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Abstract

In-context learning (ICL) has become a promi-
nent paradigm to rapidly customize LLMs to
new tasks without fine-tuning. However, de-
spite the empirical evidence of its usefulness,
we still do not truly understand how ICL works.
In this paper, we compare the behavior of
in-context learning with supervised classifiers
trained on ICL demonstrations to investigate
three research questions: (1) Do LLMs with
ICL behave similarly to classifiers trained on
the same examples? (2) If so, which classi-
fiers are closer, those based on gradient descent
(GD) or those based on k-nearest neighbors
(kNN)? (3) When they do not behave similarly,
what conditions are associated with differences
in behavior? Using text classification as a use
case, with six datasets and three LLMs, we ob-
serve that LLMs behave similarly to these clas-
sifiers when the relevance of demonstrations is
high. On average, ICL is closer to kNN than
logistic regression, giving empirical evidence
that the attention mechanism behaves more sim-
ilarly to kNN than GD. However, when demon-
stration relevance is low, LLMs perform better
than these classifiers, likely because LLMs can
back off to their parametric memory, a luxury
these classifiers do not have.

1 Introduction

In-context learning (ICL) has emerged as the domi-
nant paradigm for adapting large language mod-
els (LLMs) to new tasks without requiring any
parameter updates. ICL achieves this by includ-
ing a few relevant examples (or demonstrations) in
the LLM’s prompt (Brown et al., 2020; Wei et al.,
2022). However, despite the considerable amount
of empirical evidence for ICL’s usefulness, the rea-
sons behind its success remain unclear. On one
hand, a few notable works establish an equivalence
between ICL and gradient descent (GD) based on
synthetic settings (Von Oswald et al., 2023; von Os-
wald et al., 2024; Akyürek et al., 2023; Ahn et al.,

Figure 1: Performance on six datasets of kNN, LR,
GPT-4o-mini, Llama-3.1-8B-Instruct, and Qwen-7B-
Chat models for the same k = 10 examples used by
each model. In several datasets, LLMs perform similarly
to kNN and LR, but this is not always the case.

2023). These works hypothesize that transformers
use internal optimization using gradient-based al-
gorithms to learn in-context. On the other hand,
Deutch et al. (2024) observes a weak correlation
between ICL and GD, uncovering several major
discrepancies in the flow of information through-
out the model between the two processes. These
contradictions suggest that we still do not yet know
how ICL works.

In this paper, we continue the quest to under-
stand ICL’s behavior in the context of text clas-
sification tasks. Unlike previous work, we base
our work on the intuitive empirical observation
that ICL should be similar to supervised classi-
fiers trained on ICL examples.1 We further refine
this idea into two directions. First, building on
the above hypothesis that ICL may behave sim-
ilar to GD, these classifiers could belong to the
family of classifiers based on gradient descent. To
explore this direction, we leverage Logistic Regres-
sion (LR) (LaValley, 2008). Second, we observe
that the decoder’s attention mechanism feels sim-

1For brevity, we refer to these classifiers trained on ICL ex-
amples simply as classifiers from here on. We use example or
demonstration interchangeably to point to the demonstrations
used in ICL or the training examples used by the classifiers.
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ilar to the example weights assigned by weighted
k-nearest-neighbors (kNN) (Dudani, 1976). Based
on this, we explore two variants of kNN classifiers.
We convert this intuition into three research ques-
tions: (1) Do LLMs with ICL behave similarly to
classifiers trained on the same examples? (2) If
so, which classifiers are closer, those based on gra-
dient descent or those based on kNN? (3) When
they do not behave similarly, what conditions make
them behave differently?

To answer the above questions, we compare the
performance and behavior of three LLMs with
ICL (GPT-4o-mini (OpenAI, 2024), Llama-3.1-
8B-Instruct (AI@Meta, 2024), and Qwen-7B-Chat
(Yang et al., 2024)) against kNN and LR on six
datasets. For a fair comparison, all models have
access to the same training examples/demonstra-
tions for each prediction. These examples were
selected based on cosine similarity with the corre-
sponding test example, using contextualized em-
beddings generated by Sentence-BERT (Reimers
and Gurevych, 2019). In this paper, we focus on
text-classification tasks due to their ubiquity and
ease of manual analysis.

We draw several observations from our analysis.
First, in most situations, LLMs obtain similar or
close performance to the classifiers (see the three
left-most datasets in Figure 1). More interestingly,
LLMs behave similarly to kNN and LR in these
situations, as supported by a high Kappa agreement
(Cohen, 1960) between their outputs.

Second, LLMs show a slightly higher Kappa
agreement with kNN, giving more empirical weight
to the hypothesis that ICL behaves more similarly
to the kNN mechanism.2

Third, these observations do not always hold (see
the three right-most datasets in Figure 1). Our hy-
pothesis is that the similarity in behavior is driven
by the relevance of ICL examples, where example
relevance characterizes the extent to which ICL
examples align with the testing data point.3 To
verify the hypothesis, we propose the following
experiment: (a) We first annotate examples based
on their relevance to the corresponding data point.
The annotation is performed both manually and au-
tomatically. (b) Using this relevance, we determine
whether its values are associated with the similar-
ity between classifiers and LLMs. To do this, we

2However, please refer to Limitations for an additional
discussion.

3For simplicity, henceforth we refer to example relevance
as ‘relevance’.

compute the Kappa agreement between the clas-
sifier and LLM outputs. (c) We then examine the
correlation between the Kappa values and the rel-
evance scores. As anticipated, we observe a high
correlation between relevance (both manual and
machine) and Kappa agreement between models.
In other words, when the relevance score is high,
it naturally aligns with a higher Kappa agreement.
This suggests that LLMs with ICL behave similarly
to classifiers when the underlying examples are of
high relevance. When not, their performance and
behavior begin to diverge.

Beyond the more theoretical understanding of
the behavior of ICL, our analysis yields an impor-
tant practical insight: when relevant examples are
available for a given task, LLMs can be replaced
by a simpler and much more efficient classifier.

2 Related Work

We organize our discussion of previous work into
two categories: papers that aim to understand how
ICL works and those that improve its performance.

2.1 Understanding In-context Learning

Several research studies have focused on ways to
understand ICL in different scenarios. In the con-
text of gradient descent (GD), Dai et al. (2023) in-
terpreted ICL as meta-optimizers through compara-
tive analysis between ICL and explicit fine-tuning.
Akyürek et al. (2023) theoretically proved that
transformers can implement learning algorithms
for linear models using gradient descent and closed-
form ridge regression.

Around the same time, Von Oswald et al. (2023)
explored the relation between training transformers
on auto-regressive objectives and gradient-based
meta-learning formulations. They investigated how
transformers construct a loss function from given
examples and the mechanisms through which they
incorporate knowledge using the gradients of this
loss function. Building on this idea, von Oswald
et al. (2024) explored the underlying mechanisms
of gradient-based mesa-optimization, i.e., a form
of learning that “is acquired through training, as op-
posed to being inherent to the model” in autoregres-
sive transformers trained for sequence modeling
tasks. By reverse-engineering these models, they
demonstrated that their in-context learning (ICL)
capability arises from the mesa-layer, an innovative
attention layer designed to efficiently solve a least-
squares optimization problem. In the same space,
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Zhou et al. (2025) analyzes whether LLMs perform
ICL through an error-driven process similar to how
humans learn. By testing for the inverse frequency
effect, a phenomenon where rare examples more in-
fluence an agent than likely ones, the authors show
that LLMs exhibit similar behavior to humans, sug-
gesting that ICL involves an implicit error-driven
learning mechanism like gradient descent.

In contrast, Deutch et al. (2024) reexamined
the hypothesis that GD approximates ICL, iden-
tifying key issues in the evaluation metrics and
baselines proposed by Dai et al. (2023). Shen
et al. (2024) similarly points out the inconsistent
behavior of ICL and GD in a natural setting. They
demonstrated that the hand-constructed weights
used in these studies show properties that differ
from those found in practical scenarios. Fu et al.
(2024) provided evidence that transformers acquire
in-context learning (ICL) capabilities by employ-
ing higher-order optimization instead of gradient
descent (GD). They demonstrated that transformer
architectures can efficiently implement Newton’s
method, in which transformers significantly outper-
formed GD in terms of speed, exhibiting exponen-
tial acceleration. Nafar et al. (2025) investigates the
underlying mechanisms of ICL in LLMs within re-
gression tasks. The work explores how LLMs learn
from examples given in prompts versus relying on
their internal knowledge.

Similar to most of these efforts, our work focuses
on understanding ICL. We empirically observe that
ICL behaves similarly to both gradient descent and
kNN classifiers trained on the same examples as the
demonstrations provided in ICL prompts. However,
this observation only holds when the relevance of
demonstrations is high. We believe this is more
intuitive and has more practical implications.

2.2 Improving In-context Learning
Another line of research, such as Wang et al. (2024),
examines the in-context learning phenomenon from
a Bayesian perspective, viewing real-world LLMs
as latent variable models. Based on this concept,
the work proposes a practical and better demonstra-
tion selection algorithm using a small LLM to ap-
proximate optimal latent concepts, which are then
generalized to larger LLMs. The method yields
significant performance gains, bridging the gap be-
tween theory and practical LLM behavior. Focus-
ing on the quality of examples, An et al. (2023) pro-
poses SKILL-KNN, which is a training-free, skill-
based approach for few-shot example selection in

in-context learning. The work utilizes prompting
LLMs to generate task-relevant skill descriptions
from raw inputs. SKILL-KNN mitigates biases
associated with surface-level features commonly
found in embedding-based selection methods to
generate better examples. Whereas this prior re-
search primarily uses kNN to find better examples
for ICL, our work treats kNN as a comparative
framework to gain insights into understanding the
behavior of ICL.

Another work proposes framing the selection of
demonstration examples as a sequential decision-
making problem and employs reinforcement learn-
ing (RL) to learn policies for selecting examples
(Zhang et al., 2022). This method is runtime expen-
sive and does not consider examples based on simi-
larity to the test data point. Instead, they observe
that label distribution in the demonstration pool
matters. In contrast, our work is simple, i.e., we
use a standard model, Sentence-BERT, to provide
a range of quality examples based on similarity.
Further and more importantly, our work focuses
on how the relevance of the examples impacts the
decision of the downstream models.

Min et al. (2022) focuses on the structure of
demonstrations rather than demonstration rele-
vance for the test data. This work shows that factors
like formatting and input-label alignment signifi-
cantly affect LLM performance. Nevertheless, this
approach is different than our work, as our main
focus is to investigate the importance of demonstra-
tion relevance.

Additionally, Margatina et al. (2023) shows that
selecting the semantically similar examples for
prompts—using active learning strategies—can en-
hance ICL performance more than random demon-
strations. It shows that the semantically similar
demonstrations outperform other strategies and pro-
vide high-quality examples. Our paper takes this
idea a step further. We aim to understand what
happens when we use Sentence-BERT to select ex-
amples. Our work is different because we observe
two important and practical conclusions when we
use such examples: (i) ICL behaves very closely to
kNN, which is novel, in cases of relevant examples;
(ii) if the relevance of examples is not high, we do
not observe the above correlation. This suggests
that LLMs may back off to their existing knowl-
edge in this situation.
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3 Empirical Analysis

Despite the progress in understanding the behavior
of ICL, a critical gap remains in how these systems
behave the way they do. We design our goal of
understanding ICL’s behavior as a comparison to
classifiers trained on the same examples as ICL
demonstrations. We approach this by performing a
formal empirical analysis of the two, aimed at ana-
lyzing their similarity in performance and outputs
across multiple models and datasets. Our findings
revealed that ICL and classifiers are similar in per-
formance, and in most cases, they generate the
same labels.

The observation sparked our curiosity: When
they do not behave similarly, what conditions are
correlated with differences in behavior? To explore
this, we annotate a sample of ICL examples with re-
spect to their relevance and compute the correlation
between example relevance and behavior similarity.
The results are striking; we observe that LLMs be-
have similarly to the classifiers when the relevance
of the demonstrations is high. We further inves-
tigate how changes in the relevance of examples
influence the similarity in behavior.

3.1 Preliminaries
This section outlines the experimental setup used
to support our findings. To provide a comprehen-
sive overview, we perform text classification tasks
on six datasets with kNN, LR, and three LLMs
(GPT, Llama, and Qwen). Prior to running the
classification experiments, we generate text em-
beddings for both the training and test inputs of
each dataset using Sentence-BERT (Reimers and
Gurevych, 2019).

3.1.1 Models
Sentence-BERT: The model generates embed-
dings that are used to retrieve the closest k ex-
amples from the training set based on similarity
scores for each test case. To achieve this, we gen-
erate and save the contextualized embeddings for
both the training and test data of each dataset using
Sentence-BERT. During evaluation, we select the
top-k training examples with the highest similar-
ity by sorting them in descending order of cosine
similarity between their embedding vectors and the
corresponding test embedding. Note that, to have a
fair comparison between classifiers and LLMs with
ICL, the same examples were used by all LLMs.4

4Our goal in this paper is not to develop a novel example
selection strategy, but rather to understand the classifiers and

kNN: We perform our experiment with two vari-
ants of kNN: unweighted kNN (Fix and Hodges,
1951) and weighted kNN (Dudani, 1976). In the un-
weighted case, the predicted label for a test point is
determined by a simple majority vote, meaning the
label most common among its nearest neighbors
is chosen. In weighted kNN, however, each neigh-
bor’s vote is scaled by its similarity score, giving
closer or more similar examples greater influence
in the decision. In our experiments, we observed
that both approaches behave quite similarly, with
nearly identical performance outcomes. Hence, for
simplicity, we report the results of correlation using
only the unweighted kNN.5

LR: Similar to kNN, we train a Logistic Regres-
sion model using labeled training data with ICL
demonstrations when k > 1. In the case of a single
training example—a situation that this discrimina-
tive classifier cannot handle—the model is config-
ured to behave as a 1-NN classifier to keep the
experiments consistent with kNN. We consider LR,
as it is inspired by prior work on probing mod-
els that employ lightweight classifiers (Hewitt and
Liang, 2019; Zhao and Bethard, 2020).

LLMs: We used three pre-trained LLMs: GPT-
4o-mini (OpenAI, 2024), Llama-3.1-8B-Instruct
(AI@Meta, 2024), and Qwen-7B-Chat (Yang et al.,
2024). These LLMs have demonstrated proficiency
across a range of tasks, such as text classification
and sentiment analysis, using only a limited set of
task-specific examples. We perform text classifica-
tion using a common prompt with small changes
based on the behavior of the LLM (a prompt exam-
ple is provided in Appendix D). The LLMs range
in size from 7B to 8B. As mentioned, all LLMs
used exactly the same ICL demonstrations as the
other classifiers.

3.1.2 Datasets
For our experiments, we used six datasets: AG
News (Zhang et al., 2015), News Category (Misra,
2022), AuTexTification (Sarvazyan et al., 2023),
Implicit Prompts (Das et al., 2024), SST-2 (Socher
et al., 2013), and SemEval-2019 Task 6 (Zampieri
et al., 2019). During evaluation, for datasets with
large test partitions, we conduct experiments using

LLM behavior under a shared, common strategy. It is quite
possible that both classifiers and LLM absolute performance
would improve with a more sophisticated example selection
strategy.

5The performance results of weighted kNN are provided
in Appendix G.
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Dataset
k = 1 k = 10 k = 20 k = 30

kNN LR GPT Llama Qwen kNN LR GPT Llama Qwen kNN LR GPT Llama Qwen kNN LR GPT Llama Qwen

AG News 0.85 0.85 0.83 0.84 0.85 0.88 0.88 0.89 0.88 0.88 0.88 0.89 0.89 0.88 0.89 0.87 0.89 0.89 0.89 0.88

News Category 0.80 0.80 0.86 0.81 0.73 0.82 0.83 0.87 0.86 0.82 0.82 0.84 0.87 0.87 0.82 0.82 0.83 0.88 0.88 0.82

AuTexTification 0.54 0.54 0.52 0.55 0.54 0.59 0.58 0.58 0.54 0.52 0.58 0.58 0.58 0.55 0.48 0.59 0.58 0.55 0.54 0.52

Implicit Prompts 0.69 0.69 0.74 0.58 0.41 0.78 0.78 0.78 0.71 0.50 0.79 0.78 0.78 0.74 0.44 0.79 0.79 0.78 0.73 0.48

SST-2 0.68 0.68 0.92 0.80 0.94 0.72 0.73 0.92 0.90 0.93 0.73 0.73 0.92 0.92 0.93 0.73 0.74 0.92 0.92 0.94

SemEval-2019 0.39 0.39 0.58 0.51 0.49 0.46 0.56 0.70 0.62 0.59 0.48 0.61 0.73 0.65 0.57 0.47 0.63 0.74 0.66 0.56

Table 1: Test accuracy on six datasets for unweighted-kNN, LR, and three LLMs, using 1, 10, 20, and 30 examples.

a sample of approximately 1,000 test data points.
Table 6 in Appendix B shows the total number of
test cases along with the selected sample size and
the number of labels. Additionally, the labels for
these datasets are listed in Appendix B in Table 7.

3.2 Comparing Model Behavior
We begin with the analysis that motivates our study,
highlighting the first research question: RQ1: Do
LLMs with ICL behave similarly to classifiers
trained on the same examples? To explore this,
we set out to compare the behavior of three differ-
ent LLMs (GPT-4o-mini, Llama-3.1-8B-Instruct,
and Qwen-7B-Chat) with classifiers (kNN and LR).

3.2.1 Measuring Performance in Terms of
Accuracy

We conduct a systematic analysis of all the mod-
els to measure performance, which is evaluated on
different datasets with the same k examples. On
examining their performance from Table 1, we see
that the accuracy of kNN, LR, and three LLMs is
similar in most cases. This is further visualized in
a heatmap plot (Figure 2) that reflects the perfor-
mance differences between kNN and each LLM,
as well as between LR and each LLM, across all
settings. The figure indicates that the accuracy dif-
ferences between classifiers and the three LLMs
are minuscule on three datasets (left part of the
figure). For example, the performance difference
on AG News and News Category is 0 or very close
to 0 in most cases. However, these differences in-
crease significantly on the three datasets in the right
part of the figure, with the difference reaching as
high as 35% between kNN and Qwen on Implicit
Prompts.

Building on these findings, a natural next ques-
tion arose; RQ2: If ICL behaves similarly to
classifiers with the same set of examples, which
classifiers are closer, those based on gradient

Figure 2: Visualization highlighting the difference in
accuracy between kNN (top) and LR (bottom), each
compared with three LLMs. Each vertical block is a
different dataset; each row is a setting with a different
number of ICL examples (from 1 to 30). The differ-
ence is also encoded with a color gradient, where green
means lower difference (higher similarity) and red indi-
cates high differences (low similarity).

descent (GD) or those based on k-nearest neigh-
bors (kNN)? We observe that kNN and Logistic
Regression have comparable performance, while
ICL aligns more closely with kNN.6 However, as
we have a very simple gradient-based classifier, the
results may vary with non-linear GD classifiers.

3.2.2 Assessing Model Similarity Using
Contingency Matrices

At this point, one might reasonably argue that per-
formance parity among models does not necessar-
ily imply similar behavior, as they may achieve
comparable performance scores while exhibiting
different predictions of labels. To better under-
stand the similarity in performance, we next con-
struct contingency matrices between each LLM

6Detailed comparison of kNN with LR is given in Ap-
pendix H.
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and the classifiers’ outputs. This helps to investi-
gate whether classifiers and LLMs actually behave
in a similar manner, i.e., do classifiers and LLMs
generate identical labels given the same input?

In our work, we plot the contingency matrices
between kNN and LR (X-axis) and the three LLMs
(Y-axis) on the six datasets. These matrices provide
a structured way to compare and evaluate the labels
predicted by different models. That is, the more
similar two outputs are, the more weight the diago-
nal will have. The matrices support our observation:
classifiers and LLMs exhibit similar behavior on
some datasets but not on all. For example, referring
to the contingency matrices of AG News (Figure 3)
and News Category (Figure 4), we find that they
follow diagonal dominance, which indicates that
both classifiers produce almost the same labels as
LLMs. In an opposing case of Implicit Prompts
(Figure 6), we observe that the classifiers tend to
favor the offensive label. We hypothesize that this
occurs because the label distribution of the dataset
is heavily biased towards offensive prompts.7

Figure 3: Contingency matrices for AG News: Compar-
ison of kNN vs GPT (top-left), kNN vs Llama (middle-
left), and kNN vs Qwen (bottom-left) and LR vs GPT
(top-right), LR vs Llama (middle-right), and LR vs
Qwen (bottom-right) for k = 20.

Overall, we observe that diagonal dominance

7All contingency matrices and extended discussion in-
cluded in Appendix F.

Figure 4: Contingency matrices for News Category:
The same configuration follows from Figure 3.

is excellent in 2 out of 6 datasets, good in 2, and
decent in 2.

3.3 Does Example Relevance Correlate with
Behavior Similarity?

All the previous observations immediately indicate
a puzzling conclusion: classifiers and LLMs with
ICL obtain similar performance in general but not
in all cases. These results lead to a new question:
RQ3: When LLMs and classifiers do not behave
similarly, what conditions are correlated with
differences in behavior? To investigate this, we
hypothesize that, given the performance of kNN
is driven by examples, it is essential to analyze
the correlation between example relevance and the
performance of models.

3.3.1 Understanding Example Relevance
In our context, we define example relevance in
terms of task relevance for the provided evalua-
tion data point. Informally, relevance indicates
how well a semantically similar example closely
matches the input test data prompt for the task at
hand. By selecting examples that are relevant to
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the input prompt, we can measure whether a di-
rect correlation between example relevance and the
similarity in behavior of models exists.

To establish correlation, we mark the top-k se-
mantically similar examples with a Boolean label
for each example. We assign a value of ‘1’ to the
examples that are relevant to the input test data
prompt, and ‘0’ to those that are not. For each
test data prompt, we determine an average of these
values for all examples, which we call a relevance
score, reflecting the percentage of the top-k exam-
ples that are relevant to the input prompt.

For labeling the examples, we consider two op-
tions: one based on manual annotations and the
other based on the respective LLM. In the first
case, considering human annotators for all exam-
ples across the entire test prompts is both challeng-
ing and expensive. For this reason, we sample and
annotate a set of 50 test data prompts for each set-
ting of k = 1, 10, and 20 examples manually by
Human-A.8 To verify the robustness of the man-
ual annotations, a smaller subsample of data points
was independently annotated by another human
annotator (Human-B).9 We find substantial Kappa
agreement (≈ 70%) of relevance scores between
the two human annotators.

We use the same set of 1, 550 examples, this
time using the respective LLM to calculate their
corresponding relevance score. We then compare
the agreement between relevance scores by human
and machine annotators. To measure agreement,
we introduce two scores. The first score,Krel

H,M rep-
resents the Kappa agreement on relevance between
a human and an LLM. The second measures the
inclusion score (IH⊂M ), which reflects the fraction
of humans’ relevance scores that is included within
that of LLMs. IH⊂M score of 0 indicates no inclu-
sion, and a score of 1 indicates complete inclusion.
Table 2 shows the Kappa (Krel

H,M ), and Inclusion
(IH⊂M ) scores of relevance between Human-A
and Gpt-4o-mini.

We find that even though the Krel
H,M value is not

good, the IH⊂M reflects an interesting conclusion
that a vast majority of examples annotated as rele-
vant by the human annotator were also considered
relevant by the LLM annotator. In other words,
the human annotators are more conservative than

8We annotated a total of 50 × (20 + 10 + 1) = 1, 550
examples per dataset.

9The two annotators each annotated two data points per
configuration per dataset, for a total of 2× (20 + 10) = 60
examples per dataset.

Datasets k = 1 k = 10 k = 20

Krel
H,M IH⊂M Krel

H,M IH⊂M Krel
H,M IH⊂M

AG News 0 1 0.05 0.98 0.09 0.97
News Category 0.41 0.95 0.28 0.92 0.24 0.89
AuTexTification 0.52 0.92 0.25 0.76 0.23 0.73
Implicit Prompts -0.03 0.98 0.04 0.98 0.04 0.97
SST-2 0.09 1 0.06 0.99 0.05 0.98
SemEval-2019 0.38 0.8 0.26 0.91 0.17 0.89

Table 2: Kappa agreement between relevance of
Human-A and Gpt-4o-mini (Krel

H,M ) and correspond-
ing Inclusion score (IH⊂M ) for increasing k.

the LLMs in labeling a demonstration as relevant.
To compensate for this, we use two types of rele-
vance scores (Human and LLM) in the following
sections for our correlation analyses. For the LLM
annotator, which scales better, we also generate
the relevance scores for all test data prompts for
k = 1, 10, and 20 examples.

3.3.2 Correlation between Example Relevance
and Model Similarity

Based on prior discussions, we know that ICL is
similar to classifiers in many situations; the next
step is to identify the conditions under which this
similarity occurs. To explore this, we examine how
the relevance scores of humans and LLMs are cor-
related with the Kappa agreement between models.
For simplicity, we refer to the Kappa agreement
between the labels predicted by the classifiers and
LLM as model Kappa, denoted by Kmodel

C,L .
To measure the correlation between model simi-

larity and example relevance, we employ two types
of correlations that are widely used to measure the
association between two variables: the Pearson
correlation coefficient (r) and the R-squared (R2)
coefficient (Sedgwick, 2012; Wright, 1921). r cap-
tures the linear correlation between two variables
by computing the ratio between the covariance of
two variables and the product of their standard de-
viations; it ranges between −1 and 1. R2 is the
proportion of the variation in one variable that is
predictable from the other one. For example, we
interpret the R2 between example similarity and
the Kappa agreement between two models as the
fraction of the Kappa score that can be explained
by example relevance.

Formally defining, we measure the correlation
between the Kmodel

C,L and two variables: the first
one is the average relevance score determined by
a human (denoted byRHuman), and the second is
by the respective LLM as an annotator (denoted
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Datasets \ Neighbors k = 1 k = 10 k = 20

RHuman Kmodel
C,L RLLM RHuman Kmodel

C,L RLLM RHuman Kmodel
C,L RLLM

AG News 0.9 0.87 1 0.794 0.87 0.976 0.7 0.87 0.952
News Category 0.8 0.87 0.88 0.664 0.87 0.834 0.553 0.84 0.795
AuTexTification 0.5 0.06 0.66 0.312 0.03 0.546 0.267 0.02 0.507
Implicit Prompts 0.96 0.19 0.98 0.756 0.39 0.966 0.627 0.54 0.956
SST-2 0.7 0.31 0.98 0.596 0.49 0.97 0.471 0.57 0.961
SemEval-2019 0.2 0.12 0.38 0.21 0.3 0.57 0.154 0.34 0.581

Correlation-A r: 0.559
R2: 0.313

r: 0.728
R2: 0.530

r: 0.795
R2: 0.631

Correlation-B r: 0.528
R2: 0.279

r: 0.668
R2: 0.446

r: 0.768
R2: 0.589

Table 3: Correlation comparison with GPT-4o-mini and kNN on 50 data prompts. The top part of the table shows
three columns: the human-annotated relevance score for ICL examples (RHuman); Kappa agreement between
the labels of classifier and LLM (Kmodel

C,L ); and the machine-annotated relevance score on ICL examples used
(RLLM ). The bottom part shows two correlations; Correlation-A = Corr(Kmodel

C,L , RHuman) (in green) and
Correlation-B = Corr(Kmodel

C,L ,RLLM ) (in purple).

Datasets \ Neighbors k = 1 k = 10 k = 20

Kmodel
C,L RLLM Kmodel

C,L RLLM Kmodel
C,L RLLM

AG News 0.82 0.974 0.87 0.934 0.86 0.917
News Category 0.67 0.924 0.67 0.839 0.69 0.792
AuTexTification 0.16 0.608 0.09 0.511 -0.02 0.468
Implicit Prompts 0.3 0.868 0.33 0.866 0.28 0.861
SST-2 0.37 0.944 0.44 0.929 0.46 0.911
SemEval-2019 0.17 0.863 0.3 0.868 0.32 0.87

Correlation-B r: 0.674
R2: 0.455

r: 0.676
R2: 0.457

r: 0.691
R2: 0.477

Table 4: Correlation comparison with GPT-4o-mini and kNN on all data prompts. The table shows the correlation
between: Kappa agreement between the outputs of classifier(kNN) and LLM (Kmodel

C,L ); and the annotated relevance
score by LLM on ICL examples (RLLM ).

by RLLM ). Intuitively, we hypothesize that there
should be a direct correlation between both rele-
vance scores and model Kappa. In other words,
higher example relevance should correspond to a
higher Kappa agreement score.10

Building on this hypothesis, we observe three
key findings in Table 3. First, the Pearson Corre-
lation (r) values are positive for each correlation,
confirming that the more relevant the examples are,
the more similar the LLM and classifier behave.
This holds for both types of correlations, A and
B, as defined in the table. Second, we find that
increasing the number of examples (k) per test data
point, the data more strongly supports these ob-
servations, suggesting that the LLM increasingly
relies on ICL examples as more instances are pro-
vided in the context. Third, focusing on the R2

10Since most of the datasets involve multi-class classifica-
tion, we use the multi-class Kappa agreement formula (Cohen,
1960).

value for Correlation-A for k = 20, we indicate
that up to 63.1% of the behavior similarity can be
explained by example relevance.11

3.3.3 Scaling Up the Correlation Analysis to
the Entire Test Partitions

As mentioned earlier, manual relevance is limited
and expensive; hence, to scale up the experiment,
we calculate the average relevance score on the
annotations given by the underlying LLMs. This
implies that the same procedure is extended to all
test prompts, with the three LLMs employed as
annotators for the relevance score of examples.

Consistent with the observations in Table 3, Ta-
ble 4 shows that LLM maintains high relevance
scores (RLLM ) across k values because of high-
quality semantically similar examples. Further-

11Tables 10 through 14 in Appendix I show the results of
all the analyses of correlation for the three LLMs investigated
with classifiers.
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more, the correlation value exhibits an upward
trend, reflecting a similar pattern to that previously
observed with both human and machine relevance
on 50 test prompts. Note that in some cases, there
is a slight drop in relevance scores from k = 10 to
k = 20, which occurs because an increase in the
number of examples introduces low-quality exam-
ples in the set, thereby reducing the overall rele-
vance score. Because this drop aligns with model
Kappa in these cases, the correlation values are not
affected and exhibit the same trend as before.

4 Discussion

We hypothesize that when the relevance of the ICL
examples is high, both LLMs and the classifiers
rely on them for their predictions. When exam-
ple relevance is low, differences begin to emerge;
LLMs can back off to their parametric memory
and still perform well in some cases. In contrast,
the classifiers’ performance is directly impacted
by example relevance. Additionally, LLM indeed
backs off to its parametric memory when using
low-relevance demonstrations in ICL.12

We summarize the key observations from this
study in Algorithm 1. The algorithm indicates that
when the examples selected to be used by the clas-
sifier or ICL in LLMs are relevant (which was es-
tablished using both human and LLM decisions),
ICL performs and behaves similarly to kNN (and
a little less so to LR). We validate this observa-
tion by showing that there is a high correlation
between example relevance and similarity between
ICL and the classifier. We also notice that when
the relevance of examples is low, the two models
diverge: the performance of classifiers generally
drops, whereas the performance of the LLM is con-
tingent on its pre-training and parametric memory,
i.e., if the task at hand is well represented in its
parametric memory, it continues to perform well.

Similar to our analysis, the task recognition
method of Pan et al. (2023) also makes the dis-
tinction between non-parametric and parametric
memory. However, we explain why both are im-
portant, and how ICL may choose one or another
depending on the relevance of the demonstrations.
“Task recognition” encourages LLMs to back off
to a certain part of the parametric memory, so we
think that their observation complements nicely our
own.

12This was validated by comparing the outputs of the LLM
with poor-quality examples with a zero-shot configuration of
the same LLM. Please see Appendix J.

Algorithm 1 Summary of LLM with ICL behavior
topk ← top k semantically similar examples
if topk is relevant then

LLMs ≈ kNN
else if topk is less relevant then

Performance of all classifiers drops
Performance of LLMs may remain high, possibly

due to parametric memory information
end if

This summary suggests an important practical
insight: in the situations where the relevance of
the ICL examples is high, the LLM can be safely
replaced by the simpler kNN algorithm, which can
be efficiently implemented using vector databases
such as FAISS (Douze et al., 2024). This, of course,
puts the onus on the methods for the example se-
lection, but this is research that has already shown
progress (Akyürek et al., 2023; Zhou et al., 2025;
Shen et al., 2024; Fu et al., 2024; Nafar et al., 2025;
Wang et al., 2024; An et al., 2023).

5 Conclusion

In this paper, we examine how closely ICL behaves
to classifiers based on kNN or GD trained on the
same ICL examples. We find that ICL behaves
more similarly to kNN when subjected to certain
conditions driven by the relevance of examples.
This suggests that if one can strategically select
highly relevant examples, they can just use kNN.
However, in cases where the examples are of lower
relevance, LLMs demonstrate greater robustness
to noise due to their ability to back off to their
parametric memory. As a result, LLMs become
a more suitable choice in such scenarios, as prior
knowledge allows them to perform better.
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7 Limitations

In our current work, we focus on three LLMs and
six text classification datasets, which provide initial
insights into the observed patterns. We believe our
observations are supported empirically by our cur-
rent work and are already actionable. However, to
strengthen our understanding of the underlying be-
havior of ICL, we plan to incorporate more LLMs,

1746



multiple datasets, and more NLP tasks in future
work. This will help validate our conclusions with
greater confidence, ensuring that our results hold
across diverse scenarios.

Further, our comparison between kNN and gra-
dient descent and ICL used a linear GD-based clas-
sifier (logistic regression). This is a common strat-
egy in probing (Hewitt and Liang, 2019; Zhao and
Bethard, 2020). However, it is possible that ICL
behaves closer to a non-linear GD-based classifier,
such as a feed-forward neural network.

One concern is whether there is a causal link be-
tween the two variables that are correlated. i.e., the
relevance scores of demonstrations and the Kappa
agreement between LLMs and classifiers. In future
work, we propose to compare two identical con-
figurations (i.e., same LLM, same dataset, same
number of demonstrations k), with the only dif-
ference being that one has access to high-quality
demonstrations while the other uses low-quality ex-
amples. If causality holds, the Kappa values would
be high for all configurations, and they should drop
when we use bad examples.

8 Ethical Considerations

This work involves some datasets that may contain
offensive content, which could be distressing to
some readers. We have taken measures by using
appropriate disclaimers to acknowledge the offen-
sive language.
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A Analysis of Manual Annotation Quality

Table 5 presents the inter-annotator agreement for
the manual annotations of example relevance. The
Kappa value, representing the level of agreement
between annotators, was computed based on the
manual annotations of two data points per dataset
for k = 10 and k = 20. In total, 2×(10+20) = 60
individual examples per dataset were annotated by
each annotator.

Nearest Neighbors Kappa

k = 10 0.70
k = 20 0.68

Table 5: Kappa agreement scores between the two an-
notators across all datasets.

These values indicate substantial agreement be-
tween the two human annotators, which provides
evidence that the manual annotations of example
relevance are reliable.

B Dataset Labels & Statistics

The complete statistics of all datasets used in the
experiments are presented in Table 6.

Datasets Train Total
Test

Sampled
Test

#Labels

AG News 120000 7600 1001 4
News Category 40000 10000 1000 10
AuTexTification 33845 21832 1000 2
Implicit Prompts 6615 1655 1655 2
SST-2 67349 872 872 2
SemEval-2019 74682 1000 1000 4

Table 6: Data statistics of all the datasets used.

Additionally, the labels for the six datasets used
in this work are presented in Table 7. We employ
both binary and multi-class labels to ensure the
generality of our approach.

Datasets Labels

AG News World, Sports, Business,
Sci/Tech

News Catgory Wellness, Politics, Entertain-
ment, Travel, Style & Beauty,
Parenting, Food & Drink, World
News, Business, Sports

AuTexTification Human, Generated
Implicit Prompts Offensive, Not Offensive
SST-2 Positive, Negative
SemEval-2019 Negative, Positive, Neutral, Ir-

relevant

Table 7: Labels for the six datasets used in this work.

C Logistic Regression Model Training
Using Top-k Nearest Examples

The classifier in this work is a vanilla logistic re-
gression, similar to probing classifiers, where we
have a linear layer on top of contextualized repre-
sentations (Amini and Ciaramita, 2023).

We train a logistic regression model on ICL
examples using their text and labels. The exam-
ples are first converted into numerical represen-
tations using a TfidfVectorizer vectorizer, which
transforms each sentence into a high-dimensional
feature vector. An LR model is trained only on
these top-k examples as features with their labels.
The same vectorizer is used to transform the test
prompt into the same feature space.

D Example Prompt Used for Text
Classification in ICL

The following prompt is used in the case of GPT-
4o-mini for prompt engineering corresponding to
AG News.

{"role": "system",
"content": f"Example: We know that
the classification for the text
'{examples[i]}', we have
answer: '{labels[i]}'."}

{"role": "system",
"content": f"According to the
above provided examples, classify
the following text. Answer as
World, Sports, Business, Sci/Tech
with no explanation."}

{"role": "user", "content": text}
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Dataset Test Data Point Nearest Neighbors Relevance
Score(0/1)

AG News Airlines Agree to Cuts at O’Hare

– Airlines Agree to Cuts at O’Hare 1

– Airlines to Cut Flights at Chicago O’Hare 1
– US airlines agree to cut flights at Chicago #39;s O #39;Hare 1
– 2 Big Carriers at O #39;Hare to Cut Flights 1
– 2 Big Carriers at O #39;Hare to Cut Flights 1
– UPDATE 3-US airlines agree to cut flights at Chicago #39;s O #39;Hare 1
– Airlines agree to limit O #39;Hare arrivals 1
– FAA: Flight-Reduction Deal Set for O #39;Hare 1
– O #39;Hare to reduce flight arrivals 1
– More Job Cuts Likely At American Airlines 0

SemEval-2019
(ApexLegends)

Bout to fuck around and stream.
@PlayApex grind and @Brawl-
halla afterwards.
mixer.com/ShinobiSZN #Bit-
Gang
https://t.co/aBUpN6yjfV

– My goal is just a funny man lmaoo 0

– said My aim is just ridiculous man lmaoo 0
– My aim is just be man lmaoo 0
– My Wife is just ridiculous man lmaoo 0
– @PlayApex Past 10 days of pub matchmaking has been a nightmare.
Not sure what changed but noticably worse team mates. 0

– @PlayApex servers are expanding. 2̆00d. 0
– @PlayApex servers are whack. The [UNK].. 0
– . . Stupid robot. pic.twitter.com/nX5ZFPM85G 0
– @PlayApex so you guys have zero humans on your life? Best friends
account was CLEARLY hacked for illegal purpose of aimbotting/hacking
in game, he sent 2 tickets and never got a human response. He has proof,
those guys won’t even look at it. We have supported your business since
day

0

– @ PlayApex so you guys don’t have people in customer support? The
best friends account was CLEARLY hacked to hack / hack into the game,
it sent 2 tickets and never got a human response.

0

Table 8: WARNING: This table contains language that might be offensive to some. 10 examples corresponding
to a given test data point from two datasets. The first row indicates a test data point associated with high-quality
examples (relevance score: 9/10), whereas the second row presents a test data point with low-quality examples
(relevance score: 0/10).

In the given prompt, we first provide a set of
example–label pairs determined by the value of
k based on their similarity scores (topk in Algo-
rithm 1). In the next part of the prompt, the model
is asked to generate the label for the provided test
text.

E Relevance Score Labeling of Examples

We mark the top-k high-quality examples with a
Boolean label for each example to indicate its rel-
evance. We assign a value of ‘1’ to the examples
that are relevant to the input test data prompt, and
‘0’ to those that are not. Table 8 shows two cases
where one dataset contains more relevant examples
than the other.

F Additional Contingency Matrices for
Unweighted kNN

As discussed in the paper, we have generated con-
tingency matrices to validate the classification of
labels for unweighted-kNN and LR with respect
to three LLMs (refer to Section 3.2.2). Figures 5
to 8 show the contingency matrices for all other

datasets. As previously noted, for several datasets,
we observe that the classifiers closely align with
the classifications produced by LLMs, with only
minor differences as k increases.

By analyzing the figures, we observe that, except
for AG News (Figure 3) and News Category (Fig-
ures 4), the other datasets exhibit lower diagonal
dominance. This is likely because the performance
of the classifiers heavily depends on the examples,
and on such datasets, the classifiers may be influ-
enced by the way the examples are labeled.

This is evident because, although the perfor-
mance metrics of the classifiers are comparable
to those of LLMs in the case of AuTexTification
(as shown in Table 1), the contingency matrices
reveal inconsistencies in label classification (Fig-
ure 5). Similarly, in the Implicit Prompts (Figure 6),
the dataset is designed to contain implicit offensive
prompts, which means most examples are labeled
as ‘Offensive’. Consequently, the classifiers exhibit
strong alignment with these labels.

The SST-2 (Figure 7) and SemEval-2019 (Fig-
ure 8) datasets show moderate diagonal dominance,
meaning that correct predictions are somewhat
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Figure 5: Contingency matrices for AuTexTification:
The same configuration follows from Figure 3.

Figure 6: Contingency matrices for Implicit Prompts:
The same configuration follows from Figure 3.

more frequent along the main diagonal of the confu-
sion matrix. For these datasets, classifiers generally
perform worse than LLMs, as indicated in Table 1.

Overall, these analyses suggest that classifiers
and LLMs overlap in both performance and behav-
ior in some cases, but not all.

Figure 7: Contingency matrices for SST-2: The same
configuration follows from Figure 3.

Figure 8: Contingency matrices for SemEval-2019: The
same configuration follows from Figure 3.

G Weighted kNN Performance
Evaluation

A reasonable question that arises from the results
in Section 3.2 is: Why not compare model perfor-
mance when the models are informed about the
example similarity scores? To explore this, we
aim to examine how similar the behavior of ICL
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Dataset
k = 1 k = 10 k = 20 k = 30

kNN GPT Llama Qwen kNN GPT Llama Qwen kNN GPT Llama Qwen kNN GPT Llama Qwen

AG News 0.85 0.86 0.82 0.81 0.88 0.89 0.88 0.88 0.88 0.89 0.88 0.88 0.87 0.90 0.87 0.87

News Category 0.80 0.86 0.80 0.77 0.83 0.88 0.85 0.81 0.83 0.88 0.85 0.81 0.83 0.88 0.85 0.80

AuTexTification 0.54 0.55 0.54 0.53 0.59 0.57 0.60 0.54 0.59 0.57 0.60 0.54 0.58 0.57 0.58 0.54

Implicit Prompts 0.69 0.72 0.69 0.70 0.78 0.77 0.75 0.71 0.78 0.77 0.75 0.71 0.79 0.77 0.75 0.71

SST-2 0.68 0.93 0.87 0.91 0.73 0.94 0.91 0.93 0.73 0.94 0.91 0.93 0.72 0.95 0.92 0.93

SemEval-2019 0.39 0.58 0.54 0.46 0.49 0.73 0.65 0.56 0.49 0.73 0.65 0.56 0.49 0.73 0.64 0.55

Table 9: Test accuracy on six datasets for weighted-kNN and three LLMs with weighted ICL, using 1, 10, 20, and
30 examples.

would be to weighted kNN if the ICL prompt also
includes information about the similarity scores
of examples.13 This analysis is built on the idea
of conducting a comparative evaluation between
weighted ICL and weighted kNN.14

We report the performance values of weighted
kNN with three LLMs, considering all datasets for
different numbers of k examples in Table 9. As
noted earlier in Section 3.1.1, the performance is
nearly identical to that of the unweighted kNN,
suggesting that the inclusion of similarity scores
does not substantially influence the results, and the

13For simplicity, we call the scenario as weighted ICL,
where we add the similarity scores of each example to the
prompt of the original ICL, given in Appendix D.

14Definition of weighted kNN is discussed in 3.1.1.

Figure 9: Contingency matrices for AG News: Compar-
ison of weighted kNN vs GPT (top), weighted kNN vs
Llama (middle), and weighted kNN vs Qwen (bottom).

behavior of ICL and kNN remains the same.
In line with the observations from Table 1, Ta-

ble 9 indicates that the accuracy of weighted kNN
and the weighted ICL on three LLMs is compa-
rable across most cases. Additionally, the overall
trend of accuracy values remains consistent with
Table 1.

To further verify whether the performance of
the models is indeed aligned, we examine the con-
tingency matrices between the predictions of each
LLM with weighted kNN. Figures 9 to 14 present
the contingency matrices between weighted kNN
(X-axis) and the three LLMs (Y-axis) on the six
datasets.

Figure 10: Contingency matrices for News Category:
The same configuration follows from Figure 9.
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Figure 11: Contingency matrices for AuTexTification:
The same configuration follows from Figure 9.

Figure 12: Contingency matrices for Implicit Prompts:
The same configuration follows from Figure 9.

The resulting patterns of contingency matrices
for weighted closely resemble those obtained for
the unweighted variant of kNN, indicating consis-
tent trends across both kNN configurations.

Figure 13: Contingency matrices for SST-2: The same
configuration follows from Figure 9.

Figure 14: Contingency matrices for SemEval-2019:
The same configuration follows from Figure 9.

H Does ICL Behave Closer to kNN or
LR?

The Kappa scores reported in the six tables (3, 10,
and 11 through 14), which measure behavior simi-
larity between kNN/LR and the LLMs, show small
but consistently higher values for kNN. For exam-
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ple, for GPT-4o-mini with k = 10, the kNN model
achieves a model Kappa (Kmodel

C,L ) value of 0.87 on
AG News (first row in Table 3), whereas Logistic
Regression (LR) attains a Kappa of 0.84 (first row
in Table 10). On average, this observation holds
for the other datasets and LLMs.

Further, the correlation values in these tables
show a more intuitive behavior for kNN. This is
evident from the increasing Pearson (r) and R2

values as k grows, e.g., R2 grows from 31.3% to
63.1% from k = 1 to k = 20 for Correlation-A
(Table 3). This trend does not hold for LR: R2

drops from 31.3% to 26.8% in the same scenario
(Table 10).

These observations suggest that ICL behaves
closer to kNN than LR. However, as we have a
very simple gradient-based classifier, the results
may vary in larger models. In our setting involving
simplified models, we focus on understanding the
behavior of ICL with these classifiers.

I Additional Correlation Results

Extending our analysis from Table 3 to the com-
parison between GPT-4o-mini and LR, we present
the correlation values in Table 10. Evidently, we
note that R2 value for Correlation-A with k = 20
indicates that only up to 26.8% of the behavioral
similarity can be explained by example relevance.
This demonstrates that KNN exhibits a stronger
correlation compared to LR.

Additionally, Tables 11 and 12 show the cor-
relation results for Llama-3.1-8B with kNN and
LR, respectively. As expected, kNN has a com-
paratively better correlation with the LLM when
compared to LR. Similarly, we extend our analysis
for QWEN-7B-Chat in Tables 13 and 14. kNN
tends to perform closer to the LLM in this case as
well.

In summary, the observations from Section 3.3.2
generally hold for the other two LLMs, with a cou-
ple of caveats. First, the correlations are weaker
for k = 1, suggesting that one ICL example is not
sufficient to influence the predictions of the two

Datasets \ Neighbors k = 1 k = 10 k = 20

RHuman Kmodel
C,L RLLM RHuman Kmodel

C,L RLLM RHuman Kmodel
C,L RLLM

AG News 0.9 0.87 1 0.794 0.84 0.976 0.7 0.84 0.952
News Category 0.8 0.87 0.88 0.664 0.84 0.834 0.553 0.87 0.795
AuTexTification 0.5 0.06 0.66 0.312 0.11 0.546 0.267 0.05 0.507
Implicit Prompts 0.96 0.19 0.98 0.756 0.19 0.966 0.627 0.3 0.956
SST-2 0.7 0.31 0.98 0.596 0.42 0.97 0.471 0.53 0.961
SemEval-2019 0.2 0.12 0.38 0.21 0.46 0.57 0.154 0.49 0.581

Correlation-A r: 0.559
R2: 0.313

r: 0.431
R2: 0.186

r: 0.517
R2: 0.268

Correlation-B r: 0.528
R2: 0.279

r: 0.368
R2: 0.135

r: 0.494
R2: 0.244

Table 10: Comparison of GPT-4o-mini and LR. The same configuration follows from Table 3.

Datasets \ Neighbors k = 1 k = 10 k = 20

RHuman Kmodel
C,L RLLM RHuman Kmodel

C,L RLLM RHuman Kmodel
C,L RLLM

AG News 0.9 0.92 0.86 0.794 1 0.722 0.7 0.89 0.696
News Category 0.8 0.89 0.82 0.664 0.89 0.762 0.553 0.91 0.736
AuTexTification 0.5 1 0.8 0.312 0.67 0.764 0.267 0.35 0.749
Implicit Prompts 0.96 0.29 0.8 0.756 0.52 0.672 0.627 0.21 0.625
SST-2 0.7 0.51 0.92 0.596 0.74 0.884 0.471 0.7 0.868
SemEval-2019 0.2 0.15 0.48 0.21 0.31 0.594 0.154 0.32 0.594

Correlation-A r: 0.315
R2: 0.099

r: 0.665
R2: 0.442

r: 0.516
R2: 0.266

Correlation-B r: 0.582
R2: 0.339

r: 0.594
R2: 0.352

r: 0.503
R2: 0.253

Table 11: Comparison of Llama-3.1-8B and kNN. The same configuration follows from Table 3.
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Datasets \ Neighbors k = 1 k = 10 k = 20

RHuman Kmodel
C,L RLLM RHuman Kmodel

C,L RLLM RHuman Kmodel
C,L RLLM

AG News 0.9 0.92 0.86 0.794 0.92 0.722 0.7 0.87 0.696
News Category 0.8 0.89 0.82 0.664 0.89 0.762 0.553 0.93 0.736
AuTexTification 0.5 1 0.8 0.312 0.62 0.764 0.267 0.46 0.749
Implicit Prompts 0.96 0.29 0.8 0.756 0.41 0.672 0.627 0.26 0.625
SST-2 0.7 0.51 0.92 0.596 0.65 0.884 0.471 0.74 0.868
SemEval-2019 0.2 0.15 0.48 0.21 0.43 0.594 0.154 0.39 0.594

Correlation-A r: 0.315
R2: 0.099

r: 0.480
R2: 0.230

r: 0.449
R2: 0.202

Correlation-B r: 0.582
R2: 0.339

r: 0.453
R2: 0.206

r: 0.552
R2: 0.305

Table 12: Comparison of Llama-3.1-8B and LR. The same configuration follows from Table 3.

Datasets \ Neighbors k = 1 k = 10 k = 20

RHuman Kmodel
C,L RLLM RHuman Kmodel

C,L RLLM RHuman Kmodel
C,L RLLM

AG News 0.9 0.92 0.82 0.794 0.89 0.688 0.7 0.89 0.629
News Category 0.8 0.37 0.54 0.664 0.63 0.418 0.553 0.76 0.389
AuTexTification 0.5 0.02 0.6 0.312 -0.12 0.586 0.267 0.1 0.549
Implicit Prompts 0.96 0.11 0.8 0.756 0.15 0.694 0.627 0.1 0.646
SST-2 0.7 0.34 0.68 0.596 0.49 0.766 0.471 0.61 0.762
SemEval-2019 0.2 0.08 0.42 0.21 0.15 0.474 0.154 0.33 0.476

Correlation-A r: 0.525
R2: 0.276

r: 0.691
R2: 0.477

r: 0.506
R2: 0.256

Correlation-B r: 0.526
R2: 0.277

r: 0.128
R2: 0.016

r: -0.035
R2: 0.001

Table 13: Comparison of QWEN-7B-Chat and kNN. The same configuration follows from Table 3.

Datasets \ Neighbors k = 1 k = 10 k = 20

RHuman Kmodel
C,L RLLM RHuman Kmodel

C,L RLLM RHuman Kmodel
C,L RLLM

AG News 0.9 0.92 0.82 0.794 0.87 0.688 0.7 0.87 0.629
News Category 0.8 0.37 0.54 0.664 0.61 0.418 0.553 0.76 0.389
AuTexTification 0.5 0.02 0.6 0.312 -0.14 0.586 0.267 0.02 0.549
Implicit Prompts 0.96 0.11 0.8 0.756 0.11 0.694 0.627 0.06 0.646
SST-2 0.7 0.34 0.68 0.596 0.42 0.766 0.471 0.57 0.762
SemEval-2019 0.2 0.08 0.42 0.21 0.21 0.474 0.154 0.38 0.476

Correlation-A r: 0.525
R2: 0.276

r: 0.629
R2: 0.395

r: 0.453
R2: 0.205

Correlation-B r: 0.526
R2: 0.277

r: 0.049
R2: 0.002

r: -0.094
R2: 0.009

Table 14: Comparison of QWEN-7B-Chat and LR. The same configuration follows from Table 3.

LLMs. Second, the correlation values increase con-
siderably from k = 1 to k = 10, but not always
from k = 10 to k = 20. This suggests that these
two LLMs can become “confused” by too many
ICL examples. This is reflected in Table 1 where
there is a decrease in the accuracy value of Qwen
on SemEval-2019 from k = 10 to k = 20.

Additionally, Appendix J highlights that the
LLM indeed backs off to its parametric memory

when using low-quality demonstrations in ICL.This
was validated by comparing the outputs of the LLM
with poor-quality examples with a zero-shot con-
figuration of the same LLM.
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J Empirical Validation that LLMs under
ICL with Poor-Quality Examples Back
off to Parametric Memory

To validate the hypothesis that LLMs, when us-
ing ICL with poor-quality examples, back off to
parametric memory, we compare their outputs with
the same LLM in a zero-shot configuration. If our
hypothesis is correct, both settings should produce
similar labels, with a high Kappa agreement be-
tween them. In particular, we ran the three LLMs
for 50 test samples under two settings: one with no
examples (zero-shot) and the other with 10 poor ex-
amples. Table 15 shows the Cohen’s Kappa agree-
ment between the two settings for different LLMs.

Datasets Gpt-4o-
mini

Llama-
3.1-8B

QWEN-
7B-Chat

AG News 0.86 0.57 0.45
News Category 0.98 0.43 0.63
AuTexTification 0.96 0.09 0.05
Implicit Prompts 0.69 0.59 0.40
SST-2 0.60 0.68 0.96
SemEval-2019 0.13 0.45 0.42

Table 15: Kappa agreement between zero-shot and poor-
quality examples for all datasets.

The vast majority of Kappa values in Table 15 in-
dicate substantial to near-perfect agreement, which
aligns with our expectation that LLM relies on
parametric memory when example quality is low,
resulting in behavior comparable to the zero-shot.
This is an encouraging result, which suggests that
LLMs can ignore low-quality examples. There
are some exceptions to the rule, which suggests
that in some situations, low-quality demonstrations
influence LLM behavior, like the SemEval-2019
dataset on Gpt-4o-mini, and AuTexTification on
Llama-3.1-8B and QWEN-7B-Chat.

K Selected Examples Do not Necessarily
Share the Same Label

A potential concern from our observations is that
the similar behavior of LLM-based classifiers
might be because of the possibility that selected
examples in ICL or kNN15 have all the same label.
However, as shown below, this largely does not ap-
ply to our scenario. To verify this, we analyze the
proportion of test data points in each dataset whose

15We report results obtained using an unweighted kNN
approach in this section.

selected examples have the same versus differing
labels (see Table 16).

Datasets k = 10 k = 20 k = 30

AG News 49.35 33.37 23.676
News Category 34 18.8 10.8
AuTexTification 4.6 0.2 0
Implicit Prompts 15.95 3.987 0.42
SST-2 26.49 11.353 5.73
SemEval-2019 5.2 0.6 0.2

Table 16: Percentage of datapoints where all the exam-
ples have the same label for increasing k.

In each of these cases, we further check the per-
centage of datapoints where the labels predicted by
kNN and LLM align. For example, in Table 17, for
the 49.35% of datapoints where AG News has all
the same labels (from Table 16), kNN and Gpt-4o-
mini make the same prediction 99.4% of the time.
Similarly, as shown in Table 18, among the 50.65%
of data points where AG News has different labels,
kNN and Gpt-4o-mini agree in their predictions
81.85% of the time.

Datasets k = 10 k = 20 k = 30

AG News 99.4 99.7 100
News Category 100 100 100
AuTexTification 84.78 100 0
Implicit Prompts 98.86 100 100
SST-2 87.45 94.95 96
SemEval-2019 69.23 83.33 100

Table 17: Percentage of datapoints out of the ones that
have the same labels, where the prediction of kNN and
Gpt-4o-mini match.

Datasets k = 10 k = 20 k = 30

AG News 81.85 84.56 85.34
News Category 75.53 79.66 81.03
AuTexTification 54.61 53.61 55.4
Implicit Prompts 91.52 92.7 93.51
SST-2 65.83 69.47 70.92
SemEval-2019 47.58 49.8 46.5

Table 18: Percentage of datapoints out of the ones that
have different labels, where the prediction of kNN and
Gpt-4o-mini match.

While we expect the predictions to align well
with the labels of examples in the first scenario, the
second scenario also shows a high level of agree-
ment. This supports our argument, as kNN and
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Datasets k = 10 k = 20 k = 30

AG News 100 100 100
News Category 100 100 100
AuTexTification 100 100 0
Implicit Prompts 95.83 98.48 100
SST-2 95.23 96.97 98.0
SemEval-2019 71.15 100 100

Table 19: Percentage of datapoints out of the ones that
have the same labels, where the prediction of kNN and
Llama-3.1-8B match.

Datasets k = 10 k = 20 k = 30

AG News 83.83 87.26 88.09
News Category 84.44 86.64 86.83
AuTexTification 68.44 72.44 73.3
Implicit Prompts 78.15 83.57 83.43
SST-2 71.45 72.70 75.18
SemEval-2019 48.74 51.91 51.6

Table 20: Percentage of datapoints out of the ones that
have the different labels, where the prediction of kNN
and Llama-3.1-8B match.

Datasets k = 10 k = 20 k = 30

AG News 100 100 100
News Category 81.87 86.17 93.52
AuTexTification 86.95 100 0
Implicit Prompts 35.60 27.27 14.28
SST-2 85.71 95.96 96
SemEval-2019 55.77 66.67 100

Table 21: Percentage of datapoints out of the ones that
have the same labels, where the prediction of kNN and
QWEN-7B-Chat match.

Datasets k = 10 k = 20 k = 30

AG News 85.01 89.06 89.79
News Category 61.78 72.55 77.23
AuTexTification 59.54 59.32 61.4
Implicit Prompts 19.84 18.82 22.88
SST-2 64.27 68.43 70.19
SemEval-2019 43.68 45.38 45

Table 22: Percentage of datapoints out of the ones that
have the different labels, where the prediction of kNN
and QWEN-7B-Chat match.

Gpt-4o-mini tend to make similar predictions even
when the example labels are not identical.

Similar to Table 17 and 18, Table 19 and Ta-
ble 20 present results for Llama-3.1-8B under the
same scenario. Interestingly, the percentage of data
points with different labels of examples in Table 20

for the labels predicted by kNN and the Llama-3.1-
8B shows high agreement when compared to Ta-
ble 18. Further, we extend the analysis to QWEN-
7B-Chat and present results in Table 21 and 22. In
this case as well, we observe a similar behavior
as both Gpt-4o-mini and Llama-3.1-8B, indicat-
ing that the underlying patterns remain consistent
across different settings.

1757


