendix B.4) indicate that
FedLLMs remain vulnerable to verbatim data ex-
traction (VDE)—where adversaries can recover
verbatim text sequences from the aggregated global
model. However, most existing VDE studies as-
sume that attackers have privileged access or sig-
nificant knowledge of the victim’s data (Yu et al.,
2023; Huang et al., 2022), which is unrealistic in
practical cross-silo deployments.

We instead consider a more realistic semi-honest
threat model, where each participant follows the
FL protocol but may attempt to infer private infor-
mation from the global model. For instance, in a
federation of courts, a participant could exploit its
own local case records as contextual prefixes to
elicit sensitive information memorized from other
courts’ data (as illustrated in Figure 1). To inves-
tigate this, we propose three extraction strategies:
(1) PII Contextual Prefix Sampling, which queries
the global model using local contextual prefixes;
(2) Frequency-prioritized (FP) Sampling, which
focuses on high-frequency prefixes to improve ex-
traction efficiency; and (3) Latent Association Fine-
tuning (LAFt), which locally fine-tunes the global

1In current practice, FedLLM typically refers to the feder-
ated fine-tuning of large language models rather than federated
pre-training. See Appendix B.3 for details.

1808

https://github.com/SMILELab-FL/FedPII
https://github.com/SMILELab-FL/FedPII


Vulnerable Types

Client A Client B Client C

Server

Attacker

</s>..., the defendant lives at

</s>In 2005, 

Local Contextual Prefixs

Ask for completion

🏦 🏥
CourtsBanks Hospitals

Cross-Silo FL Scenarios

🏦🏦 🏥🏥⚖️⚖️⚖️

🌐🌐 🌐

🔒
Secure Aggregation

Privacy Attack

FedLLM🤖
Aggregated model

🏢

🏢 🏢 🏢

12 Main St.
Zhangsan began...

Respond

⚠️PII Extracted!

Strategies

FP Sampling

LAFt

Leakage:
CR > 56%

2

3Semi-honest

1 Contextual Sampling
adopted

Resutls

Address

Birthday

Name

🌐

...

Figure 1: Overview of cross-silo FedLLMs and the proposed privacy attack. In cross-silo FL, institutions such as
banks, courts, and hospitals collaboratively fine-tune a shared model under the coordination of a central server,
keeping data local. A semi-honest client leverages its local data to construct PII-related prefixes and queries the
aggregated global FedLLM, leading to cross-client data leakage. The proposed strategies—Contextual Prefix
Sampling, Frequency-prioritized (FP) Sampling, and Latent Association Fine-tuning (LAFt)—achieve up to 56.6%
recovery of victim-exclusive PII, with names, addresses, and birthdays being the most vulnerable categories.

model using stored prefix-PII pairs, thereby improv-
ing its ability to extract PIIs implicitly memorized
within the model.

To evaluate these attacks, we build a benchmark
dataset by annotating a real-world Chinese legal
corpus with fine-grained PII labels aligned with pri-
vacy regulations such as CPIS, GDPR, and CCPA
(see Acronyms List A). We assess the attacks using
two metrics: coverage (the proportion of target PII
successfully extracted) and efficiency (the amount
of PII recovered under a limited query budget). Our
experiments reveal that the proposed attacks can
extract up to 56.6% of victim-exclusive PII, with
Name, Address, and Birthday being the most vul-
nerable types. Moreover, we observe diminishing
returns as query budgets grow, while FP Sampling
and LAFt enhance diversity under tighter budgets.
These findings expose concrete privacy risks in
FedLLMs and underscore the need for stronger
privacy-preserving mechanisms.

In summary, our main contributions are:
1. We propose three novel extraction strate-

gies for FedLLMs, independent of existing
gradient-based or membership inference at-
tacks, and evaluate them using two rigorous
metrics: coverage and efficiency.

2. Extensive experiments show that our methods
can recover up to 56.6% of cross-client unique
PII, with larger prefix sets yielding diminish-
ing returns in efficiency, revealing a trade-off
between coverage and computational cost.

3. We construct a real-world benchmark dataset

by augmenting a legal-domain corpus with
fine-grained PII annotations aligned with
CPIS, GDPR, and CCPA standards, filling the
gap in public resources for privacy research in
federated learning.

2 Related Work

This study is related to the fields of data extraction
attacks and federated learning. For the reader’s con-
venience, a brief introduction to these concepts is
provided in Appendix B. In this section, we review
only the work directly related to our method.

2.1 PII Extraction Attacks in LLM

Large language models, due to their massive pa-
rameter scale, are capable of memorizing exact
training data samples, making them vulnerable to
data extraction attacks. These attacks can target
different granularities of information: sample-level
and entity-level.

At the sample level, an attacker with access to
the full prefix of a training sample can query the
LLM to regenerate the exact suffix (Yu et al., 2023;
Shi et al., 2024; Zhang et al., 2024). This technique,
known as verbatim training data extraction (Car-
lini et al., 2021, 2023; Schwarzschild et al., 2024),
is widely used to detect data contamination and
copyright violations (Dong et al., 2024).

At the entity level, attackers may know a
subset of PII entities—such as names or affili-
ations—about a particular subject. By combin-
ing these known details with prompt templates
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(either manually crafted or automatically gener-
ated (Kassem et al., 2025)), they can elicit the
model to produce additional PII records about the
same subject. This is known as an associative data
extraction attack (Shao et al., 2024; Kim et al.,
2023; Zhou et al., 2024).

Broadly, PII extraction attacks refer to any attack
that aims at eliciting outputs from the model that
contain PII (Lukas et al., 2023; Nakka et al., 2024;
Huang et al., 2022). Both verbatim and associative
techniques can be used to conduct such attacks.

While most prior work assumes centralized train-
ing with full data access, we investigate PII extrac-
tion under federated fine-tuning, where the attacker
has limited observability and control. We elaborate
on this in Section 4.1.

2.2 Privacy Threats in Federated Learning

Threats in Federated Learning can be categorized
into two main areas: security and privacy (Wang
et al., 2024a; Xie et al., 2024; Li et al., 2024b).
Security threats typically aim to disrupt the entire
FL system by invalidating model training (She-
jwalkar and Houmansadr, 2021) and introducing
backdoors (Bagdasaryan et al., 2020; Chang et al.,
2024). In contrast, privacy threats have attracted
more attention from researchers and focus on steal-
ing confidential information from the FL system,
such as inferring sensitive properties (Melis et al.,
2019), reconstructing clients’ private datasets (Zhu
et al., 2019; Geiping et al., 2020), and determining
the membership and source of training data (Rashid
et al., 2025; Vu et al., 2024; Hu et al., 2024). To
achieve these attacks, researchers often make dif-
ferent assumptions regarding the attacker’s knowl-
edge. Common assumptions typically fall into two
dimensions: whether the attacker is a client or
a server (Chu et al., 2023), and whether the at-
tacker is semi-honest (Applebaum, 2017; Hu et al.,
2024) or malicious. These assumptions determine
whether the attacker has access to gradients, lo-
cal datasets, model parameters, and the ability to
manipulate them.

3 Dataset

3.1 Data Sources and Preprocessing

The majority of our dataset is sourced from
the Challenge of AI in Law (CAIL) (Li et al.,
2024a), supplemented by smaller portions from
CJRC (Duan et al., 2019) and JEC-QA (Zhong
et al., 2020). CAIL is a renowned annual competi-
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Figure 2: Distribution of de-duplicated PII instances by
label category.

tion featuring a variety of legal NLP tasks. In this
study, we focus on two natural language genera-
tion tasks: Judicial Summary and Judicial Reading
Comprehension, and three natural language under-
standing tasks: Similar Case Matching, Judicial
Exam Question Answering, and Legal Case Classi-
fication. Detailed task descriptions are provided in
Appendix D, with representative examples shown
in Table 6.

Following prior work (Zhang et al., 2023; Yue
et al., 2024), we further preprocess and curate the
dataset to fit our setting. The complete preprocess-
ing pipeline is described in Appendix E, where
Table 7 reports the dataset statistics.2

3.2 PII Labeling

We reviewed the definitions and examples of PII in
various legal provisions, including CPIS, GDPR,
CCPA, and Singapore PDPC (see Acronyms List
in Appendix A), and used them as references to
establish a systematic PII labeling standard. We
selected PII types relevant to the text modality and
removed types that are unlikely to appear in le-
gal texts (e.g., browser history, SMS content, IP &
MAC addresses), as well as those that are difficult
to describe or evaluate (e.g., medical examination

2The datasets contain PII from publicly available
government-published legal documents. They were de-
identified and used in prior work, e.g., as in Yue et al. (2024).
We use curated versions from these papers. Since our study
concerns privacy risks in FedLLMs, real-world PII is neces-
sary to evaluate model vulnerabilities.
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reports, psychological trends). Ultimately, we de-
fined labeling guidelines encompassing 7 major
categories and 36 subcategories. The distribution
of labeled PII types is shown in Figure 2 in the
main text, whereas a complete summary of these
standards is provided in Table 9 in Appendix I.

We employed a combination of machine-assisted
annotation and manual verification to label the data.
For each major PII category, we designed a dedi-
cated prompt depicted in Figure 12 and employed
GPT-4o (OpenAI et al., 2024) to generate annota-
tions. We then recruited students to verify a subset
of those annotations with the help of Label Stu-
dio (Tkachenko et al., 2020-2025). The agreement
between human evaluations and GPT-4o annota-
tions achieves an F1 score of 89.9%. Owing to
space limitations, the full evaluation results are
shown in Table 10 in Appendix J, together with
further details of the annotation process, includ-
ing annotator backgrounds, annotation instructions,
and user interfaces.

4 Method

4.1 Problem Definition

We study a novel extraction attack tailored to
FedLLMs, which differs from traditional verbatim
data extraction in three key aspects:

Assumptions. Unlike VDE that assumes the at-
tacker has access to most or all of the training data,
our setting limits the attacker to a small, isolated
subset of the overall training corpus.

Setup. In our formulation, the prefix and its
corresponding target suffix are not drawn from a
contiguous span of training data. Instead, extrac-
tion prefixes are sampled from the attacker’s local
dataset Da, while the target suffixes reside exclu-
sively in other clients’ private data and are absent
from Da. Thus, each prefix must generalize beyond
local context to trigger the generation of unseen
suffixes.

Goals. An attacker does not aim to recover all
training completions, but instead focuses on extract-
ing specific, high-value information—most notably,
PII—from the global model.

Formally, we consider a cross-silo FL system
comprising c clients C = {C1, C2, . . . , Cc}, where
each client Ci holds a local dataset Di. Among
them, one client—denoted as the attacker Ca ∈
C—is assumed to be semi-honest (Applebaum,
2017; Hu et al., 2024). That is, Ca faithfully fol-
lows the FL protocol (e.g., does not poison data or

manipulate model weights), but acts adversarially
in a passive manner, attempting to infer PII con-
tained in other clients’ datasets by analyzing the
global model θ.

In this setting, the attacker issues queries to the
model θ to extract data without knowing which
client any particular output originates from. How-
ever, for evaluation purposes, we designate one
client as the reference victim to measuring the at-
tack’s effectiveness. Let Sa and Sv denote the sets
of PII instances held by the attacker and the vic-
tim client, respectively. The attacker constructs a
prompt set P and queries the FedLLM θ, obtaining
a corresponding output set Y . We formalize key
definitions and evaluation metrics in the following
subsections.

Definition 1 (Extracted). A PII instance s ∈ Sv is
considered successfully extracted if there exists a
prompt p ∈ P and a corresponding model output
y ∈ Y such that:

∃u ∈ Σ∗ such that y = s⊕ u, (1)

where Σ∗ is the set of all finite-length strings over
the vocabulary, and ⊕ denotes string concatena-
tion. In other words, the model output y begins
with s.

Definition 2 (Coverage Rate). The coverage rate
measures how thoroughly the attacker recovers the
PII unique to the victim client. It is defined as:

SE = {si | ∃y ∈ Y such that si is extracted by y},

CR =
|(Sv \ Sa) ∩ SE |

|Sv \ Sa|
. (2)

A higher CR indicates that a larger fraction of the
victim’s unique PII has been successfully extracted.

Definition 3 (Efficiency). Efficiency quantifies the
precision of extraction with respect to the number
of queries. Let Q denote the number of queries, the
efficiency is defined as:

EF =
|(Sv \ Sa) ∩ SE |

Q
. (3)

A higher EF indicates that more PII is extracted
with fewer queries.

Building upon these definitions, the central chal-
lenge is to design algorithms that enable the at-
tacker to extract PII both comprehensively and effi-
ciently—that is, achieving high coverage and high
efficiency.
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4.2 Attacking Algorithms
4.2.1 PII-contextual Prefix Sampling
We start with a simple method for constructing
query prompts using contextual prefixes of PII,
which are word sequences immediately preceding
PII instances in the attacker’s dataset Di. This mit-
igates reliance on manually crafted prompts (e.g.,
‘my phone number is’), which often deviate from
the model’s training distribution and exhibit limited
empirical applicability.

Let the attacker’s training corpus be Ua =
{t0, t1, . . . , t|Ua|}, formed by concatenating sam-
ples in Di, with S the multiset of labeled PII. For
a PII instance s ∈ S , let Loc(s) be the index of its
first token in Ua. We define a λ-length contextual
prefix function:

Tλ(U, s) = tLoc(s)−λ · · · tLoc(s)−1.

The contextual prefix set of a PII set S is given by:

Pc = {Tλ(Ua, s) | s ∈ S}. (4)

For each p ∈ Pc, the attacker Ca queries the
global model θ to generate a suffix y of up to m
tokens:

y = {x1, . . . , xm} ∼ P(y | p; θ).

To enhance diversity, n independent suffixes may
be sampled per prefix:

Yp = {y1, . . . , yn}, Y =
⋃

p∈Pc

Yp, Q = n·|Pc|.

A generalized version extends Pc by including
all substrings ending before each PII:

SUP(Pc) = {ti · · · tLoc(s)−1 | (Loc(s)−i) ∈ [1, λ]}.

This yields broader coverage but incurs high query
cost due to the large prefix set.

4.2.2 Frequency-Prioritized Prefix Sampling
Following prior work (Shao et al., 2024),
which associates extraction effectiveness with co-
occurrence frequency, we posit that prefixes fre-
quently occurring before PII entities tend to capture
stronger and more diverse associations. Therefore,
we emphasize high-frequency prefixes to construct
a compact, information-rich set.

Formally, we partition SUP(Pc) by prefix fre-
quency. For each σ ≥ 1,

Pσ = {p ∈ SUP(Pc) | CountSUP(Pc)(p) = σ}.

This yields

Set(SUP(Pc)) =
⋃

σ≥1

Pσ.

Given a threshold σa, the frequent prefix set is

Pf≥σa =
⋃

σ≥σa

Pσ,

sorted by frequency. Setting σa = 1 recovers the
full contextual prefix set. With a budget B, we
select the top-B prefixes from Pf≥σa , thereby em-
phasizing frequent contexts.

4.2.3 Latent Association Fine-tuning
We conjecture that a model’s vulnerability to PII
extraction stems from its capacity to capture the
conditional probability P(B | A; θ) under model
parameters θ, where A denotes prefixes that typi-
cally precede PIIs and B represents the correspond-
ing PII instances.

Since the association between PII and their pre-
fixes is implicitly encoded in the model’s represen-
tations, we propose Latent Association Fine-tuning
(LAFt), which updates parameters to maximize
P(B | A; θ). The goal is to strengthen the map-
ping between indicative prefixes and PII, thereby
improving extraction.

As the first step, we build a fine-tuning dataset
Dft by pairing frequent prefixes with known PII:

Dft = {(p, s) | p ∈ Pf , s ∈ Sa}, (5)

where Pf is the frequent-prefix set from Da, and Sa

the attacker’s PII set. The model is then fine-tuned
with the standard causal LM objective:

θ′ = argmin
θ

∑

(p,s)∈Dft

|s|∑

t=1

− logP(st | p, s<t; θ).

The updated model θ′ is subsequently used for ex-
traction with prefixes from Pf or Pc.

To note that, LAFt follows the semi-honest FL
setting such that the fine-tuned model remains local
and is not uploaded to the server.

5 Experiment

5.1 Experimental Setup

Federated Setup. Our federated setup consists of
two main components: the data partitioning across
clients and the federated fine-tuning procedure.
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For the data partitioning, we simulate a system
with 5 clients using a label-skewed non-IID par-
titioning based on clustering of language embed-
dings (Li et al., 2023), and ensured that each client
receives a comparable number of samples.

For the federated fine-tuning, we perform train-
ing on legal tasks using the OpenFedLLM frame-
work (Ye et al., 2024b), with FedAVG (McMahan
et al., 2023) as the aggregation method over 10 com-
munication rounds. All clients adopt parameter-
efficient fine-tuning (LoRA) and a shared prompt
template. Hyperparameter settings and implemen-
tation details are provided in Appendix K.

After the federated fine-tuning, we evaluate the
utility of the final global model on a held-out global
test set. Following common practice, we compare
it to a centrally trained (non-FL) baseline evaluated
on the same test set. The results are reported in
Table 8 in the Appendix.

Models and Metrics. Since our data and tasks
are derived from Chinese legal documents, we fo-
cus primarily on LLMs with proficiency in Chi-
nese. Specifically, we evaluate Qwen1-8B (Bai
et al., 2023), Baichuan2-7B (Yang et al., 2023),
Qwen3-8B (Yang et al., 2025), GLM4-8B (GLM
et al., 2024), and Llama3-Chinese (Rayrtfr, 2024).3

We evaluate model performance using two pri-
mary metrics: Coverage Rate (CR), Efficiency
(EF). In addition, we introduce an intermediate
metric, Victim-exclusive Extracted PII (VxPII), de-
fined as |(Sv \ Sa) ∩ SE |, which directly measures
the amount of extracted information.

Attack Strategies. We designate client 0 as the
attacker and client 1 as the victim, and evaluate
three strategies: (1) PII-contextual prefix sampling.
The attacker builds a prefix set Pc from its local
dataset D0 with prefix length λ = 50. Each prefix
queries the global model 15 times, generating up
to m = 10 tokens per query—sufficient to recover
most PIIs with manageable cost. (2) Frequency-
prioritized sampling. Prefixes in Set(SUP(Pc)) are
ranked by frequency to form Pf≥1 and used in
descending order. Sweeping the prefix budget B
varies the frequency threshold σa, enabling anal-
ysis of coverage–efficiency trade-offs. (3) Latent
association fine-tuning. The attacker fine-tunes the
global model (1 epoch, LR = 5e-5, LoRA: r = 16,
α = 32) using 10k frequent prefixes and 10k ran-
domly sampled PIIs from its own data to reinforce

3All models are publicly available on HuggingFace:
Qwen1, Baichuan2, Qwen3, GLM4, Llama3-Chinese.

Figure 3: Label distribution of deduplicated victim-
exclusive PII extracted by Qwen1-8B (without LAFt, us-
ing prefix set Pc). Results for Baichuan2-7B are shown
in Appendix Figure 11.

prefix–PII associations. Further implementation
details are provided in Appendix K.3.2.

Evaluation Protocol. To ensure a fair evaluation,
the set of victim-exclusive PIIs (Sv \ Sa) is ob-
tained by applying two filters: (1) retain only those
victim PIIs that do not appear in the attacker’s train-
ing corpus (i.e., si ∈ Sv but si /∈ Ua); and (2)
remove PIIs that share a common prefix to avoid
ambiguity in identifying which PII was extracted
(see Equation (1)). This is enforced by constrain-
ing the length of the longest common prefix (LCP)
between any two PIIs:

LCP(si, sj) = 0, ∀si ̸= sj ∈ Sv

Metrics defined in Equations (2) and (3) are then
computed on this filtered, prefix-disjoint set.

5.2 Results and Discussions
RQ1: How effective is the PII extraction attack
using contextual prefixes? We first evaluate the
coverage rate (CR) and efficiency (EF) of our ex-
traction attacks by querying federated fine-tuned
LLMs using the PII-contextual prefix set Pc. Ta-
ble 1 presents the results. With Pc, our attack
achieves a considerable CR of 22.93% on Qwen1-
8B and 28.95% on Baichuan2-7B.

To understand what types of PII are most vul-
nerable, we analyze the extracted instances. Fig-
ure 3 shows the label distribution of deduplicated
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Table 1: Summary of attack results using the PII-contextual prefix sampling method (with and without LAFt), where
client 0 (attacker) targets client 1 (victim). The victim-exclusive set (Sv \ Sa) includes 8,870 unique PII items.

Model Prefix Set CR EF VxPII Count Prefix Set Size

wo LAFt
Qwen1-8B Pc 22.93% 0.1910% 2034 71006
Baichuan2-7B Pc 28.95% 0.2411% 2568 71006
Qwen3-8B Pc 30.69% 0.2556% 2722 71006
GLM4-9B Pc 28.20% 0.2348% 2501 71006
Llama3-Chinese-8B Pc 19.73% 0.1643% 1750 71006
Qwen1-8B Set(SUP(Pc)) 56.20% 0.0110% 4985 3013161
Baichuan2-7B Set(SUP(Pc)) 53.56% 0.0105% 4751 3013161

w LAFt
Qwen1-8B Pc 28.30% 0.2357% 2510 71006
Baichuan2-7B Pc 28.46% 0.2370% 2524 71006
Qwen1-8B Set(SUP(Pc)) 56.57% 0.0111% 5018 3013161
Baichuan2-7B Set(SUP(Pc)) 52.16% 0.0102% 4627 3013161
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Figure 4: Coverage rate (CR) and efficiency (EF) under
varying prefix budgets B for prefix sets Pc and Pf≥1.
Prefix set Pf≥1 is frequency-sorted in descending order
(see Section 4.2.2). Budget values are scaled exponen-
tially (base 10); model used is Qwen1-8B.

victim-exclusive PII extracted by Qwen1-8B (with-
out LAFt). The results for Baichuan2-7B are pro-
vided in Appendix Figure 11.

The most frequently extracted PII categories in-
clude "Address", "Birthday", and "Name", while
others such as "Work Experience" and "Work
Place" occur less often but remain notable. More
complex types like "Medication Record" are not
extracted at all. This is primarily due to the eval-
uation protocol, which only credits model outputs
that match ground truth exactly. Complex PII often
appears as long free-text spans, making verbatim
reproduction difficult.

To estimate an upper bound of extraction capa-
bility, we evaluate with the generalized prefix set
Set(SUP(Pc)), which includes all potential contex-
tual prefixes. As shown in Table 1, expanding Pc to
Set(SUP(Pc)) increases CR to 56.57% (Qwen1-
8B) and 53.56% (Baichuan2-7B). However, this
gain comes at a steep cost in efficiency—dropping
EF to only 0.01%—indicating most queries yield

1 17000 35000 53000 71006
Prefix Budget B

0

500

1000

1500

2000
Vx

PI
I C

ou
nt

Qwen1-8B, Without LAFt

Pc

Pf 1[ : |Pc|]

1 17000 35000 53000 71006
Prefix Budget B

0

500

1000

1500

2000

2500
Baichuan2-7B, Without LAFt

Pc

Pf 1[ : |Pc|]

Figure 5: VxPII counts under varying prefix budgets
(B) for prefix sets Pc and Pf≥1. Prefix set Pf≥1 is
frequency-sorted in descending order (see Section 4.2.2)
and truncated to match the size of Pc here.

redundant or irrelevant content.
We further investigate this CR–EF tradeoff in

Figure 4, which illustrates how CR and EF vary
with prefix budget B for prefix sets Pc and Pf≥1.
As B increases, CR improves, but EF declines
sharply. This suggests diminishing returns in effi-
ciency when scaling up the number of queries to
discover new PII instances.

RQ2: How effective is frequency-prioritized pre-
fix sampling? As shown in Figure 5, frequency-
prioritized (FP) sampling does not extract more
VxPII instances than the contextual prefix set Pc,
contrary to our hypothesis in Section 4.2.2. This
result suggests that the contextual cues embedded
in Pc are already strong indicators of LLM memo-
rization, and that memorization cannot be inferred
solely from co-occurrence frequency. Instead, it
likely arises from more complex interactions be-
tween corpus semantics, model architecture, and
pre-training dynamics.

Despite this, FP sampling captures highly dis-
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Figure 6: Venn diagrams showing overlap between Vx-
PII sets extracted by different methods. (a) Compari-
son of VxPII sets using PII-contextual prefixes Pc vs.
frequency-prioritized prefixes Pf≥1 at prefix budget
B = 10,000 (without LAFt). (b) Comparison of VxPII
sets extracted with and without LAFt on Qwen1-8B and
Baichuan2-7B using the full Pc prefix set.

tinct subsets of memorized PII. As shown in Fig-
ure 6(a), the Venn diagram comparison reveals that
49.9% of the VxPII extracted by FP sampling on
Qwen1-8B and 65.02% on Baichuan2-7B are not
discovered by the Pc method. This highlights FP
sampling’s complementary strength in uncovering
diverse memorized content.

RQ3: How effective is Latent Association Fine-
tuning? As shown in Table 1, applying Latent
Association Fine-tuning (LAFt) significantly im-
proves the CR of Qwen1-8B by 5.37%, raising it
to 28.30%, and increases EF to 0.24%, indicating
enhanced extraction performance. For Baichuan2-
7B, LAFt does not yield a direct improvement in
CR, but, as depicted in Figure 6(b), it facilitates the
identification of additional distinct PII instances.

These results demonstrate that LAFt is an ef-
fective method for increasing the diversity of ex-
tracted PII, complementing the FP sampling ap-
proach. The extent of the improvement achieved
by LAFt is influenced by the construction of the
fine-tuning dataset Dft and the choice of hyperpa-
rameters. In this study, we adopt a consistent set-
ting by constructing Dft through pairing frequent
prefixes with randomly sampled PII and fine-tuning
the model for one epoch to ensure a fair compar-
ison. However, further exploration of personal-
ized strategies—tailored to models with different
architectures and pre-training conditions—could
potentially yield better performance.

Table 2: Coverage rates (CR) of extraction attacks
across different attacker–victim client pairs with a pre-
fix budget B = 10000. Prefixes are randomly sampled
from each attacker’s corresponding set Pc. “–” indicates
self-attack scenarios, which are not applicable.

Attacker
ID

Victim ID

0 1 2 3 4

0 - 10.91% 12.89% 10.93% 11.88%
1 11.97% - 12.41% 11.46% 12.35%
2 12.56% 11.39% - 11.65% 12.74%
3 12.07% 10.82% 12.04% - 11.99%
4 12.26% 11.36% 13.25% 11.21% -

Table 3: Attack performance with and without PII mask-
ing using the contextual prefix set Pc. The model is
Qwen1-8B.

VxPII CR EF

With PII Masking 2017 22.74% 0.1894%
Without Defense 2034 22.93% 0.1910%

5.3 Cross-Client Evaluation of Extraction
Robustness

To assess the robustness of our PII extraction
method across different clients, we perform a cross-
client evaluation where each client is iteratively
designated as the attacker, while the remaining
clients act as victims. This setup ensures that the
extraction performance is not biased toward any
particular client.

As shown in Table 2, our method achieves consis-
tently high coverage rates across all attacker–victim
pairings, demonstrating its generalizability and ef-
fectiveness in diverse settings.

5.4 PII Sanitization Defense

We evaluate the effectiveness of a simple data sani-
tization strategy that masks PII using existing an-
notations. Each PII instance in the training data
is replaced with an equal-length sequence of as-
terisks (*). We then re-fine-tune FedLLM on this
sanitized dataset and reapply the PII-contextual
Prefix Sampling attack. Table 3 compares the at-
tack performance with and without the PII masking
defense.

The results show only a slight reduction in the
number of extracted VxPII. To investigate this, we
analyze the document frequency of extracted Vx-
PII—that is, how often each appears in the train-
ing corpus. Figure 8 demonstrates that masking
substantially lowers the frequency of most VxPII,
suggesting that our annotations successfully cover
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Table 4: Extraction results on non-Chinese LLMs after
a single round of federated fine-tuning.

Model Prefix Set CR EF

OLMo2-1124-7B Pc 23.04% 0.1919%
Llama-2-7B Pc 26.41% 0.2200%

the majority of PII. Interestingly, some VxPII with
zero document frequency—absent from the sani-
tized dataset—were still extracted.

Based on these observations, we attribute the lim-
ited effectiveness of masking to two factors. First,
pretraining data contamination: our training data,
drawn from publicly available legal documents,
likely overlaps with the pretraining corpora of mod-
els such as Qwen1-8B and Baichuan2-7B. Second,
incomplete PII labeling: some PII instances may
be missing from annotations, and in practice attack-
ers can redefine PII categories, making exhaustive
coverage fundamentally difficult.

5.5 Disentangling the Effect of Data
Contamination

Pretraining data contamination is difficult to avoid,
as LLM providers rarely disclose their pretraining
corpora. To mitigate this influence, we adopt two
strategies:

Using open-source LLMs. To eliminate interfer-
ence from pretraining memorization, we use open-
source or semi-open-source LLMs that are not
pretrained on Chinese legal documents: OLMo2-
7B (OLMo et al., 2024) and Llama2-7B (Touvron
et al., 2023). As shown in Table 4, after just one
round of federated fine-tuning, the CR exceeded
23%, achieving performance comparable to or bet-
ter than Qwen1-8B and Baichuan2-7B. This con-
firms that our findings are not simply an artifact of
pretraining contamination.

Subtracting contaminated memorization. For
Chinese-proficient LLMs that may contain contam-
ination, we adopt a subtraction-based approach.
Specifically, we compare the VxPII extracted from
the fine-tuned FedLLM (F ) with those from its
base model (B), and compute F \ B to isolate
PII memorized during federated fine-tuning. Ta-
ble 5 shows that even after subtracting B, a sub-
stantial number of VxPII remain in F \ B, con-
firming memorization during fine-tuning. Further-
more, Figure 10 demonstrates that F \B exhibits
a distribution of VxPII labels similar to Figure 3,
supporting the validity of this analysis.

Table 5: Comparison of VxPII sets between attacks on
FedLLM and its un-fine-tuned base model.

Prefix Set Model |F \B| |B \ F | |F ∩B|
Pc Qwen1 682 518 1801

Pf≥1 Qwen1 554 308 4611
Pc Baichuan2 407 405 2161

6 Conclusion

To investigate the privacy risks of data extraction at-
tacks in realistic settings, we introduce a new class
of attacks targeting FedLLMs. We extend a le-
gal dataset with systematic PII annotations aligned
with major privacy regulations, and evaluate attack
performance using two key metrics: coverage rate
and efficiency. Extensive experiments demonstrate
that certain PII types are highly vulnerable, and
our proposed methods can achieve substantial ex-
traction performance. These findings highlight a
critical privacy gap in FedLLMs and underscore
the urgent need for stronger defense mechanisms
in future federated learning systems.

Limitations

This work investigates the privacy risks of
FedLLMs using a legal-domain dataset. Future
research can extend our proposed methods to other
sensitive domains such as healthcare and finance,
where privacy concerns are equally critical. Addi-
tionally, there is a need for further exploration of
defense mechanisms that can preserve the privacy
of FedLLMs while maintaining their performance.

Ethics Statement

This paper presents PII extraction attacks on feder-
ated fine-tuned LLMs to expose potential privacy
risks. While designed for research and defense
purposes, such methods could be misused to re-
cover sensitive user data in real-world FL systems.
We conduct all experiments on legal datasets with
anonymized PII, and highlight the need for stronger
safeguards in FedLLM deployments.
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A Acronyms List

• GDPR - General Data Protection Regula-
tion (European Union, 2016)

• CCPA - California Consumer Privacy
Act (State of California, US, 2018)

• CPIS - Chinese Information Security Tech-
nology: Personal Information Security Speci-
fication (GB/T 35273-2020) (Standardization
Administration of China (SAC), 2020)

• Singapore PDPC - Personal Data Protection
Commission (Singapore) (Personal Data Pro-
tection Commission, Singapore, 2012)

• Non-IID - Non-independent and identically
distributed

B Preliminary Knowledge

B.1 Data Extraction Attack
Early research on training data extraction attacks
has broadly categorized them into untargeted and
targeted attacks (Research, 2022; Yu et al., 2023).
Untargeted extraction aims to recover any mem-
orized training samples without specifying a tar-
get (Lukas et al., 2023), whereas targeted extraction
attempts to reconstruct specific training samples,
often by providing a known prefix and recover-
ing the remaining content (Carlini et al., 2021).
The latter type, often referred to as Verbatim Data

Extraction, has become a standard approach for
evaluating memorization in LLMs (Carlini et al.,
2023; Dong et al., 2024) and for detecting poten-
tial data contamination (Dong et al., 2024). We
briefly outline the core methodology of verbatim
data extraction below.

Given an LLM θ and a training dataset X , each
training sample xi ∈ X is partitioned into two
segments: a prefix ai and a suffix bi, such that
xi = aibi. The model is then prompted with ai to
generate a completion gi of the same length as bi.
If gi exactly matches bi, the sample is considered
successfully extracted.

In practice, model outputs may not exactly repli-
cate the original suffix but can still be lexically
close. To accommodate this, a similarity-based
metric such as Edit Distance (Levenshtein, 1965)
is often employed. A sample is deemed extracted if
the similarity score between gi and bi exceeds a pre-
defined threshold t. By computing this similarity-
based extraction score across all samples in a
dataset D, one can quantify the model’s memoriza-
tion behavior or assess its vulnerability to training
data extraction attacks.

B.2 Federated Learning

Federated Learning (FL) is a solution to address
data isolation issues (Yang et al., 2019), where a
central server and multiple clients collaborate to
complete the training process. A key feature of
FL is that the training datasets are stored locally
on each client and remain invisible to other clients.
FL is commonly used in industrial scenarios where
each client represents an independent organization,
such as hospitals collaborating to train a medical
model without combining their datasets due to le-
gal restrictions or business competition. Federated
Learning enables the training of stronger models
compared to training on data from a single client
alone.

Given c clients and their private datasets
D1, D2, . . . , Dc, the federated learning process
aims to learn a global model θ by solving the fol-
lowing optimization problem:

θ∗ = argmin
θ

1

c

c∑

i=1

L(Di, θ)

To solve this problem, many federated optimiza-
tion algorithms have been proposed, such as Fe-
dAVG (McMahan et al., 2023) and FedProx (Li
et al., 2020). Typically, these algorithms consist
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of two alternating phases: local updating and cen-
tral aggregation. In the local updating phase, each
client independently optimizes the global model
using its own dataset. In the central aggregation
phase, the server aggregates the models from the
clients using an aggregation algorithm, obtaining
a global model, which is then sent back to each
client for the next round of local updating. A typi-
cal procedure of federated learning is illustrated in
Algorithm 1.

B.3 Federated Large Language Models
(FedLLMs)

In current research at the intersection of feder-
ated learning and large language models, the term
FedLLM predominantly refers to federated fine-
tuning of pre-trained LLMs (Bai et al., 2024; Wang
et al., 2024b; Ye et al., 2024a), rather than federated
pre-training. This focus arises from both practical
and technical considerations.

Federated pre-training is rarely necessary, as
large-scale pre-training typically relies on publicly
available general-purpose corpora (such as web
text or encyclopedias) that do not contain sensi-
tive information and therefore do not require fed-
erated sharing. Moreover, federated pre-training
would entail transmitting extremely large model pa-
rameters across institutions, incurring prohibitive
communication costs and conflicting with high-
efficiency training practices like data parallelism
and optimized operators, making deployment in-
feasible in practice.

By contrast, federated fine-tuning is essential
in privacy-sensitive domains. Many applications
of LLMs in vertical fields—such as judicial docu-
ments, electronic health records, and banking cus-
tomer data—rely on restricted information that can-
not be centralized due to legal or institutional con-
straints (e.g., the Data Security Law or the Personal
Information Protection Law). In these settings, fed-
erated fine-tuning allows each institution to adapt a
shared pre-trained model locally, achieving a bal-
ance between model performance and data privacy.
This approach has already demonstrated tangible
value across multiple domains.

For example, in the judicial domain (Zhang et al.,
2023), courts can fine-tune a common LLM on
local case repositories without sharing sensitive
records, enabling cross-court tasks such as statute
matching and case similarity analysis. In health-
care (Ali et al., 2025), hospitals can locally fine-
tune models on specialty data, producing compre-

hensive medical LLMs capable of supporting struc-
tured record processing and disease risk prediction.
And in finance (Sha, 2024), banks can fine-tune
models on transaction data to detect fraud and as-
sess credit risk without violating privacy regula-
tions.

B.4 Preliminary Assessment of Verbatim Data
Extraction Risks in FedLLMs

To examine the memorization behavior of
FedLLMs and evaluate their potential risks of leak-
ing sensitive information, we conduct a preliminary
experiment simulating a verbatim data extraction
attack. The results are referenced in the main paper
(Section 1) to empirically motivate our study.

We adapt the experimental setup from (Dong
et al., 2024) to the federated setting, where an at-
tacker is assumed to possess prefix fragments of
the training data from all participating clients and
attempts to recover the subsequent suffix tokens.
For each training sample, we extract a prefix from
the original sequence and query the trained model
to generate a continuation. The generated suffix
is compared against the ground truth using Edit
Distance (ED) (Levenshtein, 1965), where a lower
ED indicates stronger memorization. Specifically:

• ED = 0 indicates the model has perfectly mem-
orized and reproduced the suffix;

• ED values are capped at 50, as we restrict
suffixes to a maximum of 50 tokens.

We perform the attack on the global models ag-
gregated after 10 rounds of federated training. To
ensure a comprehensive assessment, we consider
three popular FL algorithms—FedAvg (McMahan
et al., 2023), FedProx (Li et al., 2020), and Scaf-
fold (Karimireddy et al., 2020)—each under both
IID and Non-IID data distributions. Two baseline
settings are also included:

• Centralized: All client data is pooled and
the model is fine-tuned in a conventional non-
federated manner;

• Untrained: The base model is evaluated with-
out any fine-tuning.

Figure 7 summarizes the results across five
downstream tasks. Our key observations are:

• FedLLMs consistently exhibit higher ED
scores (i.e., lower memorization) than central-
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Centralized Federated Untrained

Figure 7: Edit Distance results of verbatim data extraction attacks after 10 training rounds. We evaluate six federated
configurations (FedAvg/FedProx/Scaffold × IID/Non-IID) and report the mean and standard deviation. Lower
values indicate stronger memorization. Centralized and untrained models serve as baselines.

ized models, suggesting that the FL aggrega-
tion process reduces susceptibility to verbatim
extraction.

• However, compared to untrained models,
FedLLMs still show non-negligible memoriza-
tion, with noticeably lower ED scores, indicat-
ing partial leakage of training data.

These findings highlight a trade-off between col-
laborative model training and privacy preservation,
and they serve as the motivation for our in-depth
investigation of privacy risks in FedLLMs.

C Federated Learning Framework

Algorithm 1 outlines a general framework for Fed-
erated Learning (FL), where a central server coor-
dinates multiple clients to collaboratively train a
global model without sharing local data. At each
round, the server distributes the current model to
all clients, each of which performs local updates
based on its private data and sends the updated
parameters back. The server then aggregates the
received updates to produce a new global model.

D Task Descriptions and Examples

1. Judicial Summarization (Sum): The task of
judicial summarization aims to extract key in-
formation from court judgments and generate
concise summaries. The input to this task is a
legal document, and the output is a summary

Algorithm 1 A Federated Learning Framework
Input: Clients set C = {c1, c2, . . . , cc} with local
datasets D1, D2, . . . , Dc; total FL rounds R; initial
global model θ0; server aggregation function fagg; client
loss function L
Output: Learned global model θR

1: ServerExecute:
2: for round r = 1 to R do
3: for each client ci ∈ C (in parallel) do
4: θir ← CLIENTUPDATE(ci, θr−1)
5: end for
6: θr ← fagg({θir|ci ∈ C})
7: end for

8: ClientExecute:
9: function CLIENTUPDATE(ci, θr−1)

10: θir ← argmin
θ
L(θr−1, Di)

11: return θir
12: end function

of its content. The performance of this task
is evaluated using the Rouge-L metric, which
effectively measures the similarity between
the generated and reference texts based on the
longest common subsequence (LCS). Rouge-
L is a widely used metric in text generation
tasks. In this study, we adopt Rouge-L be-
cause it captures both semantic and structural
similarities between texts, making it suitable
for summarizing judicial documents.

2. Judicial Reading Comprehension (RC):
This task focuses on answering legal ques-
tions based on court documents to evaluate the
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model’s reading comprehension ability. The
input consists of a piece of legal material and
a question, and the task requires answering
the question based on the content of the ma-
terial. The performance metric for this task is
Rouge-L.

3. Similar Case Matching (Match): In this task,
the input includes three case documents, and
the model is required to determine which of
the latter two documents is more similar to
the first one. The model selects the most simi-
lar document by computing the similarity be-
tween the first case and each of the other two.
The evaluation metric for this task is accuracy.

4. Judicial Exam (Exam): This task simulates
multiple-choice questions from legal exam-
inations to assess the model’s knowledge of
legal concepts. Given a judicial exam question
with multiple options, the model is expected to
choose the correct answer. The performance
is evaluated using accuracy.

5. Legal Case Classification (Cls): This task
requires the model to classify the cause of ac-
tion in a case, assisting legal retrieval systems
in automatically categorizing case types. The
input is a description of the case facts, and the
model is required to output the correspond-
ing case category. The performance metric is
accuracy.

E Data Preprocessing

Previous works (Zhang et al., 2023; Yue et al.,
2023) have used these datasets for LLM and
FedLLM research. In this work, we use the pro-
cessed datasets from these prior studies and further
curate the data for our experiments. We applied
the following preprocessing steps to prepare the
datasets:

Deduplication and Cleansing. To ensure the
quality of our data, we remove duplicate samples
with logically equivalent meanings. For example,
in the RC tasks, some samples only differ in the
order of two legal cases. We also clean out samples
containing garbled characters or large segments
with a mixture of multiple languages.

Unifying Prompt Template and Instruction Re-
shaping. Some tasks, such as Exam, contain in-
structions that appear in different parts of the sam-

ple (either at the beginning or the end). To standard-
ize the format, we reshape the data so that the in-
struction always appears at the beginning, followed
by the legal document. Additionally, we employ
hierarchical hyper markers such as "<Case A>",
"<Case B>", and "<Answer>" to clearly segment
the prompt, making the structure more transparent
for the LLM.

F Supplementary Dataset Statistics and
Analysis

Table 7 summarizes the basic statistics of the five
datasets used in our experiments. Each dataset
corresponds to a different downstream task for fine-
tuning the model.

Figure 8 presents the document frequency distri-
bution of the 2017 VxPII instances extracted from
the model trained on the masked dataset (see Sec-
tion 5.4). Most VxPII exhibit low frequency, indi-
cating that PII masking significantly reduces mem-
orization.
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Figure 8: Document frequency distribution of the 2017
VxPII instances extracted from the model trained on the
masked dataset.

G Prompt Template and Utility
Fine-tuning Results for FedLLMs

Figure 9 shows the unified prompt template used
for all federated utility fine-tuning tasks. Table 8
reports the evaluation results across multiple tasks,
comparing different federated learning algorithms
and base models.

H Additional PII Label Distribution
Results

Figure 10 illustrates the label distribution of
FedLLM-exclusive victim PII extracted by Qwen1-
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Table 6: Input and Output Examples for Each Task

Task Input Output

Judicial Summarization
(SUM)

First-instance civil judgment on inheritance dispute between Han and Su
Shenyang Dadong District People’s Court
Plaintiff: Han, female, born June 6, 1927, Han ethnicity...
. . .
Clerk: Li Dan

Summary: This case involves an inheritance
dispute between the plaintiff and the defendant.
The plaintiff requests...

Judicial Reading Comprehension
(RC)

Case: Upon trial, it was found that on February 11, 2014, the plaintiff...
Question: When did the plaintiff and defendant agree on the travel plan?

The plaintiff and defendant agreed on the
travel plan on February 11, 2014.

Similar Case Matching
(Match)

Determine whether Case A is more similar to Case B or Case C.
A: Plaintiff: Zhou Henghai, male, born October 17, 1951...
B: Plaintiff: Huang Weiguo, male, Han ethnicity, resident of Zhoushan City...
C: Plaintiff: Zhang Huaibin, male, resident of Suzhou City, Anhui Province, Han ethnicity...

B

Judicial Exam
(Exam)

Wu was lawfully pursued by A and B... Which of the following analyses is correct?
A. If Wu missed both A and B, and the bullet...
B. If Wu hit A, resulting in A’s death...
C. If Wu hit both A and B, causing A’s death and B’s serious injury...
D. If Wu hit both A and B, causing both to die...

A

Legal Case Classification
(Cls)

Legal document: Plaintiff Yan Qiang submitted the following claims to this court:... Private Loan Dispute

Table 7: Dataset Statistics

Exam RC SUM Match Cls

#Samples 2399 3500 2651 3848 4196

Below is a task related to judicial and legal
matters. Output an appropriately completed
response to the request.

<### Input >
{{Task Input}}

<### Output >
{{Task Output }}

Figure 9: Unified Utility Fine-tuning Template for All
Tasks.

8B. This result corresponds to the experiment de-
scribed in Section 5.4.

Figure 11 presents the label distribution of dedu-
plicated victim-exclusive PII instances extracted by
the Baichuan2-7B model.

I Machine Annotation Standards for PII
Labeling

This section provides details on the machine an-
notation protocol we use to identify PII in our
dataset. Table 9 defines our categorization schema,
which includes seven major categories and their
corresponding fine-grained subtypes. To ensure
annotation consistency and scalability, we utilize a
templated prompting approach for automated PII
labeling. Figure 12 shows the machine annota-
tion prompt used to instruct the LLM annotator.
The prompt dynamically incorporates category def-
initions and format constraints to standardize the
output.

0 50 100 150 200 250 300
Deduplicated PII Instances

Address

Age

Amount of Funds

Bank Account

Birthday

Education Experience

Ethnicity

Family Relationship

Fund Flow Records

License Plate Number

Marital History

Name

Other Medication Record

Personal Phone Number

Position

Travel Trajectory

Work Experience

Workplace

Figure 10: Label distribution of FedLLM-exclusive Vx-
PII extracted using prefix set Pc and the Qwen1-8B
model.

J Details of Human Evaluation for PII
Annotation

To validate the quality of the machine-generated PII
annotations, we recruited four Chinese-speaking
students with foundational knowledge of Chinese
law to manually annotate PII on a selected sub-
set of the dataset. Prior to annotation, all annota-
tors underwent thorough training on the annotation
guidelines and usage of the Label Studio tool. The
instructions provided to annotators are detailed in
Figure 13, while Figure 14 illustrates the anno-
tation interface used. All annotators were fairly
compensated upon completion of their tasks.

The human evaluation results, reported in terms
of precision, recall, and F1 score, are summarized
in Table 10, indicating high agreement both in ex-
act span matching and in combined span-and-label
matching, confirming the reliability of the machine
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Table 8: Utility Performance over Different Tasks.

FL Algorithms Models SUM(rouge-l) RC(rouge-l) Match(Acc) Exame(Acc) Cls(Acc)

FedAvg Qwen1-8B 50.0 14.2 50.0 37.5 90.0
FedAvg Baichuan2-7B 57.6 42.4 50.0 33.3 89.5
Non-FL Qwen1-8B 50.0 18.9 50.0 40.8 87.0

Table 9: Categorization of PII Types in Our Labeling Standards

Major Category Minor Category

Personal Basic Information Name, Birthday, Address, Gender, Ethnicity, Family Relationship, Age, Na-
tionality, Personal Phone Number

Personal Identity Information ID Number, Social Security Number, Driver’s License Number, Employee
Number, License Plate Number

Health Related Information Physical Condition, Fertility Information, Current Medical History, Diagnosis
and Treatment Status, Other Medication Record

Work and Education Information Workplace, Position, Work Experience, Education Experience, Grades

Personal Property Information Bank Account, Amount of Funds, Fund Flow Records, Virtual Assets, Other
Financial Records

Personal Location Information Precise Location, Accommodation Information, Travel Trajectory

Others Marital History, Religious or Philosophical Beliefs, Sexual Orientation or
Sex Life, Unpublished Criminal Records

Figure 11: Label distribution of deduplicated victim-
exclusive PII instances extracted by the Baichuan2-7B
model (without LAFt, using prefix set Pc). This figure
complements Figure 3 in the main text, which presents
the corresponding results for Qwen1-8B.

annotations.

K Experiment Implementation Details

K.1 Federated Dataset Partitioning.

We use the preprocessed and labeled datasets (see
Section 3) for our experiments, splitting the data
into training and testing sets. In the federated learn-
ing setup, we simulate a system with five clients.

I would like you to assist in reviewing the provided
document and labeling all sections containing

{{Major Categories of PII}} according to the
following requirements.

1. **Types of personal information to identify
include :**
{{PII Subcategories }}

2. ** Output format :**
{{ Output Format Description }}

3. **Input instructions :**
{{ Input Format Description }}

Please provide the output directly in accordance
with the format requirements above , without any
additional explanation or comments. Thank you

for your assistance!

Figure 12: PII Machine Annotation Prompt Template

The testing set remains global, while the train-
ing set is heterogeneously partitioned across the
clients using a balanced Non-IID distribution (see
Acronyms List A). To achieve this, We employ a
clustering-based method (Li et al., 2023) for par-
titioning, where a language encoder first gener-
ates embeddings, which are then clustered using K-
means. Finally, a Dirac distribution with α = 0.5 is
applied to create a label-skewed partitioning (Guo
et al., 2024), ensuring each client receives a com-
parable number of samples.
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# **PII Annotation Guidelines for Labelers **
## **1. Task Objective **
**Core Task **: Proofread legal texts to accurately identify and annotate ** Personally Identifiable

Information (PII)**. Each annotation task includes:
1. ** Localization **: Mark the exact character offsets of each PII instance in the text;
2. ** Categorization **: Assign each PII instance to the appropriate **major category (7 total)** and ** minor

category (36 total)**, ensuring precise classification.
## **2. PII Category System **
| Major Category | Minor Categories |
| - | - |
| Personal Basic Information | Name , Birthday , Address , Gender , Ethnicity , Family Relationship , Age ,

Nationality , Personal Phone Number |
...( omitted)...
## **3. Annotation Workflow and Standards **
### **Step -by-Step Process **
1. **Read the Full Text **: Understand the context to detect all potential PII entities;
2. **Sentence -by-Sentence Annotation **: For each PII instance , annotate its ** start position**, **text span

**, and corresponding ** major + minor category **;
3. ** Special Cases **: For ambiguous expressions (e.g., "a certain district of a certain city"), determine

PII status based on contextual clues.
### ** Annotation Guidelines **
* ** Accuracy **: Ensure all annotated content is verifiably present in the text. Avoid false positives or

over -labeling;
* ** Support Channel **: If any uncertain cases arise during annotation , promptly reach out to the *Annotation

Support Team* for clarification.

Figure 13: Markdown-style guideline for PII annotation, covering task objectives, taxonomy, and labeling proce-
dures.

Table 10: Human Evaluation of PII Labeling Quality

Evaluation Criteria Precision (P) Recall (R) F1 Score (F1)

Identical Span Only 0.89 0.93 0.91
Identical Span and Label 0.89 0.90 0.89

K.2 Hardware and Computation Budget

All experiments are conducted on a single NVIDIA
A6000 GPU with 48 GB of memory, using bfloat16
precision. Most sampling-based attack experiments
are completed within 200 GPU hours.

K.3 Experiment Procedure

K.3.1 Federated Utility Fine-Tuning
We begin by performing federated fine-tuning of
the LLM (Zhang et al., 2023; Wu et al., 2025)
on the partitioned dataset, adapting it to the le-
gal tasks. The fine-tuning is conducted using the
OpenFedLLM framework (Ye et al., 2024b). We
set the total number of FL rounds to 10 and use Fe-
dAVG (McMahan et al., 2023) as the aggregation
algorithm.

Each client performs multi-task fine-tuning by
mixing all local tasks and applying a unified prompt
template, as illustrated in Figure 9, following
the approach of Raffel et al. (2023). In each
round of federated learning, the client fine-tunes
the received global model for one epoch using
parameter-efficient fine-tuning (PEFT) techniques
of LoRA (Hu et al., 2021). The learning rate is set
to 3e-4 with a linear decay schedule. The maxi-
mum input sequence length is 3072 tokens. We use

a batch size of 1 and apply gradient accumulation
with a factor of 8. The LoRA configuration is set
to r = 16 and α = 32.

After federated fine-tuning is complete, we eval-
uate the utility performance of the final global
model on a held-out global test set. In line with
standard practices in federated learning research,
we also compare this performance with that of a
centrally (non-FL) trained model on the same test
set. The results are summarized in Table 8.

K.3.2 PII Extraction

In the main experiments, we designate client 0 as
the attacker and client 1 as the victim. We construct
the prefix set Pc for PII-contextual prefix sampling
from the local dataset D0. During this construction,
we set the length parameter λ to 50. Each prefix is
used to independently query the utility fine-tuned
global model n = 15 times. For each query, the
model is allowed to generate up to m = 10 new
tokens. This generation length is sufficient to cover
most labeled PII instances while keeping the com-
putational cost acceptable.

For Frequency-Prioritized Prefix Sampling, we
construct Set(SUP(Pc)) from the aforementioned
Pc, and sort it in descending order of prefix fre-
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Figure 14: Human annotation interface in the Label Studio tool for PII labeling. Annotators are familiar with
the Label Studio environment and are instructed to label PII spans based on predefined PII categories. Machine-
generated labels are provided as references to assist the human annotators.

quency (as described in Section 4.2.1). The model
θ is then queried using prefixes in this frequency-
descending order. Although we do not explicitly
define a frequency threshold σa, we sweep the pre-
fix budget B exponentially in base 10. Because
Set(SUP(Pc)) is sorted by decreasing frequency,
this sweep over B implicitly corresponds to sweep-
ing σa from +∞ to 1.

K.3.3 Latent Association Fine-tuning

To construct the fine-tuning dataset Dft, we se-
lect the top 10000 most frequent prefixes from
Set(SUP(Pc)) and randomly sample 10000 PII in-

stances from the attacker’s (client 0’s) PII set Sa.
Although alternative strategies could be explored
for prefix and PII selection, this approach is rela-
tively straightforward and effective. We then fine-
tune the model θ to obtain θ′ using one epoch and
a small learning rate of 5e-5. LoRA is applied with
r = 16 and α = 32, consistent with the initial
federated fine-tuning setup.
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