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Abstract

Anomaly detection (AD) is essential in areas
such as fraud detection, network monitoring,
and scientific research. However, the diver-
sity of data modalities and the increasing num-
ber of specialized AD libraries pose challenges
for non-expert users who lack in-depth library-
specific knowledge and advanced programming
skills. To tackle this, we present AD-AGENT,
an LLM-driven multi-agent framework that
turns natural-language instructions into fully
executable AD pipelines. AD-AGENT coordi-
nates specialized agents for intent parsing, data
preparation, library and model selection, doc-
umentation mining, and iterative code genera-
tion and debugging. Using a shared short-term
workspace and a long-term cache, the agents
integrate popular AD libraries like PyOD, Py-
GOD, and TSLib into a unified workflow. Ex-
periments demonstrate that AD-AGENT pro-
duces reliable scripts and recommends com-
petitive models across libraries. The system is
open-sourced to support further research and
practical applications in AD.

1 Introduction and Related Work

Anomaly detection (AD) plays a crucial role in
a wide range of applications, including fraud de-
tection (Abdallah et al., 2016), network monitor-
ing (Sun et al., 2023), action recognition (Li et al.,
2024b), and medical analysis (Fernando et al.,
2021). To handle these diverse data types, the
community has released modality-specific open-
source libraries that package state-of-the-art mod-
els and utilities. Although these libraries acceler-
ate experimentation, each introduces its own data
formats and APIs, so users must “juggle” incom-
patible workflows before they can run even base-
line methods. This learning overhead discourages
adoption, especially among domain specialists who
are not software/data engineers. The stakes are
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Figure 1: Illustration of AD-AGENT: given a user re-
quest, the multi-agent system coordinates each stage to
generate a runnable pipeline.

high: Knight Capital lost USD 440 million in 45
minutes when an unchecked trading anomaly cas-
caded through its systems (Heusser, 2012), and Tar-
get’s 2013 breach has cost more than 200 million
(U.S. Senate Committee on Commerce, Science,
and Transportation, 2014). These incidents show
that small gaps in an AD pipeline can cause major
financial or security failures, showing the need for
tooling that is both reliable and easy to integrate.

Meanwhile, large language models (LLMs) have
demonstrated strong capabilities in reasoning (Guo
et al., 2025), code generation (Liu et al., 2023), and
tool use (Schick et al., 2023). Recent advances in
agent-based systems have further enhanced the po-
tential of LLMs to automate complex, multi-stage
tasks that previously required substantial manual ef-
fort (Guan et al., 2023) (see extended related work
in Appx. A). This presents a compelling opportu-
nity: Can we develop a general-purpose AD plat-
form that leverages LLMs and existing libraries to
build complete detection pipelines from the natural
language intents of non-expert users?

To address this, we introduce AD-AGENT- a
multigent framework powered by LLMs that auto-
mates the construction of AD pipelines from plain
language instructions. It decomposes the AD work-
flow into specialized agents responsible for user
intent interpretation, data processing, library and
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Figure 2: Flowchart of AD-AGENT. Users input natural language instructions and data from various modalities.
AD-AGENT coordinates multiple LLM-powered agents via short-term and long-term memory to construct anomaly
detection pipelines. Solid arrows represent the default workflow; dashed arrows indicate an optional path that
bypasses web searches when algorithm information is stored in long-term memory.

model selection, knowledge retrieval, code genera-
tion and verification, and optional evaluation and
tuning. For the memory mechanism, which is the
key component to support agent-environment in-
teractions (Zhang et al., 2024), we propose two
memories. The short-term shared memory main-
tains the context of the current session, enabling
coordination among agents, while the long-term
memory serves as a cache to reduce costly queries
across repeated sessions. By combining special-
ized agents with structured memory, AD-AGENT
allows non-expert users to build comprehensive AD
pipelines across multiple libraries and modalities
using only natural language, relieving the need for
library-specific expertise or manual programming.
Figure 1 provides an illustration of AD-AGENT.

A survey of prior related LLM-agent work and
modality-specific AD libraries is provided in Ap-
pendix A. Our contributions are as follows:

* Unified multi-modal-library automation. We
propose the first multi-agent framework that in-
tegrates multiple domain-specific AD libraries,
enabling end-to-end, cross-modality pipeline con-
struction from natural language.

* Modular, extensible, and long-lifecycle design.
Loosely coupled agents for reasoning, retrieval,
and generation enable AD-AGENT to easily in-
corporate new libraries and tasks with minimal
changes, supporting a long-lasting ecosystem.

* Accessible to non-experts. AD-AGENT con-
verts natural language instructions into exe-
cutable scripts and supports diverse data types,
enabling non-expert users without programming
skills or specialized knowledge to start easily.

¢ Open-source release. We release AD-AGENT at
https://github.com/USC-FORTIS/AD-AGENT
to provide the community with a practical,
extensible platform for LLM-driven AD research
and real-world applications.

2 Methodology

We present AD-AGENT, a multi-agent framework
that automates AD across diverse modalities and
use cases. By integrating established AD libraries —
PyOD for multivariate data, PyGOD for graph data,
and TSLib for time series — AD-AGENT supports
a broad range of models and enables end-to-end
automation from user instruction to script.

2.1 Agents

We decompose the detection workflow into multi-
ple subtasks, with each stage handled by a special-
ized LLM-powered agent, as illustrated in Fig. 2.

Processor. Datasets in practice come in diverse
formats (e.g., .csv, .mat, or even natural language),
and detection tasks may vary from supervised se-
tups to zero-shot scenarios. The Processor agent
serves as the entry point of the system, using LLMs
to interpret inputs, infer key attributes (e.g., modal-
ity, supervision type), and extract user-specified
constraints. It organizes this information into a
structured format that guides downstream agents.

Selector. Building on the Processor’s output, the
Selector agent determines which AD library best
aligns with the inferred data modality and task re-
quirements. If the user does not specify a model,
the Selector recommends one from the chosen li-
brary. Inspired by recent advances in LLM-based
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model selection (Qin et al., 2025; Chen et al., 2024;
Yang et al., 2024), it leverages the LLM’s knowl-
edge of models to provide context-aware sugges-
tions tailored to the dataset and task.

Info Miner. Understanding how to apply a model
often requires consulting multiple documentation
sources, which can be time-consuming and chal-
lenging, especially for non-experts. The Info
Miner agent performs this background research
autonomously. It integrates “Web Search" func-
tion from OpenAl (OpenAl, 2025b) to learn from
and summarize relevant documents, code examples,
and online tutorials. The output includes model de-
scriptions, instructions, and parameter definitions
for later code generation.

Code Generator & Reviewer. These two agents
collaborate to produce reliable detection scripts.
The Generator composes code based on user in-
structions and knowledge from the Info Miner. To
ensure correctness, the Reviewer validates the code
through a dry run using LLM-generated synthetic
samples, aiming to quickly catch any execution er-
rors. If issues are detected, the two agents enter a
feedback loop, iteratively refining the code until a
valid and executable pipeline is achieved.
Evaluator & Optimizer. These two agents pro-
vide optional extensions for performance evalua-
tion and hyperparameter tuning. The Evaluator
runs the pipeline and summarizes detection results
when ground truth labels are available for the tar-
get dataset. The Optimizer, inspired by Liu et al.
(2025), performs LLM-powered hyperparameter
tuning based on the provided training dataset. They
operate in a feedback loop, iterating between pa-
rameter updates and performance assessment.

2.2 Agent Collaboration and Workflow

AD-AGENT facilitates collaboration through two
memory structures: a shared short-term memory
and a persistent long-term memory.

The short-term memory serves as the central
workspace where agents read and write task-related
content. It stores the user input, the processed
dataset, selected models, and parameter configura-
tions. This enables agents to operate independently
while remaining context-aware.

The long-term memory caches model informa-
tion retrieved by Info Miner. Since mining from
web sources is often time-consuming and resource-
intensive, the system first checks this cache for re-
cent summaries before initiating a new web search.
It is refreshed periodically (e.g., weekly), allow-

Table 1: Pipeline generation performance by library,
showing success rate (code runs without error), aver-
age latency, LLM token usage (input/output), and per-
pipeline billing cost in US dollars. The time spent in
Reviewer is related to the complexity of models, which
explains the increase in TSLib.

Libraries | Success Rate (%) Time (s) In/Out Tokens Cost (US $)

PyOD 100.0 24.0 3,272/667 0.015
PyGOD 91.1 19.6 3,143/673 0.015
TSLib 90.0 125.2 2,680/561 0.012

ing the system to benefit from up-to-date resources
while avoiding redundant queries.

As shown in Fig. 2, the system begins with the
Processor, which interprets the user’s input and pre-
pares the data. Based on this context, the Selector
determines the appropriate library and, if unspec-
ified by the user, recommends a suitable model.
The Info Miner then gathers relevant model de-
tails, consulting either the long-term memory or
the web. With this knowledge, the Code Gener-
ator and Reviewer collaboratively assemble and
verify the detection pipeline iteratively until the
code is valid. Users may then choose to enable the
Evaluator and Optimizer for optional performance
assessment and hyperparameter tuning.

This collaborative agent framework allows AD-
AGENT to flexibly support multiple data types, in-
cluding new libraries, adapt to varying input for-
mats, and deliver usable outputs with minimal user
effort. Each agent contributes a specialized capa-
bility, with LLMs enabling reasoning, adaptation,
and coordination across the workflow.

3 Experiments

We evaluate AD-AGENT on reliability and effi-
ciency in constructing executable AD pipelines
from natural language instructions, the quality of
model selection, and the effectiveness of long-term
memory. See Appx. B.2 for the use case discussion
and Appx. B.3 for improvements by Optimize.

Datasets and Models. We select datasets and
models for each library from their corresponding
benchmarks: Chen et al. (2024) for PyOD, Liu et al.
(2022) for PyGOD, and Wu et al. (2023) for TSLib.
See details in Appx. B.1.

3.1 Pipeline Generation

We first assess whether AD-AGENT can success-
fully generate runnable pipelines across datasets
and models in each supported library. We use

193



PyOD-AUROC
wb

PyGOD-AUROC
arrhythmia books
C cardio

reddit
pendigits optdigits

—— Best Performance —— Average Baseline LLM Recommendation

Figure 3: Model selection results for PyOD and Py-
GOD. We display the average AUROC of models rec-
ommended by querying the reasoning LLM three times
(duplicates allowed). “Best Performance” marks the
highest performance achieved by any available model
for each dataset, while “Average Baseline” denotes the
mean performance across all available models.

GPT-40 (OpenAl, 2024) to build all agents in our
study. Table 1 presents the success rate, indicating
whether the generated code runs without errors, the
average generation time, and the average LLM to-
ken usage across different dataset—-model pairs. We
also use Llama 3.1 70B instruct (Dubey et al., 2024)
as an open-source representative in Appx. B.5.

AD-AGENT demonstrates high reliability in pro-
ducing valid pipelines across modalities, with low
latency and manageable cost. We provide a com-
plete example run in Appx. C for reference.

Correction Discussion. The feedback loop be-
tween the Code Generator and Reviewer often au-
tomatically corrects errors that occur during the ini-
tial code generation process. The most frequently
fixed issues include missing or incorrectly assigned
parameters and incorrect model import names. For
example, when the Generator omits a required argu-
ment such as n_features for DeepSVDD, the Re-
viewer detects the resulting TypeError, references
the correct constructor signature via the Info Miner,
and amends the script accordingly. These correc-
tion cases demonstrate the practical benefit of the
collaborative agent loop, allowing AD-AGENT to
recover from common errors and increasing the
pipeline success rate without user intervention.
Failure Discussion. While AD-AGENT demon-
strates high overall reliability, a few recurring fail-
ure modes remain. Some failures arise from un-
addressed internal data constraints. For instance,
GAAN in PyGOD expects binary targets for its
loss function, but the pipeline sometimes provides
values outside the valid range. This highlights the
need for improved data validation and type check-
ing within both the Processor and Generator.

Additionally, some errors stem from library in-

Table 2: Average Web Search latency. Long-term mem-
ory lookups complete instantly and are omitted.

Libraries |  PyoOD PyGOD TSLib

Time (5 | 106 12.0 10.8

consistencies or incorrect functions, such as failed
imports of DOMINAT in PyGOD, which is there-
fore excluded from the experiments, or input-size
mismatches for Pyraformer in TSLib with certain
datasets. While these are external, they underscore
the need for AD-AGENT to integrate version check-
ing and more robust fallback mechanisms.

3.2 Model Selection

We employ o4-mini (OpenAl, 2025a) to recom-
mend AD models when the user leaves it unspec-
ified. For each dataset, we query the LLM three
times and compute the mean AUROC of selected
models. Figure 3 compares the results in PyOD and
PyGOD against two baselines: (i) the best result
from any available model, indicating the upper per-
formance limit; and (ii) the average performance
of all available models, representing random selec-
tion. See more details and results in Appx. B.4.

The LLM’s recommendations substantially ex-
ceed the average baseline and closely track the best
performance in most datasets. This demonstrates
that the Selector agent can harness LLM reason-
ing to choose proper models, simplifying model
selection for non-expert users.

3.3 Long-term Memory Efficiency

To quantify the benefit of long-term memory, we
compare the Info Miner’s lookup latency and cost
when using Web Search versus cached summaries.
A typical Web Search takes about 10 seconds, as
shown in Table 2, and costs 0.035 (US $) per call.
In contrast, retrieving the same information from
long-term memory is almost instantaneous and in-
curs no additional cost. This highlights the effi-
ciency of long-term memory.

4 Conclusion

In this work, we introduced AD-AGENT, an LLM-
powered multi-agent framework that automates
end-to-end AD across multivariate, graph, and time-
series data. By decomposing the workflow into
specialized agents and coordinating them through
short-term and long-term memory, AD-AGENT
turns natural language instructions into runnable
detection pipelines. Our experiments demonstrate
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high success rates of the system, accurate model
recommendations, and substantial reductions in
lookup latency and cost via long-term caching. The
system is released for further research.

Future Directions. We plan to: (i) broaden AD-
AGENT by continually adding new libraries and
adapting other data modalities; (ii) support con-
versational interactions so users can iteratively re-
fine pipelines; (iii) provide a secure, cloud-based
workspace with pre-configured environments to
simplify setup; (iv) introduce cost-aware planning
that balances performance and LLM API bud-
gets; and (v) envision a global, community-driven
ecosystem where stakeholders collaborate on open-
source tools for AD.

Limitations

Despite its flexibility and automation, AD-AGENT
has several limitations. The system depends on
the accuracy and currency of both the underly-
ing LL.Ms and external libraries; breaking changes
or undocumented features may lead to pipeline
failures. Also, not all model or data-specific con-
straints can be automatically detected, which may
result in occasional misconfigurations or runtime er-
rors. Furthermore, AD-AGENT has been validated
primarily on standard benchmarks, and its effective-
ness and robustness for specialized or proprietary
datasets need further systematic investigation.

Ethics Statement

This work adheres to established ethical standards
in both research and software development. All ex-
periments are conducted on public datasets, with no
personally identifiable or sensitive information pro-
cessed or disclosed. AD-AGENT is under the BSD
2-clause License, ensuring transparency and repro-
ducibility. The system is designed to assist non-
expert users in building AD pipelines. Addition-
ally, ChatGPT was used exclusively to make minor
grammatical improvements to the manuscript.

Social Impact Discussion

AD-Agent has the potential to lower barriers to
anomaly detection by enabling non-expert users,
including those in resource-constrained organiza-
tions, to prototype pipelines rapidly and researchers
or educators to explore AD concepts through
natural-language interfaces. This democratization
can broaden the adoption of AD methods and ac-
celerate practical applications. At the same time,
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we acknowledge potential risks: non-experts may
misapply AD in safety-critical domains without
understanding limitations, automation bias may re-
duce human oversight, and reliance on commercial
APIs introduces cost and accessibility concerns.
By making the system open-source and explicitly
documenting limitations, we aim to encourage re-
sponsible use and enable the community to address
these societal considerations.
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Appendix: AD-AGENT: A Multi-agent
Framework for End-to-end Anomaly
Detection

A Related Works

LLM-based multi-agent systems have emerged as
a powerful paradigm for solving complex tasks
through role specialization, planning, and tool
use (Guo et al., 2024; Li et al., 2023).

These systems have been successfully applied to
domains such as software engineering (Liu et al.,
2024a), scientific discovery (Liu et al., 2024c),
faithfulness evaluation (Koupaee et al., 2025), and
social simulations (Li et al., 2024a). In the con-
text of AD, Audit-LLLM (Song et al., 2024) targets
insider threat detection through multi-agent coor-
dination, and Argos (Gu et al., 2025) uses LLM
agents to generate interpretable anomaly rules for
time-series monitoring. While effective, these sys-
tems are domain-specific and fixed in scope.

In parallel, several open-source libraries have
been developed across different data modalities.
Popular libraries such as PyOD (Chen et al., 2024),
PyGOD (Liu et al., 2024b), and TSLib (Wang et al.,
2024) provide strong support for AD on multivari-
ate, graph, and time series data, respectively. While
each library is effective within its domain, they dif-
fer in requirements and design. These inconsisten-
cies make integration across libraries non-trivial.

AD-AGENT unifies multiple AD libraries within
an LLM-driven multi-agent framework.

B Experiments Details

B.1 Datasets and Models

As mentioned in § 3, we adopt datasets and models
for each library from corresponding benchmarks.

B.1.1 PyOD

Following PyOD 2 (Chen et al., 2024), we evalu-
ated AD-AGENT on 17 widely used datasets orig-
inally from ADBench (Han et al., 2022), includ-
ing arrhythmia, cardio, glass, ionosphere, letter,
lympho, mnist, musk, optdigits, pendigits, pima,
satellite, satimage-2, shuttle, vertebral, vowels, and
WBC. For each dataset, we consider 10 models:
ALAD, AnoGAN, AE, AEISVM, DeepSVDD, De-
vNet, LUNAR, MO-GAAL, SO-GAAL, and VAE.
See more details in Chen et al. (2024).

B.1.2 PyGOD

Following PyGOD (Liu et al., 2024b), we evalu-
ated AD-AGENT on 5 real datasets originally from

Table 3: Detection Performance before and after execut-

ing Optimizer. Better results are highlighted in bold.

Models AUROC((before— after) AUPRC(before—> after)
AE 0.7875 — 0.8732 0.4191 — 0.4959
ALAD 0.5861 — 0.6103 0.1454 — 0.1624
AnoGAN 0.8820 — 0.9438 0.6050 — 0.7034
AEISVM 0.9450 — 0.9779 0.6748 — 0.8388
DeepSVDD 0.9259 — 0.9757 0.6370 — 0.8046
DevNet 0.0323 — 0.0323 0.0585 — 0.0585
LUNAR 0.5254 — 0.7941 0.1736 — 0.4462
MO-GAAL 0.5300 — 0.6200 0.1900 — 0.2000
SO-GAAL 0.6687 — 0.7724 0.3512 — 0.4283
VAE 0.9800 — 0.9800 0.8300 — 0.8300

BOND (Liu et al., 2022), including books, disney,
enron, reddit, weibo. For each dataset, we con-
sider 9 models: AJONE, ANOMALOUS, Anoma-
lyDAE, CONAD, DONE, GAAN, GUIDE, Radar,
and SCAN. See more details in Liu et al. (2022).

B.1.3 TSLib

Wu et al. (2023) presents a benchmark study
for TSLib (Wang et al., 2024). Following their
approach, we evaluated AD-AGENT on 5 real-
world datasets from Wu et al. (2023), including
MSL, PSM, SMAP, SMD, and SWaT. For each
dataset, we consider 10 models: Autoformer, DLin-
ear, ETSformer, FEDformer, Informer, LightTS,
Pyraformer, Reformer, TimesNet, and Transformer.
See more details in Wu et al. (2023).

B.2 Use Cases Discussion

Our framework supports two common use cases
frequently encountered in academic research and
real-world deployments.

In research or benchmarking settings, users usu-
ally have access to a train/test split and ground-truth
anomaly labels for the test set. AD-AGENT ingests
the training data, builds the model, and reports met-
rics such as AUROC or F1 on the held-out test set if
the user enables the Evaluator. Then the Optimizer
can further refine hyperparameters by running an
inner loop on the training data and passing a possi-
bly better configuration back to the main pipeline
before the final evaluation. This mirrors the evalu-
ation protocol adopted by major AD benchmarks
such as ADBench (Han et al., 2022).

In many production scenarios, only one raw, un-
labeled dataset is available, and the goal is to iden-
tify anomalies directly within this set (Bouman
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Figure 4: Model selection results for TSLib. We dis-
play the average F1-score of models recommended by
querying the reasoning LLM three times (duplicates
allowed). “Best Performance” marks the highest per-
formance achieved by any available model for each
dataset, while “Average Baseline” denotes the mean
performance across all available models.

et al., 2024). In this case, AD-AGENT detects
anomalies on the provided data in a single pass; the
Evaluator and Optimizer remain inactive unless the
user later supplies labels or a separate tuning set.

B.3 Optimizer Improvement

To demonstrate the impact of Optimizer, we eval-
uated it on the dataset “cardio” within PyOD. As
shown in Table 3, Optimizer consistently improved
detection quality. These results indicate that the
Optimizer agent can automatically refine hyper-
parameters to produce significantly stronger AD
pipelines without human intervention.

B.4 Additional Result of Model Selection

Figure 4 shows the model selection results in TSLib.
LLM recommendation outperforms the average
baseline in all datasets.

B.5 Open-source LLM Results

We select Llama 3.1 70B instruct (Dubey et al.,
2024) as a representative of open-source LLMs.
However, the performance is not promising: (i)
open-source LLMs struggle to follow complex
commands accurately, often producing inconsistent
JSON formatting and failing to execute arguments
correctly. (ii) Their limited abilities also hinder
them from correcting invalid code in Reviewer.

Open-source or smaller LLM-based agents still
lag behind closed-source or larger models in han-
dling complex tasks (SHEN et al., 2025). This is
a universal challenge for LLM agents. However,
AD-AGENT is designed to ensure that even when
using a powerful LLM like GPT-40, the cost re-
mains highly affordable.

C Example Run

Table 4 presents an actual session of AD-AGENT.
In this example, a user requests to run VAE on the
“cardio.mat” dataset via a simple natural language
command: “Run VAE on cardio.mat.” The sys-
tem interprets the user’s intent, processes the data,
selects the appropriate library, retrieves model in-
formation, and automatically generates a runnable
Python script. This example demonstrates the
seamless collaboration between agents in AD-
AGENT, showing how a single natural language
instruction can be transformed into a ready-to-run
AD pipeline with minimal user effort.

D Prompt Summary

AD-AGENT drives training-free LLM agents
purely through carefully crafted prompts. Each
prompt specifies the sub-task, enforces JSON
blocks for inputs and outputs, and restricts the
agent to a library-specific API surface, ensur-
ing that downstream modules can trust the re-
sponse without additional validation. Across all
agents, we employ three core prompt engineering
techniques: chain-of-thought reasoning to elicit
step-by-step planning (Wei et al., 2022), strict
JSON-formatted outputs for deterministic parsing,
and a self-revision loop in which the Reviewer in-
jects error traces into the LLM to correct code. The
tables tables 5 to 9 present the raw prompts that
implement these patterns for each agent.
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=== [Main] Starting full pipeline ===
=== [Processor] Processing user input ===
Enter command (e.g., ‘Run IForest on glass_train.mat and glass_test.mat’):
User: Run VAE on cardio.mat
Experiment Configuration:
Algorithm: [‘VAE’]
Training Dataset: ./data/cardio.mat
Testing Dataset:
Parameters:
=== [Processor] User input processing complete
=== [Selector] Processing user input ===
=== [Selector] Selecting package & algorithm ===
Package name: pyod
{more content is omitted...}
=== [Selector] Selection complete ===
=== [Info Miner] Querying documentation for VAE ===
The Variational Autoencoder (VAE) in PyOD is {more content is omitted...}
**[nitialization Function (‘__init_ *):**
The ‘__init_ ’ method initializes the VAE model with {more content is omitted...}
**Parameters: **
- ‘contamination’:
- **Type**: float in (0., 0.5)
- **Default**: 0.1
- **Description**: The proportion of outliers{more content is omitted...}
- ‘encoder_neuron_list’:
{more content is omitted...}
** Attributes: **
- ‘model’:
- **Type**: torch.nn.Module
- **Description**: The underlying VAE model.
{more content is omitted...}
**Python Dictionary of ‘__init__’ Parameters with Default Values:**
{
‘contamination”: 0.1,
“encoder_neuron_list”: [128, 64, 32],
{more content is omitted...}
}
[Cache Updated] Stored new documentation for VAE
=== [Info Miner] Documentation retrieved for VAE ===
=== [Code Generator] Generating code for VAE ===
=== [Code Reviewer] Validating for VAE ===
=== [Code Reviewer] Validation completed for VAE ===
=== [Code Generator] Saved code to ./generated_scripts/VAE_cardio.py ===
{more content is omitted...}

\.

Table 4: A real example of AD-AGENT. The user provides a single natural language instruction (highlighted in
green), and the system automatically parses the command, retrieves model metadata, and generates an executable
Python script. Portions of the printed text are omitted ({more content is omitted...}) for brevity.
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=== [Processor] Extraction prompt ===

Extract the algorithm, dataset_train, dataset_test, and optional parameters
from the above conversation

and return them in Python dictionary (JSON) format.

If any item is missing, return an empty object.

User input follows format ‘Run XXX on TRAIN_DATA and TEST_DATA with XXX’ where

‘with XXX’ and ‘TEST_DATA’ are optional.
For example: if the wuser says ‘Run IForest on ./data/train.mat and

./data/test.mat with contamination=0.1’

you should return
{‘algorithm’: [‘IForest’], ‘dataset_train’: ‘./data/train.mat’, ‘dataset_test’:

¢./data/test.mat’, ‘parameters’: {‘contamination’: 0.1} }
If user says ‘Run IForest on ./data/train.mat and ./data/test.mat’

you should return
{‘algorithm’: [‘IForest’], ‘dataset_train’: ‘./data/train.mat’, ‘dataset_test’:

‘./data/test.mat’, ‘parameters’: {} }

If user says ‘Run IForest’

you should return
{‘algorithm’: [‘IForest’], ‘dataset_train’: None, ‘dataset_test’: None,

‘parameters’: {} }
If user says ‘./data/train.mat and ./data/test.mat’

you should return
{“algorithm’: [1, ‘dataset_train’: ¢./data/train.mat’, ‘dataset_test’:

‘./data/test.mat’, ‘parameters’: {} }

IMPORTANT: DO NOT ASSUME ALGORITHM NAME OR PARAMETERS NAME.

IMPORTANT: Algorithm should always be an array.
IMPORTANT: IF USER WANTS TO RUN ALL ALGORITHMS, return ‘algorithm’ as [‘all’].

Table 5: Raw extraction prompt used by the Processor agent. The prompt instructs the LLM to extract algorithm
names, dataset paths, and optional parameters from free-form user inputs, returning a structured Python dictionary.
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=== [InfoMiner] Unified web-search prompt ===
You are a machine-learning expert and will assist me with researching a specific
use
of a deep-learning model in ‘{library_name}’.
Here is the official document you should refer to:

‘{doc_url}’
I want to run ‘{algorithm_name}’. What is the initialisation function, its
parameters,
and its attributes? Briefly return the relevant documentation content.
Then extract ***all parameters*** of the __init__ method for the
‘{algorithm_name}’ class, along with their default values if available, and
return
a valid Python dictionary string in the following format:

{

‘paraml’: default_valuel,
‘param2’: default_value2,

3

If any default value is an object or function (e.g. ‘MinMaxScaler()’), wrap it
in quotes so the string remains valid for ast.literal_eval.

Table 6: Raw prompt template used by the InfoMiner agent. At runtime, the placeholders {1library_name} and
{doc_url} are filled according to their official documentation.
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=== [CodeGen] PyOD labeled prompt (raw) ===
You are an expert Python developer with deep experience in anomaly detection libraries. Your
task is to:

1. Use the provided official documentation content for {algorithm} to understand how to use the
specified algorithm class, including initialization, training, and prediction methods.

2. Write only executable Python code for anomaly detection using PyOD and do not include any
explanations or descriptions.

3. Base your code strictly on the following official documentation excerpt:

— BEGIN DOCUMENTATION —
{algorithm_doc}
— END DOCUMENTATION —

4. The code should:
(1) import sys, os and include command ‘sys.path.append(os.path.abspath(os.path.join(os.path.
dirname(__file__), “..’)))’ in the head
(2) import DatalLoader using following command ‘from data_loader.data_loader import DatalLoader
after (1)
(3) Initialize Dataloader using statement

dataloader_train = Dataloader(filepath = {data_path_train}, store_script=True, store_path
‘train_data_loader.py’)

dataloader_test = Dataloader(filepath = {data_path_test}, store_script=True, store_path
‘test_data_loader.py’)
(4) Use the statement

X_train, y_train = dataloader_train.load_data(split_data=False)

X_test, y_test = dataloader_train.load_data(split_data=False)
to generate variables X_train, y_train, X_test, y_test;
(5) Initialize the specified algorithm {algorithm} using variable ‘model’, strictly following
the provided documentation and train the model with X_train
(6) Determine whether the following parameters {parameters} apply to this initialization
function and, if so, add their values to the function.
(7) Use ‘.decision_scores_’ on X_train for training outlier scores

Use ‘.decision_function(X_test)’ for test outlier scores

Calculate AUROC (Area Under the Receiver Operating Characteristic Curve) and AUPRC (Area
Under the Precision-Recall Curve) based on given data
(8) Using variables to record the AUROC & AUPRC and print them out in following format:

AUROC: \sx(\d+.\d+)

AUPRC: \sx(\d+.\d+)
(9) Using variables to record prediction failed data and print these points out with true label
in following format:

‘Failed prediction at point [xx,xx,xx...] with true label xx’ Use ‘.tolist()’ to convert
point to be an array.

’

IMPORTANT :
- Strictly follow steps (2)-(8) to load the data from {data_path_train} & {data_path_test}.
- Do NOT input optional or incorrect parameters.

Table 7: Raw prompt used by the CodeGenerator agent for PyOD (labeled setting). The LLM generates executable
code for training and evaluating anomaly detectors using the given documentation and dataset paths.
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=== [Reviewer] Unit-test prompt ===
You will receive a Python script for {package_name} that trains an
anomaly-detection model with real datasets.

— BEGIN CODE —
{code}
— END CODE —

TASK:

1. Replace **all data-loading operations*x (DatalLoader, torch.load, np.load,
pandas.read*, etc.)

with code that creates SMALL synthetic data directly in the script:

« For PyOD:...
- For PyGOD:...
- For tslib:...
2. Keep the variable names and the rest of the logic unchanged.
3. Output runnable Python **code only** (no explanations, no markdown).

Table 8: This prompt directs the Reviewer agent to transform a full training script into a self-contained unit test. It
instructs the LLM to replace all external data-loading operations with specific, library-aware code snippets that
generate small synthetic datasets on the fly.
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=== [Optimizer] ReAct prompt ===
You are an expert Python engineer specialising in anomaly-detection libraries.

Current implementation

{code}

Current parameters

{parameter}

Current output

{std_output}

Authoritative documentation

{algorithm_doc}

You have access to a single tool:
“‘execute_code(params: Dict[str, Any]) -> str’” which runs the script with the
supplied **newxx parameters and returns the console output.

Follow the x*ReAct** loop **STRICTLY** — each response must be Either:

1. A pair of lines:
Thought: <reasoning>
Action: ‘execute_code({‘param’: value, ...3})’

2. A single line starting with ‘Final:’ when you determined the final answer.

IMPORTANT :
1. Do not input ‘default’ in the parameters, use the default values from the
code.

Table 9: Raw ReAct (Yao et al., 2023) prompt used by the Optimizer agent. The prompt guides parameter tuning
via strict reasoning-action loops. All content is passed to the LLM exactly as shown.
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