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Abstract

Low-Rank Adaptation (LoRA) has emerged
as a widely adopted parameter-efficient fine-
tuning (PEFT) approach for language models.
By restricting weight updates to a low-rank sub-
space, LoRA achieves cost-effective finetuning
of large, generalist models to more specialized
target domains. While LoRA achieves impres-
sive results for a variety of individual down-
stream tasks, it struggles to capture the diverse
expertise needed when presented with a more
heterogeneous finetuning corpus. To address
this, we propose Expert Weighted Low-Rank
Adaptation (EWoRA), a novel LoRA variant
that partitions a rank-r adapter into n indepen-
dent adapters of rank r/n. A lightweight “rout-
ing” matrix Wr ∈ Rr×n aggregates the out-
puts of these adapters by learning specialized
weights for each context. Experiments show
EWoRA improves performance over LoRA
when finetuning on heterogeneous data while
generally matching or exceeding LoRA perfor-
mance on individual finetuning tasks under the
same low-rank parameter budget.

1 Introduction

Large Language Models (LLMs) deployed in real-
world applications are typically pretrained on broad
corpora and then fine-tuned for specialized do-
mains. This process can be prohibitively expen-
sive, especially as model sizes scale to billions of
parameters, PEFT methods like LoRA (Hu et al.,
2021) have emerged as a more accessible solution
by introducing a small number of trainable param-
eters while keeping the base model frozen. Be-
sides supervised finetuning, LoRA has been studied
across various adaptation settings such as contin-
ual pretraining (Jiang et al., 2024; Pezeshkpour
and Hruschka, 2025; Mao et al., 2024). However,
most existing formulations assume homogeneous
task data or focus on a single target domain. In

*Work done while at Amazon.

Figure 1: An overview of EWoRA with 2 experts (n=2).
The representations from two rank- r2 experts are con-
catenated and input to a router which assigns scores to
each expert. In this illustration, the output of the first
expert, E1 is given a higher weight (darker shade).

contrast, data encountered in practical applications
may often exhibit heterogeneity, and require multi-
ple domains of expertise. For instance, a deployed
model may be required to tackle tasks involving
natural language understanding, mathematical rea-
soning, code generation, and general knowledge,
all in a single workflow. To emulate such scenarios,
we evaluate LoRA on a diverse mix of finetuning
datasets of varying complexity. Our experiments re-
veal a substantial performance drop of LoRA when
finetuning on the same set of diverse tasks collec-
tively compared to training on each task separately.

To address these challenges, we propose
EWoRA: Expert-Weighted Low Rank Adaptation,
a novel LoRA variant tailored for heterogeneous
data. As illustrated in Figure 1, EWoRA de-
composes a rank-r LoRA adapter into n indepen-
dent rank-r/n experts. A minimal routing matrix
Wr ∈ Rr×n, processes the concatenated interme-
diate representations from the lower projection ma-
trix (A), generating a set of weights to dynamically
attend to the outputs of the individual experts. Op-
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erating within the low-rank subspace, the router
incurs negligible overhead in terms of parameters.
In EWoRA, individual experts specialize in differ-
ent tasks or domains, while the router learns to
weight the experts appropriately based on context.
We also posit that this leads to a more efficient uti-
lization of the parameters of (A) through indirect
supervision of intermediate low-rank representa-
tions. Thus, our approach may also help alleviate
the asymmetry impact observed when finetuning
the LoRA projection matrices (Zhu et al.).

Empirical results show that EWoRA matches
standard LoRA on single-task benchmarks and sig-
nificantly outperforms it when jointly finetuning
on multiple tasks. We further compare against
AdaLoRA (Zhang et al., 2023b), an adaptive-rank
extension of LoRA, observing consistent gains in
both single-task and mixed-task settings. Although
EWoRA differs in both motivation and structure
from model merging approaches, we also include
model merging baselines in our work. Finally,
we analyze the router’s behavior under mixed-task
finetuning, demonstrating how expert weighting
evolves across layers and varies by target module.

2 Related Work

Low-rank Adaptation Methods. While LoRA
has become the de facto standard for efficient fine-
tuning of LLMs, numerous variants have emerged
that improve LoRA performance in certain settings.
DoRA (yang Liu et al., 2024), decomposes the pre-
trained weight into magnitude and direction com-
ponents, utilizing LoRA specifically for directional
updates to enhance learning capacity and training
stability. VeRA (Kopiczko et al., 2024) improves
efficiency further by sharing low-rank projection
matrices across layers and only learning two addi-
tional scaling vectors per layer. Delta-LoRA (Zi
et al., 2023) proposes a method to update the pre-
trained weight matrix (W) without explicitly com-
puting its gradients. Several approaches have pro-
posed efficiency or performance improvements by
leveraging the asymmetry in the low-rank matri-
ces of the adapters through freezing of the down-
matrix (A) or separate learning rates for the two
projection matrices (Zhu et al.; Zhang et al., 2023a;
Hayou et al., 2024). Other methods have sought to
improve performance through adaptive rank utiliza-
tion across layers (Zhang et al., 2023b), dynamic
rank selection at inference (Valipour et al., 2023)
or high-rank adaptation through a single, square

trainable matrix (Jiang et al., 2024).
Model-merging Methods. TIES (Yadav et al.,
2023) and DARE (Yu et al.) are popular approaches
to combine abilities from multiple homologous
models while reducing interference and eliminating
redundant parameters. Such methods are static in
nature - using a linear or SVD combination of task
vectors. More recently, MoErging methods (Yadav
et al., 2024) have been proposed for dynamic rout-
ing among specialized models or adaptive combina-
tion on a per-task or per-query basis. Among these,
MoLE (Wu et al., 2024) and X-LoRA (Buehler and
Buehler, 2024) are most reminiscent of EWoRA
and learn a dense or sparse routing among experts.
However, this approach typically requires a priori
knowledge of the different domains in the finetun-
ing corpus, as well as careful segregation of the
data. EWoRA, on the other hand, does not require
explicit domain partitioning or multiple separate
finetuning runs. Also, as noted previously, our
router takes as input the low-rank intermediate rep-
resentation and utilizes only a fraction of the pa-
rameters of other routing methods that typically act
on full-rank input or output representations. We
further elaborate on differences between EWoRA
and related MoErging methods in Appendix A.

3 Method

EWoRA splits the standard down (A) and up (B)
projection matrices of LoRA into multiple lower-
ranked “experts”, and introduces a trainable router
to weight each expert. We detail our method below:

Base Module. Let x ∈ Rd be the input to a trans-
former module with a frozen pretrained weight ma-
trix W ∈ Rd×d, producing the base representation:

hb = Wx ∈ Rd.

Expert Decomposition. While LoRA employs
rank-r matrices A (down-projection) and B (up-
projection), EWoRA partitions them into n experts,
each of rank r/n. For expert i ∈ {1, . . . , n} -
Ai ∈ Rd×( r

n
), Bi ∈ R( r

n
)×d. We initialize Ai

with the kaiming_uniform distribution (He et al.,
2015) while Bi is zero-initialized. Each expert
produces intermediate representations:

zi = Aix ∈ Rr/n.

We then concatenate all zi to form:

z = [z1; . . . ; zn] ∈ Rr.
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Code Math General Mixed

HumanEval GSM8K HellaSwag Winogrande HumanEval GSM8K HellaSwag Winogrande

Base 28.74/41.66 39.35/38.97 61.25/81.09 74.27 28.74/41.66 39.35/38.97 61.25/81.09 74.27
LoRA 31.35/46.22 73.84/73.09 66.58/84.23 71.82 21.09/35.02 37.83/22.44 62.69/82.31 74.35
LoRA+TIES - - - - 28.59/42.22 37.76/37.60 61.26/81.14 73.88
X-LoRA - - - - 21.38/26.71 47.31/47.28 62.26/81.86 67.32
AdaLoRA 29.07/43.04 71.04/70.20 62.63/82.34 76.24 28.96/44.60 48.37/47.84 61.09/80.74 75.22
EWoRA 35.41/49.36 69.90/69.52 64.64/83.94 79.24 34.61/49.45 55.42/55.27 62.92/82.60 77.58

Table 1: Accuracy of base (Mistral 7B) and finetuned models using different low-rank adaptation methods.

Routing. A trainable router Wr ∈ Rn×r , ini-
tialized from a small uniform distribution in the
interval [−10−2, 10−2], attends to each expert:

α = Wrz ∈ Rn.

Expert Aggregation. Bi from each expert
projects zi back to d-dimensions. These represen-
tations are combined through a weighted sum:

ei = Bizi ∈ Rd.

e =

n∑

i=1

αiei ∈ Rd.

Final Output. We sum the base and experts out-
puts to get the final representation (h):

h = hb + e = Wx+
n∑

i=1

αiBi(Aix).

Parameter Efficiency. EWoRA has a trainable
parameter count comparable to LoRA (2dr) with
only a small additional overhead from the router
(nr) which is negligible for large d. We illustrate,
let us consider a single linear layer with d = 4096,
LoRA rank r = 32, and number of experts n = 4.

1. Standard LoRA (rank r = 32) adds

2× d× r = 2× 4096× 32 = 262,144

2. EWoRA (rank r = 32, with n = 4) adds the
same 262,144 plus a router overhead of

n× r = 4× 32 = 128

Thus, EWoRA adds 262,144+128 = 262,272
parameters in total for this layer.

The difference of 128 parameters is negligible
relative to d×d = 40962 = 16,777,216 parameters
in the frozen weight W or 262,144 parameters in
the LoRA projection matrices.

Concretely, when finetuning on the Mistral 7B
base model with adapters on all target modules

[Q_PROJ, K_PROJ, V_PROJ, O_PROJ, GATE_PROJ,
UP_PROJ, DOWN_PROJ], EWoRA has a total of
83915648 trainable parameters compared to LoRA
83886080 for n = 4 and r = 32. This is a differ-
ence of 29568 additional parameters representing
an increase of ≈ 0.03% trainable parameters and
≈ 0.0004% overall parameters due to the EWoRA
routing matrices.

4 Experiments & Results

Setup. Following recent studies (Biderman et al.,
2024; Zhang et al., 2024; Gu et al., 2025), we
evaluate EWoRA on three representative tasks:
code generation, mathematical reasoning, and gen-
eral reasoning. For code generation, we train on
Magicoder-Evol-Instruct-110K (Wei et al., 2023)
and evaluate on HumanEval (Chen et al., 2021).
For math, we train on MetaMathQA (Yu et al.,
2024) and evaluate on GSM8K (Cobbe et al., 2021).
For general reasoning, we use HellaSwag (Zellers
et al., 2019) and Winogrande (Sakaguchi et al.,
2020), training and evaluating on their combined
trains and test splits respectively. To assess multi-
domain adaptation, we create a mixed-task setup
by training on all three datasets together and eval-
uating across their respective test sets. Mixing is
performed using simple concatenation (with shuf-
fling at train time). While we acknowledge that
careful data curation methods such as weighted
sampling might improve performance further, we
hope to replicate data in real-world applications
which can be noisy and require multiple, diverse
skillsets (their distribution or even presence may
not be known apriori). Mistral 7B (Jiang et al.,
2023) is used as the base model in our experi-
ments, with rank r = 32 for all methods and
n = 4 experts in EWoRA. For the model merg-
ing and MoErging baselines, we use TIES and X-
LoRA respectively to combine outputs from single-
task LoRA adapters. We report multiple metrics:
Pass@1/Pass@10 for code, strict/flexible match for
math, and standard/normalized accuracy for Hel-
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Figure 2: Average Pairwise L1 Distance between mean expert weight vector for Code, Math, and General. We
demonstrate the pairwise L1 distance Dist(ℓ,m) for averaged expert weight α(ℓ,m)

(task_type) per layer and per LLM modules
in the heatmap. The darker the color the more distinct the expert routing is for different tasks.

laSwag. Further details are provided in (§B).
Results. Table 1 summarizes our findings. In
single-task settings, EWoRA is the best performing
variant on code and Winogrande, whereas LoRA
does better on math and HellaSwag. EWoRA also
surpasses AdaLoRA on all tasks except math. In
the mixed-task setup, EWoRA consistently beats
all baselines across all test splits, demonstrating its
effectiveness in heterogeneous finetuning.

5 Analysis

To understand how EWoRA routes between experts
for different tasks, we analyze the weights assigned
to each expert by the routers (the α vectors in Sec-
tion 3). In our setup, there are n = 4 experts, so the
router produces a 4-dimensional vector α(ℓ,m)

(task_type)
at layer ℓ and module m, for a given input. Here,
m spans all the target modules of Mistral 7B. We
sample over inputs of each task type and compute
the expert weight average per task type:

α
(ℓ,m)
task_type =

1

Ntask_type

Ntask_type∑

i=1

α
(ℓ,m)
(task_type),i

We then measure how distinctly each adapter routes
between task types. We compute the average pair-
wise distance between the three averaged expert
weight vectors α(ℓ,m)

code ,α
(ℓ,m)
math ,α

(ℓ,m)
general. Given the

L1 distance (d(·, ·)), we define:

Dist(ℓ,m) =
d(αcode,αmath) + d(αmath,αgen) + d(αgen,αcode)

3

Higher Dist(ℓ,m) indicates greater divergence of
expert weights across domains. Figure 2 visualizes

these distances across layers (columns 1–32) and
target modules (rows), revealing two key trends:

1. Layer-wise Specialization: Early layers ex-
hibit lower L1 distances, suggesting that do-
main specialization occurs primarily in later
layers. This aligns with prior observations
that lower layers capture general representa-
tions, while deeper layers encode task-specific
information (Zhang et al., 2023b).

2. Module-Specific Specialization: Feed-
forward projection modules, particularly
GATE_PROJ and UP_PROJ, show the high-
est L1 distances. This suggests that domain-
specific knowledge is concentrated in these
components, whereas attention projections
(Q_PROJ, K_PROJ, V_PROJ, O_PROJ) exhibit
more uniform expert weightings across tasks.

Both these findings align with prior work on
adaptive rank allocation (Zhang et al., 2023b). We
extend this analysis into tasks within general rea-
soning, comparing routing between HellaSwag and
Winogrande. LoRA fine-tuning degrades perfor-
mance on Winogrande relative to the base model,
while EWoRA improves it. We hypothesis the
degradation from LoRA is likely due to data imbal-
ance. In significant imbalanced mixed training se-
tups, large datasets (e.g., HellaSwag) can dominate
smaller ones (e.g., Winogrande), leading to LoRA
overfitting to the majority domain. This results
in stronger performance on the larger dataset but
weaker generalization to the minority domain. In
contrast, EWoRA can dynamically allocate its low-
rank adapters to underrepresented tasks. Appendix
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C further analyzes the pairwise routing distances
between HellaSwag and Winogrande, showing dis-
tinct expert weighting for different input types.

Recent studies suggest LoRA-finetuned models
may outperform full fine-tuning on source domains
not seen during finetuning (Biderman et al., 2024).
In (§D), we carry out similar experiments to assess
"forgetting" when finetuning with EWoRA rela-
tive to other baselines. EWoRA demonstrates a
slight advantage due to improved retention of un-
seen tasks, leading to a better learning-forgetting
tradeoff even in the single-task setting.

6 Conclusion & Future Work

We introduce EWoRA, an extension of LoRA for
fine-tuning LLMs on heterogeneous data. By par-
titioning low-rank adapters into experts and dy-
namically weighting them via a lightweight router,
EWoRA enables more effective adaptation to di-
verse target domains while maintaining parameter
efficiency. Our experiments show that EWoRA
outperforms baselines in mixed-task setups, while
remaining competitive in single-task settings.

Analysis of expert routing patterns reveals that
domain specialization primarily occurs in later lay-
ers and feed-forward projection modules, suggest-
ing opportunities for further optimization. Future
work could explore integrating adaptive rank al-
location or expert pruning to further improve per-
formance. Adaptive allocation could be extended
to individual experts, potentially assigning asym-
metric ranks to each expert within a target module.
This strategy might benefit cases where one target
domain is significantly more complex than another
in a mixed setup (e.g. code and general reasoning).

Limitations

EWoRA enables improved finetuning of LLMs on
heterogeneous data and is evaluated across three
domains (general reasoning, code generation, and
arithmetic reasoning) using a modern LLM. This
mix helps us assess our methods across a spec-
trum of complexity levels - tasks that are diffi-
cult for the base model and remain difficult for
the fine-tuned model (coding), tasks that are dif-
ficult for the base model but are relatively easily
learnt during fine-tuning (math), and tasks that the
base model is already competent in (commonsense
reasoning). However, due to computational con-
straints, we do not explore additional model fam-
ilies (e.g., LLaMA (Dubey et al., 2024)), larger

models (13B, 30B, 70B), or alternative training
paradigms (e.g., continual pretraining). Our cur-
rent setup is in line with several recent studies that
have demonstrated results on the same mix of tasks
and datasets (Biderman et al., 2024; Zhang et al.,
2024; Gu et al., 2025) using a single, modern LLM.
We acknowledge that exploring models of varying
sizes, as well as other training setups such as con-
tinual pre-training would offer interesting insights.
We leave this to future work and also invite the
broader community to investigate this further.

Unlike standard LoRA, which allows adapters to
be merged back into the base model post-training
— eliminating inference overhead — EWoRA’s
expert-weighting is input-dependent and must run
at inference time. This prevents direct merging
and introduces a small increase in inference cost.
While running adapters in parallel is advantageous
for multi-adapter deployments (avoiding multiple
large-base instances), merging remains more effi-
cient when only a single adapter is needed.

Finally, LoRA is quite sensitive to hyperparame-
ters such as learning rate (Biderman et al., 2024).
Our experiments follow a fixed hyperparameter se-
lection process: we conduct pilot runs on code and
math datasets using LoRA to tune learning rate,
rank, and epochs, and then apply the best settings
across AdaLoRA and EWoRA. Consequently, we
do not investigate EWoRA’s sensitivity to hyperpa-
rameters in this work.
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A Comparison with MoErging
Approaches

MoLE/X-LoRA: Both of these methods take pre-
trained adapters on distinct tasks and then finetune
a mechanism to route between them. However, this
method assumes segregated data for the distinct
tasks on which the adapters were initially trained.
Our method is more applicable to real-world data
which may be noisy and require multiple, diverse
skillsets (their distribution or even presence may
not be known a priori). We utilize the interme-
diate representation as input to the router adding
minimal overhead in terms of the number of pa-
rameters (described in (§3)). This is not true for
MoLE/X-LORA as they take full-rank representa-
tions as input, resulting in a much larger overhead.
Moreover, MoLE/X-LoRA require a separate fine-
tuning set to train the routing mechanism which, in
our case, will be a mix of the same individual train-
ing sets. EWoRA is able to implicitly learn from
a mix of datasets and we demonstrate our method
on a simple concatenation of tasks of varying diffi-
culty as well as dataset size. EWoRA shows better
generalization to tasks underrepresented in the final
mix of our training data (described in Section 5).
Our method has potential for cross-task learning
as all the matrices or experts are exposed to the
entire mix of training data as opposed to methods
like MoLE/X-LoRA where each expert is trained
on one task split in isolation.

FLix: In the featurized low-rank mixtures ap-
proach (Lin et al., 2024), separate adapters are
learnt for each language-task pair in a mixture.
While the adapters are learnt simultaneously, this
method also relies on segregation of the train data
as inputs are routed based on fi(x) = 1 where
fi is a sparse vector and fi(x) = 1 indicates that
input x has feature i. In this setting, for an in-
put to a language-task pair, the language as well
as task is known a priori and there is some learn-
ing across tasks in the same language as well as
across languages involving the same tasks. How-
ever, EWoRA implicitly learns this routing behav-
ior without distinguishing between inputs. FLix
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assumes knowledge of language and task for a new
test input whereas EWoRA does not and can route
amongst experts dynamically based on a new input.
Moreover, the soft weighting mechanism poten-
tially allows for better cross-task learning such as
for code and math where skills might be comple-
mentary than a hard routing similar to FLix.

MoLORA: This method (Zadouri et al., 2024)
is perhaps the most comparable to EWoRA in
terms of architectural similarity as well as training
methodology - simultaneous training of the router
and adapter matrices, soft routing, and no label
supervision or segregation of data at train or infer-
ence time. However, routing occurs with full-rank
inputs which makes each individual routing opera-
tion considerably more expensive whereas EWoRA
uses intermediate low-rank representations for the
routing operation. This lightweight operation is
what allows EWoRA to route amongst experts at
an individual matrix or adapter level as opposed
to MoLoRA which routes at a token level (though
ablations at a sentence-level have also been carried
out). This allows more flexible routing and the
later layers are able to learn task-level features with
greater distinction and more aggressive routing be-
tween experts. This is highlighted in the analysis
in Sections 5 and (§C), and the related heatmaps
(Figures 2 & 3).

MoELoRA: While MoELoRA (Luo et al., 2024)
performs a similar routing between experts, the
routing decision is deferred to the intermedi-
ate representations in EWoRA leading to sig-
nificantly lower parameter utilization relative to
MoELoRA for the same rank R. We employ a soft-
routing mechanism in EWoRA vs hard-routing in
MoELoRA. Instead of a sparse-gating mechanism
in MoELoRA, we use router weights to attend to
each expert allowing a flexible composition of any
number of experts depending on the task. This
allows for better cross-task generalization where
multiple experts can be combined for contexts
where multiple skills might be required simulta-
neously. The soft-weighting mechanism also helps
overcome the load-imbalance problem inherent to
MoE models that is also mentioned in MoELoRA.
Unlike MoELoRA, we do not introduce auxiliary
losses in order to introduce load-balancing or ex-
plicitly enforce expert specialization. However, as
we see in our analysis in Section 5 - our method
implicitly achieves expert specialization and there
is more distinct routing in later layers and in the

projection matrices. Finally, we also feel that the
motivation for sparse Mixture of Experts models,
which is increasing model capacity without increas-
ing the number of active parameters at inference
time, does not translate well in this case as the
number of active parameters is dominated by the
base model. On the other hand, our approach is
able to flexibly utilize all parameters through the
soft-weighting mechanism.

B Additional Experimental Details

For our evaluation, we use the
lm-evaluation-harness (Gao et al.,
2024) for math and general tasks, and
bigcode-evaluation-harness (Ben Allal
et al., 2022) for code. For the X-LoRA base-
line, we choose dense-routing with a single
512-dimensional hidden layer. The following
hyperparameters are used in all our training
experiments:

• Sequence length: 1024

• Rank (r): 32

• LoRA Scaling Parameter (α): 32

• Num Training Epochs): 4

• Num EWoRA Experts (n): 4

• Optimizer: AdamW

• Learning rate: 5e-5 for Code, 1e-4 for
Math/General/Mixed

• LR Scheduler: Cosine Annealing

• Min_lr rate: 0.1

• Warmup ratio: 0.1

• Precision: bf16

• Warmup ratio: 0.1

• Weight Decay: 0

For all our evaluations using the lm-evaluation
harness (gsm8k, hellaswag, winogrande) we use
the default parameters:

• Temperature: 0

• Metric: pass@1

• Few-shot: 5
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• Precision: bf16

For code evaluation on the HumanEval bench-
mark using the bigcode-evaluation-harness, we use
the following parameters:

• Temperature: 0.2

• Metric: pass@1/pass@10

• Few-shot: 0

• Top_p: 0.95

• N_samples: 50

• Precision: bf16

In all our results, we report both the flexible
and strict-match scores as reported by the lm-
evaluation-harness for math (gsm8k), and standard
and normalized accuracy for both hellaswag and
ARC. Similarly, for code (HumanEval), we report
the pass@1 and pass@10 results as reported by the
bigcode-evaluation-harness.

C Routing in the General Model

Figure 3: Routing in the general reasoning model.

Similar to the mixed model analysis in Section
5, we analyze the routing behavior of EWoRA
for different task types (Hellaswag, Winogrande)
in the general reasoning model. Since we have

two different task types, we take the L1 difference
d(α

(ℓ,m)
hellaswag−α

(ℓ,m)
winogrande). As seen in Figure 3, the

general model shows a similar routing behavior to
the mixed model which helps EWoRA better adapt
to the under-represented set (Winogrande).

D Evaluating on the Source Domain

Similar to Biderman et al. (2024), we use the
models finetuned on the code and math target do-
mains and evaluate on HellaSwag, Winogrande,
and the ARC-Challenge (Clark et al., 2018) bench-
marks. The evaluation tasks are termed "source-
domain" tasks as the base pretrained model already
exhibits good competency on them as evidenced
by its performance metrics. Thus, they provide a
good benchmark to evaluate potential degradation
in model performance when finetuned to a special-
ized target domain (such as code or math).

Results, as shown in Table 2, indicate that
EWoRA is competitive with baselines - LoRA and
AdaLoRA - when evaluated on the forgetting tasks
(performing better than both in 4 out of 6 cases).
This suggests that EWoRA retains at least as much
source-domain knowledge as LoRA, leading to
significantly less forgetting than full-finetuning
as shown by Biderman et al. (2024). Given the
generally-better performance on the target-domain
in our experiments, we can say that EWoRA also
leads to a better learning-forgetting tradeoff than
conventional LoRA.

HellaSwag Winogrande ARC

Mistral 7B (Base) 61.25/81.09 74.27 50.0/54.10

Code-Finetuned

LoRA 61.22/80.90 75.06 50.26/54.01
AdaLoRA 61.21/80.96 74.03 50.0/53.75
EWoRA 61.84/81.12 73.09 48.04/52.05

Math-Finetuned

LoRA 58.37/74.06 60.69 41.38/44.62
AdaLoRA 61.19/78.14 68.43 41.64/45.82
EWoRA 61.64/79.72 72.22 45.31/49.83

Table 2: Accuracy on source-domain tasks.
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