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Abstract

Large Language Models (LLMs) have shown
remarkable reasoning capabilities in mathemat-
ical and scientific tasks. To enhance complex
reasoning, multi-agent systems have been pro-
posed to harness the collective intelligence of
LLM agents. However, existing collaboration
structures are either predefined or rely on ma-
jority voting or round-table debates, which can
suppress correct but less dominant agent con-
tributions. Recent approaches model multi-
agent systems as graph networks but optimize
purely for agent performance, neglecting the
quality of interactions. We hypothesize that
effective agent communication is crucial for
multi-agent reasoning and that debating qual-
ity plays a significant role. To address this,
we propose OPTAGENT, a multi-agent verbal
reinforcement learning algorithm that dynami-
cally constructs and refines multi-agent collab-
oration structures. Our method defines action
spaces and a feedback mechanism that evalu-
ates communication robustness and coherence
throughout the debate. The final decision is
achieved through a majority vote over all the
agents. We assess OPTAGENT on various rea-
soning tasks, including mathematical reason-
ing, creative writing, scientific reasoning, and
numerical sorting. Results demonstrate that
our approach significantly outperforms single-
agent prompting methods and state-of-the-art
multi-agent frameworks on diverse tasks.

1 Introduction

Large Language Models (LLMs) have exhibited
significant potential in reasoning across various
downstream tasks, including elementary mathemat-
ical reasoning, and fundamental science reason-
ing (Brown et al., 2020; Dubey et al., 2024; Wei
et al., 2022; Wang et al., 2023b). Despite these
initial successes, existing methodologies necessi-
tate meticulously crafted prompt strategies that are
often fixed for certain tasks (Yao et al., 2023; Besta
et al., 2024). This approach lacks flexibility, as

the users have to define different prompts under
different scenarios, especially for complex reason-
ing tasks. A promising solution that mitigates the
challenge is to explore multi-agent frameworks that
capitalize on the strengths of LLM-based agents.
Researchers proposed many multi-agent reason-
ing frameworks that enable collaborative debates
among multiple LLM agents (Chan et al., 2023;
Liang et al., 2024; Chen et al., 2023b; Wang et al.,
2023a; Chen et al., 2023a), which are akin to hu-
man group problem-solving scenarios.

Despite these initial successes, existing multi-
agent LLM reasoning methods often follow pre-
defined or simple group chatting collaboration
structures. For example, AutoGen (Wu et al.,
2023) and ChatEval (Chan et al., 2023) employs
pre-defined collaboration structures; ReConcile
(Chen et al., 2023b) employs group discussion with
confidence-based consensus decision; MAD (Liang
et al., 2024) employs group debate with a meta-
summarizer as the decision-maker. These methods
do not account for the varying interactions of dif-
ferently profiled agents, nor do they optimize the
sequence of communications to ensure the most
effective information flow for specific tasks. As a
result, correct but less dominant agent contributions
could be overlooked. We believe the interaction
schemas should be more flexible and further opti-
mized for task-specific communication efficacy.

Recent trends in multi-agent collaboration em-
phasize using graph optimization techniques to en-
able flexible, task-adaptable coordination among
agents, enhancing efficacy and scalability in com-
plex environments. Specifically, GPT-Swarm
(Zhuge et al., 2024) conceptualizes the multi-agent
framework as a computational graph. The inspi-
ration is drawn from a "Society-of-Mind" concept
and highlights the communication and collabora-
tion among agents. For optimization, the authors
use reinforcement learning to optimize the agent
interactions. While previous methods show rea-
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sonable performance, they tend to overlook the
agents’ debate quality, an important aspect of a
multi-agent framework. We hypothesize that the
interaction quality between the agents should also
play an important role in the optimization process.
More specifically, we believe the optimization al-
gorithms should also consider metrics like wording
clarity and logical coherency apart from agent per-
formance metrics.

To tackle the above challenges, we propose
OPTAGENT, an LLM-based Verbal Reinforcement
Learning framework for Graph Optimization on
multi-agent collaboration. The goal of OPTAGENT
is to find the most effective interaction patterns
in a multi-agent collaboration graph. OPTAGENT
explicitly considers communication quality when
identifying the most effective connections between
agents. To refine the multi-agent collaboration
structure, OPTAGENT contains a feedback agent
that evaluates the quality of the agent interactions
and an action agent that updates the multi-agent col-
laboration graph based on the feedback. The final
decision is achieved through a majority vote over
all the agents. We evaluate OPTAGENT on various
downstream reasoning tasks, including mathemati-
cal reasoning, scientific reasoning, creative writing,
and sorting tasks. Our experimental results demon-
strate that OPTAGENT significantly outperforms
single-agent prompting methods and state-of-the-
art multi-agent debating schemas on diverse rea-
soning tasks across various LLM families. We also
present a case study to illustrate the efficacy of our
framework.

2 Related Work

LLM Reasoning Prompting The field of large
language models (LLMs) has seen significant ad-
vancements in recent years, particularly in the
area of reasoning prompting. Various prompt
engineering methods have been developed, aim-
ing to improve large language models’ reason-
ing ability across various tasks and domains.
Chain-of-thought (CoT) prompting (Wei et al.,
2022) prompts the large language models (LLMs)
to divide their reasoning process into smaller
steps when solving a question, forming a chain
of thoughts. Chain-of-thought self-consistency
prompting (Wang et al., 2023b) improves on the
CoT method by proposing different reasoning
chains and ensembles on the final result. Tree-of-
thought (ToT) prompting method (Yao et al., 2023)

actively maintains a tree of thoughts, where each
thought is a coherent language sequence that serves
as an intermediate step toward problem-solving.
Graph-of-thought (Besta et al., 2024) further im-
proves ToT by constructing a Directed Graph in-
stead of a tree. LLMs can loop over a thought to
refine it and aggregate thoughts or chains. There
are also other X-of-thought prompting methods de-
veloped for various different downstream tasks and
datasets (Chen et al., 2023c; Sel et al., 2024; Bi
et al., 2024; Jin et al., 2024). Another notable con-
tribution to the field is the systematic survey on
prompting techniques by the Prompt Engineering
Guide (Schulhoff et al., 2024). This survey cate-
gorizes various prompting methods and their ap-
plications, emphasizing the importance of prompt
design in enhancing LLM reasoning.

Multi-Agent Reasoning Recent advancements
in large language model (LLM) multi-agent frame-
works have garnered significant attention in the
field of artificial intelligence. Studies such as Wu
et al. (2023); Chen et al. (2023a); Lu et al. (2024)
have highlighted the impressive reasoning capa-
bilities of LL.Ms, which have been leveraged to
create autonomous agent systems that are capable
of complex problem-solving and perform better
than single agents.

The question is how researchers can design ef-
fective multi-agent reasoning frameworks. There
have been several studies and analyses on the ef-
ficiency and effectiveness of multi-agent debating
systems over reasoning tasks (Wang et al., 2023a,
2024; Pezeshkpour et al., 2024). However, most
of the interaction schemas and decision strategies
are either pre-defined (Wu et al., 2023; Chan et al.,
2023), or follow a simple structure such as group
debate, majority voting, summarizer decision, or
a combination of the above strategies (Chen et al.,
2023b; Liang et al., 2024; Chan et al., 2023). Re-
cently, several researchers from KAUST proposed
GPTSwarm (Zhuge et al., 2024), in which they
suggest that the multi-agent system can be con-
sidered as a graph network and thus their inter-
action patterns can be optimized by optimization
algorithms. They also conduct individual opti-
mizations on agents by conducting prompt opti-
mization. However, their optimization is heavily
performance-oriented, overlooking the debating
quality of the agents. This is something that should
also be considered in LLM free generation.
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3 OPTAGENT Framework

3.1 Problem Definition

Given a problem P, and N LLM agents
Aq, Ag, ..., AN, our goal is to find the answer to
question P. We achieve this goal through using
LLMs as agents to conduct logical reasoning and
structured discussions. Each agent is a distinctly
prompted LLM capable of generating the answer
and the corresponding CoT reasoning process.

3.2 Framework Overview

In our setting, we view the multi-agent collabora-
tion framework as a graph. Each agent is a node
in the graph, denoted by A;; the communications
between agents are the edges, denoted by e;;. We
hypothesize that the interaction quality will be dif-
ferent for differently profiled agents, and the best
connection order would allow the best informa-
tion propagation pattern for a particular task. The
goal of OPTAGENT is to optimize the connections
between the agents and improve the overall perfor-
mance of the multi-agent collaboration framework.

In our verbal reinforcement learning process, we
design two meta agents, LLM, . fiec; and LLM .
which handle reflection and action processes, re-
spectively. The training process involves selecting
connections based on probability scores and updat-
ing them through reinforcement learning. Finally,
a majority voting strategy is used to determine the
final answer after executing the graph.

3.3 Initial Graph Setup

Agent Profiling and Force Decoding Given a
group of LLM agents A1, ...A;, we ensure similar
but different reasoning by assigning the agents with
the same baseline reasoning prompt but different
agent profiles in system prompts (see Appendix
B). The seven agent profiles were manually crafted
to reflect common reasoning strategies found in
human problem-solving, such as deductive logic,
intuition, and domain expertise. For the 3-agent
and 5-agent scenarios, we randomly select 3 and 5
profiles from the proposed profiles, respectively. To
promote versatility, we force the model to generate
three different outputs for each agent profile and
randomly choose one of the outputs as its initial
answer to the input question.

Connection Initialization Given a group of
agents A1, ...A;, and possible connections between
the agents e1g, ..., €;j, we first get the group of

utility scores u(A;), which is the average self-
evaluated confidence score given by the agent A;
for the given task. We first randomly sample ten
problems from the dataset, collect the confidence
score from each agent on each question, and then
calculate the average confidence score u(A;).
Then, we calculate the connection score of an
edge, s(e;j) = u(A;)*u(A;), which is determined
by the utility score of the two connecting nodes.
We will update the connection scores during the
reinforcement learning process. Based on all of
the connection scores, we assign the probability,

pleij) = ZS(;(’;Z)J j to each connection e;;, which is

the proportion of the connection score s(e;;) to the
sum of the connection scores. The probabilities
will serve as selection references in the first epoch
of our training process.

3.4 Verbal Reinforcement Learning

Inspired by the Reflexion framework (Shinn et al.,
2023), we design an LLM self-controlled verbal
optimization for graph generation. First, we design
two meta agents: LLM,¢fiect and LLM . We
also create a set of action spaces that LL M., can
choose from to alter the current graph network.

Reflection LLM, . is responsible for gener-
ating reflection text after LLM,.; makes a con-
nection between two agents (A4;, Aj). Here, a
’connection’ means initiating direct communica-
tion between two agents, prompting them to ex-
change their initial reasoning and answers, debate
their points of view, and revise their reasoning
based on the exchange. To generate the feedback,
LLM:;¢fiect takes in the reasoning arguments of
A; and A; before and after the interaction process.
Then, the reflection text is passed on to LL M to
guide its decision-making process. Specifically, the
feedback that LLM,.f;..+ generates is determined
by two criteria:

* Criterion 1: Both agents should answer the ques-
tion correctly after making the connection;

* Criterion 2: Agents should be logical and coher-
ent in their reasoning process.

For the first criterion, LLM, .. fje.+ checks whether
the connection helps agent A; and A; with answer-
ing the question. If both agents got the answer
correct, then LLM, .0 Will give positive feed-
back. For the second criterion, LLM,.fie.+ checks
whether the logical chains are sound and valid. If
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Figure 1: Overview of OPTAGENT framework. The overall pipeline is on the left side; an example process for

verbal reinforcement learning is shown on the right.

both agents demonstrate good reasoning quality
during the interaction process after seeing each
other’s reasoning, LL M, et Will give out good
feedback. Otherwise, LLM, . fe.; Will have nega-
tive feedback on the connection (A;, A;). Detailed
instruction prompts for LLM, e+ are provided
in Appendix B.

Action LLM,. is responsible for conducting ac-
tions at each step, from the pre-defined action pool:

* Make a connection between the two agents
(A;, Aj) to initiate debate;

* Keep a previously made connection (A4,,, Ay,);

* Delete a previously made connection between
the two agents (A,,, A,,) to prohibit debate.

After LL M, receives the verbal feedback, it will
make a decision to keep or delete the previously
made connection. For instance, if LLM,. de-
cided to make a connection (A;, A;) but conse-
quently received negative feedback in this round,
then LLM,. would remove the connection. We
decrease their connection score s(e;;) for removed
connections. If LL M, receives positive feedback,
it will keep the connection (A;, A;) in the graph,
and we increase the connection score s(e;;). Be-
fore deciding whether or not to keep the current
edge, LLM,. would also look back at the feed-
back history of the current edge in previous rounds.

After the decision, LLM,.; makes a connection
that hasn’t been explored during the current train-
ing epoch. The result of the newly created connec-
tion will be evaluated and passed on to LLM, . fiect
for the next round of reflection text generation.

3.5 Training Process

To start the Reinforcement learning process, we
perform weighted random sampling to select a con-
nection (A;, A;) based on the probability score of
the connections. At later epochs, LLM, is re-
sponsible for choosing a connection (A;, A;). Af-
ter LLM,. takes action, we execute the debate
process between A; and A;, and then pass the re-
sults to LLM,cfiec+ for feedback, which is then
given to LL M, for decision-making. We update
the connection score e;; after LL M, has decided
whether to keep the connection (A;, A;). The con-
nection score s(e;;) is increased by a x §(e;;) if
LLMg. chooses to keep it and decreases other-
wise, where « is the learning rate we set, and $(e;;)
is the current connection score of connection e;;.
We repeat the above process in the current epoch
until every connection is visited once for an up-
date. The pseudocode algorithm is provided in
Algorithm 1 in the Appendix.

3.6 Inference Process

After the framework is trained with the connec-
tion weights updated, we construct the final graph
before doing inference. Connections with higher
scores are established first. The construction pro-
cess continues until all agents have been visited.
We consider the information flow within the graph
as complete when each agent A; has interacted with
at least one other agent A;. The final decision is
determined using a majority voting strategy as the
final answer Ans ¢inq = mode(Ansi, ..., Ansy,),
where Ansy, ..., Ans,, are answers provided by dif-
ferent agents in the graph. The pseudocode algo-
rithm is provided in Algorithm 2 in the Appendix.
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4 Experiments

4.1 Experimental Setup

Dataset and Tasks We experiment OPTAGENT
on four downstream tasks: math reasoning, creative
writing, science reasoning, and sorting. All exper-
iments were tested on publicly available datasets.
For the math reasoning task, we use two datasets:
GSMS8K (Cobbe et al., 2021), which contains
grade school arithmetic questions, and MATH
(Hendrycks et al., 2021), which contains high
school-level mathematical questions spanning six
different fields. We also include two adversarial
reasoning datasets that are built on GSM8K: Adver-
sarial GSM (Xie et al., 2024) in which we will refer
to as AdvGSM in Table 4, and GSM-PLUS (Li
etal., 2024b). AdvGSM contains questions that are
changed only in number magnitude, and have three
levels of difficulties, with M3 being the easiest us-
ing same magnitude with GSM8K, and M1 being
the hardest. For each of the reasoning datasets ex-
cept AdvGSM, we randomly select 100 questions
from the dataset for evaluation. For AdvGSM, we
randomly select 100 questions from each magni-
tude for evaluation. For creative writing, we follow
the setup in (Yao et al., 2023), where we test on
100 examples. For sorting, we randomly generate
100 numerical sequences at length 8, 16, 32.

Model and Implementation We experiment the
baselines and OPTAGENT utilizing GPT-3.5-turbo
(Brown et al., 2020), GPT-40 (OpenAl, 2023), and
the LLaMa 3.1-70B model (Dubey et al., 2024).
We directly call model APIs for prompting. For all
models, we set the temperature to 0.5, and topy,
to 1.0. All base agents are prompted with the
0-shot CoT prompt. For each dataset, we train
OPTAGENT on three randomly sampled data points
and report the performance on randomly sampled
evaluation sets. We run OPTAGENT three times
and report the mean performance. We use majority
voting as our final decision strategy and random
choice when there is a tie. We provide a cost analy-
sis under the 5-agent scenario in Appendix C.

Baselines We compared OPTAGENT with six
single-agent prompting methods and state-of-the-
art multi-agent baseline methods as below:

* Single Model Prompts in which we include 3
prompts: DirectIO, where we ask the model
for a direct answer without explanations; 0-Shot
CoT, where we ask the model to provide step-by-

step reasoning without providing any demonstrat-
ing examples; ToT, where we follow Yao et al.
(2023) and implement their framework.

e Simple Debate, where we initiate several in-
stances of non-profiled agents with the same
0-shot CoT prompt. The agents are provided
with each other’s reasonings and answers, and
are asked to reflect on their own reasoning. We
let models debate for 2 rounds and utilize a ma-
jority voting to decide the final answer.

e GPTSwarm (Zhuge et al., 2024), where we fol-
low the original implementation. We train the
framework using three randomly sampled data
points from the dataset and report the perfor-
mance. We run GPTSwarm three times and re-
port the mean performance.

¢ ReConcile (Chen et al., 2023b), where we fol-
low the original implementation, using GPT-3.5-
turbo and GPT-40 models as backbone, respec-
tively. We report their performance in mathemat-
ical reasoning datasets. We run ReConcile three
times and report the mean performance.

4.2 Evaluation Metrics

Math and Science reasoning We report the per-
formance in terms of accuracy following prior
benchmarks and papers. The datasets include
GSMSK, AdvGSM, GSM-PLUS, MATH, ARC
and GPQA. We report the detailed post-processing
and evaluation description in the Appendix.

Creative Writing We follow the metrics in Yao
et al. (2023) and report the performance in terms
of Coherence score, which another GPT-4 model
evaluates. We provide the evaluation prompt in
Appendix B.

Sorting We follow the metrics in Besta et al.
(2024) and report the performance in terms of er-
ror scope, defined by the sum of the number of
wrongly sorted elements and missing elements.

4.3 Main Results

Math Reasoning We compare OPTAGENT with
multi-agent simple debating baselines on Math Rea-
soning datasets in Table 1. The backbone LLMs
(i.e., the primary large language model underlying
all agents) include GPT-3.5-turbo and LLaMa 3.1-
70B. OPTAGENT performs better on the original
datasets like GSM8K and MATH than the simple
debating baselines, and significantly outperforms
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Model Prompt Class Framework Type GSMSK AdvGSM-M3  AdvGSM-M2  AdvGSM-M1 GSM- MATH
PLUS

DirectIO 35.0 52.0 28.0 15.0 27.0 8.0
Single Agent 0-Shot CoT 73.0 87.0 75.0 30.0 59.0 22.0
ToT 80.0 89.0 76.0 30.0 61.0 25.0
Simple Debate 77.0 90.0 79.0 31.0 62.0 25.0

GPT-Swarm 79.6+0.58 91.3+2.89 80.6+1.53 33.6+0.58 63.0+1.0 28.0+1.73

ReConcile 80.6+1.53 90.3+0.58 80.0+1.0 34.3+0.58 63.6+1.53 29.0+1.73

3-Agent OPTAGENT 81.3+1.53 91.040.00 81.340.58 34.0+1.0 64.3+3.51  29.342.89
GPT-3.5- No Interaction Quality 81.0 90.0 81.0 33.0 64.0 29.0
turbo No Forced Sampling 79.0 89.0 81.0 32.0 63.0 29.0
Reconsider Minority 78.0 88.0 81.0 30.0 61.0 28.0
Split Action Agents 81.0 90.0 82.0 34.0 64.0 29.0
Simple Debate 78.0 91.0 82.0 33.0 62.0 30.0

GPT-Swarm 81.3+2.64 92.6+2.08 85.34+0.58 35.3+2.33 66.6+0.58 32.6+2.08

ReConcile 82.3+2.31 93.6+1.53 86.3+1.15 36.34+0.58 66.3+1.53 33.3+1.53

5-Agent OPTAGENT 87.3+2.52 95.6+0.58 85.343.61 38.6+1.53 66.0+1.73  34.6+1.15
No Interaction Quality 84.0 94.0 84.0 36.0 64.0 33.0
No Forced Sampling 84.0 94.0 84.0 37.0 65.0 32.0
Reconsider Minority 85.0 95.0 86.0 36.0 69.0 37.0
Split Action Agents 86.0 95.0 85.0 38.0 66.0 34.0
Simple Debate 97.0 98.0 85.0 42.0 86.0 41.0
GPT-Swarm 97.0 98.0 87.0 44.0 88.0 42.0
GPTdo  S-Agent ReConcile 98.0 99.0 87.0 140 89.0 00
OPTAGENT 98.0 98.0 88.0 45.0 88.0 45.0

Table 1: Main results table on Math Reasoning Task. The best-performing methods on each dataset under each
number-of-agent scenario are bolded, and the second-best are underlined. The plus-minus signs (&) means standard
deviations across the three runs. The results below OPTAGENT represent the variants of OPTAGENT framework.
The detailed setting and discussion are presented in Section 4.4.

Multi-Agent Framework GSM8K  GSMSK-M3  GSMSK-M2 GSMS8K-M1 GSM-PLUS MATH
3 GPT-3.5-turbo 82.0 91.0 82.0 34.0 65.0 29.0
1 LLaMa3.1 70B + 2 GPT-3.5-turbo 83.0 87.0 84.0 35.0 63.0 33.0
2 LLaMa3.1 70B + 1 GPT-3.5-turbo 84.0 83.0 73.0 34.0 61.0 34.0
3 LLaMa3.170B 92.0 71.0 56.0 26.0 62.0 33.0

Table 2: Mixture of Model Ablation Task. All the multi-agent frameworks are optimized with OPTAGENT.

the single-agent baselines. The performance in-  "° Jas 7.41 7.41

crease is more prominent in 5-agent scenarios com- : s o

pared with 3-agent scenarios. We also present the 75 cor g I | |

results of two adversarial datasets in column 5 to s 676

8. OPTAGENT demonstrates robustness in the ad- I I

versarial math reasoning datasets, outperforming o

the baseline scheme and frameworks by a similar g 8 & § § & § 3§ &

margin compared with the original datasets. 5 % § § H é H é H
We also conduct experiments on the mathemat- ° E §° §n %" §n §° §n

ical datasets with GPT-4o as the backbone model. ingle-Agent Prompts 3_Agem"’ S_Agem“" Mgem“

With enhanced reasoning ability, even the simple
debating method performs near-perfectly on basic
math reasoning datasets. We still see a slight per-
formance increase using the multi-agent debating
frameworks on more challenging datasets.

Frameworks Frameworks Frameworks

Figure 2: Results on Creative Writing, measured in
terms of coherence scores.

Creative Writing Results for creative writing
task is reported in Figure 2. OPTAGENT increase
the coherence score by an average of at least 0.05
points across different settings under this task.
Compared with Tree-of-Thought, which used a

single model to explore different branches, OP-
TAGENT achieves slightly better performance. In-
creasing the number of agents only brings marginal
performance improvement, and adding more agents
from 5 to 7 does not seem to help with the perfor-
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Number of Agents Framework Type GSMS8K  GSMSK-M3 GSMSK-M2 GSMS8K-M1 GSM-PLUS MATH
Random Initialization 85.0 95.0 85.0 36.0 66.0 34.0
5-Agent Uniform Initialization 87.0 95.0 86.0 37.0 68.0 35.0
Confidence Scores 87.0 96.0 86.0 38.0 67.0 34.0

Table 3: Performance of OPTAGENT under different initialization methods for the connection scores.

GSM8K AdvGSM-M1

88 38.5
87 87 38 38 38

87 38

86 37.5
85

85 37

84 36.5
36,

83 36
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Figure 3: Training Convergence Trend for OPTAGENT
under the 5-Agent Setting.

mance of the multi-agent framework.

4.4 Ablation Study

Training Convergence We provide additional
study on framework convergence trend in Figure 3.
Each epoch is one full update of all the potential
connection scores over the dataset. Empirical re-
sults show that after three epochs, the performance
gain would be minimal across datasets. The re-
sults suggest that the basic reasoning abilities of
the agents greatly affect the learning process; on
harder datasets, the agents have difficulties form-
ing high-quality answers and interactions, leaving
little room for performance improvement. Other
research works on Multi-Agent LLM frameworks
(Motwani et al., 2025; Li et al., 2024a; Smit et al.,
2024) also exhibit this phenomenon, where the im-
provement in GSM8K is higher than that of MATH.

Train Without Interaction Quality In this ex-
periment, we study the effect of considering interac-
tion quality by asking L.L M, to consider only cor-
rectness instead of interaction quality when train-
ing. The results are demonstrated in Table 1. Under
the 5-agent scenario, considering only accuracy in
training time would hurt the performance, suggest-
ing that considering interaction quality between
agents LLM,. plays a vital role in the training
process. Under the 3-agent scenario, the perfor-
mance stayed roughly the same, since the agents’

profiles and interactions between the agents are
more limited than in the 5-agent scenario.

Forced Generation and Random Initial Output
Sampling We examine the impact of forced gen-
eration, where each agent generates multiple out-
puts using stochastic decoding, and one is randomly
selected. The results are demonstrated in Table 1.
Removing this (i.e., using greedy decoding) sig-
nificantly reduced reasoning diversity and perfor-
mance under both 3-agent and 5-agent scenarios.

Split Agent LLM,. In this study, we split
LLM, into two agents: LL My, opose, Which is
responsible for proposing the new connections;
and LL M jeciqe, which is responsible for deciding
whether or not to keep an edge. LLM,.fect Wil
interact with LL M geciqe only. LLMpyopose would
be provided with a summary of the conversation
history between LLM,.fiect and LLM gecige. We
do not see much performance difference across
datasets under this setting compared with OPTA -
GENT, which used a single agent L L M,;, for the
3-agent and the 5-agent scenario.

Reconsidering Minority In this setup, if one
agent gets a unique answer while the other agents
all got the same majority answer, the unique answer
would be considered as a "minority", and we would
prompt a group discussion on the unique answer
first before executing the graph. From the results in
Table 1 as well as the upper-bound analysis results
in Table 7, we can see that this strategy brings up
the performance in datasets where we have a bigger
gap between OPTAGENT and the theoretical upper-
bound performance. It suggests that the models
that had the wrong reasoning will be able to catch
their mistakes from this discussion process.

Mixture of Models as Agents Table 2 shows
the results of using different backbone models as
agents in OPTAGENT under the 3-agent setting. On
adversarial datasets where GPT-3.5-turbo performs
better than LL.aMa3.1, we observe that the perfor-
mance of OPTAGENT using GPT-3.5-turbo as the
backbone model is better than using LLaMa3.1

1719



Number of Agents  Framework Type GSMSK GSM8K-M3  GSMS8K-M2 GSMSK-M1 GSM-PLUS MATH

Simple Debate 77.0 90.0 79.0 31.0 62.0 25.0
3-Agent +Profiling 82.0 (+5.0) 90.0 (+0.0) 82.0 (+3.0) 33.0 (+2.0) 64.0 (+2.0) 29.0 (+4.0)
OPTAGENT 82.0 (+5.0) 91.0 (+1.0) 82.0 (+3.0) 34.0 (+3.0) 65.0 (+3.0) 29.0 (+4.0)

Simple Debate 78.0 91.0 82.0 33.0 62.0 30.0
5-Acent +Profiling 83.0 (+5.0) 94.0 (+3.0) 84.0 (+2.0) 35.0 (+2.0) 66.0 (+4.0) 31.0 (+1.0)
& OPTAGENT 87.0 (+9.0) 96.0 (+5.0) 86.0 (+4.0) 38.0 (+5.0) 67.0 (+5.0) 34.0 (+4.0)

Simple Debate 78.0 92.0 81.0 34.0 62.0 30.0
7-Agent +Profiling 83.0 (+5.0) 95.0 (+3.0) 85.0 (+4.0) 35.0 (+1.0) 65.0 (+3.0) 31.0 (+1.0)
OPTAGENT 85.0 (+7.0) 98.0 (+6.0) 86.0 (+5.0) 37.0 (+4.0) 68.0 (+6.0) 33.0 (+2.0)

Table 4: Performance of OPTAGENT on GPT-3.5-turbo under 3, 5, and 7-agent scenarios. "Simple Debate" refers
to agents debating without profiles and forced generation. "+Profiling" refers to debating with added profiles.
OPTAGENT contains both Profiling and Verbal Reinforcement Learning. We bold the best performing variant. The
deltas stand for differences between variant from simple debate baseline.

Number of Agents Framework Type GSMS8K  GSMS8K-M3 GSM8K-M2 GSMS8K-M1 GSM-PLUS MATH
Profiled Debate 83.0 92.0 82.0 35.0 66.0 31.0
S-Agent Profiled Random Connection 82.0 90.0 84.0 35.0 66.0 33.0
OptAgent 87.3 95.6 85.3 38.6 66.0 34.6

Table 5: Performance comparison using our inference algorithm, of doing debate among all profiled agents (Profiled
Debate), doing random connection for the agents (Profiled Random Connection), and OPTAGENT.

as the backbone model. This suggests that the
communication quality is heavily affected by the
performance of the backbone models.

Different Initialization Methods We present the
effects of different initialization methods for con-
nection scores during the training process in Table
3. "Random Initialization" means all weights are
initialized randomly between O and 1; "Uniform
Initialization" means all weights are initialized to
be 0.5; "Confidence-based Initialization" is intro-
duced in Section 3.3. From the table, we see that
random initialization performs the worst among all
initialization methods, while uniform initialization
and confidence score initialization performs around
the same across datasets. This suggests that LLMs
with different profiles tend to have similar initial
confidence self-assessments.

Effects of Profiling We present a more detailed
performance report of OPTAGENT on GPT-3.5-
turbo in Table 4. Compared with simple debating,
profiling the agents provide prominent improve-
ment. OPTAGENT further adds to the performance
by doing only profiled debate, and the improve-
ment is most significant in the 5-agent scenario.
Combined with the previous section, where we
reconsidered the minority answers, having differ-
ent answers and promoting critical thinking would
greatly improve model performance on math tasks.

Number of Agents From Table 4, we see that the
performance enhancement is at its best in 5-agent
scenarios. Adding more than 5 agents does not
seem to help with answering the questions. Similar
patterns can be found in the upper-bound analysis
in Table 7, as well as in other works such as Wang
et al. (2024). This suggests that simple scaling
is not the best way - continuously increasing the
number of agents does not guarantee improvement
on multi-agent systems for reasoning datasets.

Upper Bound Analysis We provide the upper
bound statistics for GPT-3.5-turbo in Table 7. This
upper-bound is calculated by the "choose-best"
strategy, which, if the model gets the correct an-
swer at one of the trials, then we count the prob-
lem as correctly solved. We found that for easier
datasets, including GSMS8K and the easiest adver-
sarial change for GSMS8K, the upper-bound is a
full mark. In other words, for every question, if
we force the model to generate different outputs,
at least one of the outputs will contain the correct
answer. On harder tasks such as MATH, we see
that the upper bound is dramatically lower, suggest-
ing that the backbone model struggles to get this
question correctly even after multiple tries.

Inference Time Randomization During infer-
ence time, we use 2 but study the performance of
different practices: doing a debate-for-all using all
profiled agents, randomly initializing the connec-
tions between agents, and using weights optimized
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Setting ARC GPQA  Sorting: 8-Number  Sorting: 16-Number  Sorting: 32-Number
DirectIO 68.0 23.0 0.0 0.0 5.2
0-Shot Chain of Thought 84.0 25.0 0.1 1.0 7.0
3-Agent Debate 82.0 27.0 0.1 0.9 6.2
3-Agent OPTAGENT 82.0 27.0 0.1 0.9 6.1

Table 6: Science Reasoning and Sorting Performance; For Science Reasoning, performance is measured in terms of
accuracy, annd higher number means better performance; For Sorting, performance is measured in terms of errors

per case, and lower number represents better performance.

Scenario GSMS8K  GSMSK-M3 GSMS8K-M2 GSMSK-M1 GSM-PLUS  MATH
OPTAGENT 87.0 96.0 88.0 38.0 68.0 34.0
3-Trial UpperBound  90.0 (+3.0)  95.0(-1.0) 90.0 (+2.0) 370(-1.0)  78.0(+10.0)  38.0 (+4.0)
5-Trial UpperBound ~ 92.0 (+5.0)  98.0 (+2.0) 92.0 (+4.0) 38.0(+0.0)  80.0(+12.0)  41.0(+7.0)
7-Trial UpperBound ~ 92.0 (+5.0)  99.0 (+3.0) 92.0 (+4.0) 400 (+2.0)  80.0 (+12.0)  42.0 (+8.0)

Table 7: UpperBound analysis on GPT-3.5-turbo; Scenario for OPTAGENT represent the best performance under all
the numbers of agents settings. The deltas marks the difference between upperbounds and OPTAGENT performance.

by OPTAGENT. We present the results in 5. he com-
parison between Profiled Debate and Profiled Ran-
dom Connection isolates the effect of structured
profile-guided interactions versus unstructured con-
nectivity. Random connectivity yields slight gains
in GSM8K-M2 and MATH, indicating that diver-
sity in agent communication can help when tasks
require broader exploration rather than strict argu-
mentative structure. OptAgent outperforms both
profiled baselines, demonstrating that learned inter-
action quality provides measurable gains.

4.5 Additional Reasoning Tasks

We provide our experiment results for science rea-
soning and sorting in Table 6 in the Appendix.

Science Reasoning On GPQA, OPTAGENT per-
forms better than the baseline methods, but the
base backbone model’s reasoning ability signifi-
cantly drags down the overall performance. ARC
contains questions that do not require step-by-step
reasoning, but direct knowledge retrieval. For these
questions, the model’s knowledge base and under-
standing of the questions are more important than
the logical reasoning process.

Sorting OPTAGENT outperforms 0-Shot CoT
and simple debating methods in the 16-number
and 32-number scenarios. However, all the meth-
ods fall short of Direct Prompting, as the agents
often struggle to generate good explanations and
reasoning for each of their steps, which poses a
significant hurdle when agents have discussions.
In complex planning tasks, the more promising di-

rection would be to involve external specialized
planning modules into the multi-agent framework.

5 Conclusion

This paper proposes OPTAGENT, an LLM-based
Verbal Reinforcement Learning framework for
Graph Optimization on multi-agent collaboration.
By jointly modeling interaction quality, which in-
cludes logical coherence, clarity, and mutual cor-
rection, as well as agent correctness, OPTAGENT
adaptively discovers effective information-flow pat-
terns tailored to the underlying task. OPTAGENT
contains a feedback agent that evaluates the quality
of the agent interactions and an action agent that up-
dates the multi-agent collaboration graph based on
the feedback. Results on several downstream rea-
soning tasks demonstrate that OPTAGENT signifi-
cantly outperforms single-agent prompting meth-
ods and state-of-the-art multi-agent frameworks
on diverse tasks. Despite OPTAGENT’s strong
performance, our results also surface open chal-
lenges. Tasks such as science reasoning and multi-
step planning provide limited gains, underscoring
the need for domain-specific reasoning modules
or hybrid neuro-symbolic components. Moreover,
computational cost and dependency on the un-
derlying backbone models remain practical con-
straints. We hope OPTAGENT provides both a
blueprint and an impetus for developing more prin-
cipled, communication-aware multi-agent reason-
ing systems that can better emulate the flexible,
self-correcting dialogue of human collaborative
problem solving.
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Limitations

Potential Risk We acknowledge that due to the
inherent training and dataset bias of the base back-
bone models, and our incomplete controls of the
models, our framework could potentially produce
harmful content.

Limited Experiments Due to computational cost
and timeconstraints, our experiments was con-
ducted on a limited number of tasks and datasets,
with a randomly chosen subset. Our conclusions
and analysis could be further enhanced by testing
on more tasks and datasets.

Computational Cost OPTAGENT relies on initi-
ating multiple model instances and requires multi-
ple prompts per round. The repetitive calls impose
heavy time and output token costs for OPTAGENT.

Model Reasoning Ability Dependency The abil-
ity of multi-agent framework is heavily influenced
by the ability of the individual backbone models.
Framework performance and optimization effec-
tiveness could vary between models and datasets.

Incomplete Control Over Models For the API-
based models, we do not possess complete control
over their behavior, and the probability and confi-
dence estimations are post-hoc in nature.

Ethics Statement

This research adhered to the ethical standards and
best practices outlined in the ACL Code of Ethics.
Language Models can sometimes produce illogi-
cal or inaccurate reasoning paths, so their outputs
should be cautiously used. The outputs are only
examined to understand how a model arrives at
its answers and investigate why it makes certain
errors. All experiments used publicly available
datasets from previously published works and did
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A Additional Tasks

GSM Question ARC Question

Janet’s ducks lay 16 eggs
per day. She eats three
for breakfast every morn-
ing and bakes muffins for
her friends every day with
four. She sells the remain-
der at the farmers’ market
daily for $2 per fresh duck
egg. How much in dollars
does she make every day
at the farmers’ market?

Which of the following
statements best explains
why magnets usually stick
to a refrigerator door?

Given the interaction between two agents
, and the feedback for the
interaction, decide whether the
interaction should be kept or not.
Your decision should be either 'keep
' or 'delete'. Your answer should
follow the following format: '
DECISION: ###your\_decision###'.
Response from Agent{agentl_num}: {
responsel}; Response from Agent{
agent2_num}: {response2}; Feedback
from meta agent: {feedback}

Prompt2 for LLM,;

Table 8: Question comparison between GSM8K and
ARC.

Even though our multi-agent framework achieves
some improvement over the math reasoning and
the creative writing task, all multi-agent interac-
tion schemes, including multi-agent debate and our
optimization method, fail to enhance performance
over the science reasoning task and the sorting task.
The results are shown in Table 7

B Prompt Templates

B.1 Verbal Reinforcement Learning Meta
Agents

Prompt for LLM, . ficct

Given a list of unexplored connections
between agents, their connection
score, and your conversation history
, choose one of the connections for
the agents to interact. Your action
should follow the following format:
'make connection (@, 1)'. Your
answer should follow the following
format: 'ACTION: ###your_action###'.

Unexplored connections: {
matrix_connect}

B.2 Agent Profiles

Explainer

You are a {task} explainer focused on
breaking down complex questions/
tasks into simple, understandable
steps. Your goal is to answer the
question/solve the task by providing

clear, step-by-step explanations.

Given a question, the golden answer, and
interactions between two agents,
generate some feedback on the
quality of the interaction. Your
feedback should consider two
standards: 1. Whether the agents got
the answers correctly. The debate
is not fruitful if either agents got
the question wrong. 2. whether the
agents' reasoning chains are logical
and convincing. Specifically, are
the steps logically connected and
easy to follow? Are there any
inconsistencies or contradictions?
Did the agent explain its reasoning
well? Question: {question} Golden
Answer: {answer} Previous response
from Agent{agentli_num}: {responsel};
Previous response from Agent{
agent2_num}: {response2}; Response
from Agent{agentl_num} after
interaction: {responsel}; Response
from Agent{agent2_num} after
interaction: {response2}

Expert

You are a {task} expert with extensive
knowledge in the {task}. Your role
is to provide accurate and detailed
solutions. Ensure your explanations
are thorough and precise.

Logical Thinker

You are a logical thinker who excels at
breaking down complex problems into
logical steps. Your role is to
approach {task} methodically,
ensuring each step follows logically

from the previous one. Focus on
clear, logical reasoning and
consistency.

Robust Reasoner

Promptl1 for LLM,;

r

You are a robust reasoner who excels at
tackling complex {task} with
thorough and resilient reasoning.
Your role is to ensure that every
step of the problem-solving process
is meticulously verified and
logically sound. Focus on providing
precise justifications for each step
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Your goal is to develop solutions
that are not only correct but also
robust and reliable.

B.5 Creative Writing
Task Prompt

Deductive Reasoner

Write a coherent passage of 4 short

You are a deductive reasoner who uses
deductive logic to derive
conclusions from given premises.
Your task is to apply logical rules
and principles to reach sound
conclusions, ensuring each step is
justified by the previous one.\

paragraphs. The end sentence of each

paragraph must be: {input}. Make a
plan then write. Your output should
be of the following format: 'Plan:
Your plan here. Passage: Your
passage here'.

Evaluation Prompts

Analytical Reasoner

You are an analytical reasoner who
excels at breaking down complex
problems into smaller, more
manageable parts. Provide precise,
step-by-step reasoning for each part

of the problem, clearly explaining
the logic and methodology behind
each step.

Analyze the following passage, then at
the last line conclude "Thus the
coherency score is {s}", where s is
an integer from 1 to 10.

B.6 Prompt for Sorting

Intuitive Reasoner

You are an intuitive reasoner who relies

on intuition and insight to solve
problems. Your role is to trust your
instincts and use your natural
understanding of {task} to find
solutions. Provide precise, step-by-
step reasoning for each part of the
problem, clearly explaining how your
intuition guides you through each
step.

B.3 Debating Prompt

<Instruction> Sort the following list of
numbers in ascending order. You can
generate any intermediate lists,
but the final output should be the
sorted list of numbers, prefixed
with "OQutput: ". </Instruction><
Approach>To sort the list of numbers
follow these steps: 1. Split the
list of numbers into two to four
unsorted sublists, each containing
an equal number of elements from the
original list (make sure they don't
overlap). 2. Sort each of the
unsorted sublists. 3. Merge the
sorted sublists into a single sorted
list using the merging algorithm
from merge sort.</Approach>

Given another potential answer and
reasoning given by another agent,
recheck your reasoning and answer.
If you think your previous answer is

wrong, provide the correct answer
and your reasoning for it. If you
think your previous answer is
correct, explain why it is correct.
Make sure to include your final
answer in the format: ###your_answer
###. Response from another agent: {
responsel}

B.4 Question Prompt for Math and Science
Reasoning

Given a question, give our your
reasoning process and the final
answer. MMake sure to include your
final answer in the format: ###
your_answer ###. Give our the answer

in numerical format. Question: {
question}. Think Step by Step.

C Cost Analysis

We provide a cost estimation table for all tested
frameworks under the 5-agent scenario. For Ad-
vGSM, the results are combined for all three mag-
nitudes. OPTAGENT takes more resources to train
on more challenging and lengthy tasks such as
MATH compared with less challenging tasks such
as GSM8K. Compared with the two debating base-
lines, OPTAGENT is more costly in input tokens but
less expensive in output tokens. This is due to the
pairwise connections in OPTAGENT: the agents are
provided with much less input from other agents,
but their reasoning output is about the same.

D Data Processing and Evaluation

For all reasoning datasets, we follow the conven-
tions of previous papers and report the performance
in accuracy, which is the ratio of the number of
questions the model got correct against all tested
questions. For answer parsing and post-processing,
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Framework Type Dataset and Setting  Prompt Tokens =~ Completion Tokens  Estimated Cost (USD)
GSMSK 40786 12097 0.038
OPTAGENT: Training AdvGSM 127349 38451 0.121
GSM-PLUS 41502 11834 0.039
MATH 80286 25003 0.078
GSMBK 223159 109008 0.275
OPTAGENT: Inference AdvGSM 814637 417360 1.033
GSM-PLUS 272091 139403 0.345
MATH 520376 276451 0.675
GSMEK 451063 92307 0.364
ReConcile Inference AdvGSM 1305208 269035 1.056
GSM-PLUS 435095 89339 0.352
MATH 851101 250936 0.802
GSMSK 352690 90023 0.311
Simple Debate Inference AdvGSM 1103691 290367 1.001
GSM-PLUS 360175 92036 0.318
MATH 780312 247603 0.762

Table 9: Cost estimation for tested models for GPT-3.5-turbo under 5-Agent scenario.

Robust Reasoner

Explainer 4 Logical Thinker

Deductive Reasoner

Expert

Figure 4: Case Study on the agent interaction graph.
Numbers beside the connections signify the order of
the interactions made. The collaboration frameworks is
trained on the GSM-PLUS dataset.

we ask the model to output a specific format, and
use the parsing scripts provided with the origi-
nal dataset’s code repository. When random sam-
pling the evaluation datasets, for MATH and GSM-
PLUS, we notice that there are different types of
questions and the model’s performance varies with
types. For MATH and GSM-PLUS, we randomly
sample 14 questions from each of the 7 categories,
and then randomly sample 2 questions from the
remaining test set. There is a "critical thinking"
category in GSM-PLUS, but we omit this as base
model have very low performance on the sub cate-

gory.
E Case Study: Generated Graphs

We provide two case studies of the graphs in Figure
4 and 5. Figure 4 is trained on GSM-PLUS, and
Figure 5 is trained on Creative Writing. We see that
the optimal connection order and information prop-
agation patterns are different for different tasks. On
both tasks, the interactions between the Explainer
agent and the other agents would produce the most

Robust Reasoner

Analytical Reasoner

Logical Thinker

Deductive Reasoner

Expert

Intuitive Reasoner

Figure 5: Case Study on the agent interaction graph.
Numbers beside the connections signify the order of
the interactions made. The collaboration frameworks is
trained on the Creative Writing Task.

fruitful results, as the Explainer agent has the best
explaining ability on its reasoning steps. However,
the order of interaction is drastically different. On
the GSM-PLUS dataset, the Explainer would first
explain its thoughts to other agents; while on the
Creative Writing task, the other agents would com-
municate before talking with the explainer, and
then the Explainer would propagate the reasoning
process with other agents.

F Case Study: Evolution of Connection
Scores

We provide the evolution of the connection scores
during training time on the GSM-Plus dataset. The
initial scores are calculated using the Confidence
Score initialization method. We see that the com-
munication between the Explainer and the Expert
has very high quality, as they both have the correct
answer after each epoch of communication, result-
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Epochl Logical Thinker - Explainer — Expert: Expert - Robust Logical Thinker — Deductive Reasoner —

Expert:0.89 0.89 Reasoner:0.79 Explainer:0.79 Explainer:0.79
Epoch2 Explainer — Expert - Robust Logical Thinker — Deductive Reasoner — Explainer - Robust Reasoner:
Expert:0.98 Reasoner:0.87 Explainer:0.87 Explainer:0.87 0.81
Epoch3 Explainer - Expert - Robust Logical Thinker — Explainer - Robust Logical Thinker - Robust
Expert:1.08 Reasoner:0.96 Explainer:0.96 Reasoner: 0.88 Reasoner:0.85

Table 10: The evolution of the connection scores during training time on the GSM-Plus dataset. For each epoch, the
top-5 connection scores in each round are presented.

ing in a consistent score increase. On the other
hand, during the first epoch, the interaction be-
tween the Logical Thinker and the Expert was not
of high quality and led to wrong answers. Similarly,
during the second epoch, the interaction between
the Deductive Reasoner and the Explainer led to
the wrong answer. Overall, the interaction between
the Explainer and he other agents are of higher
quality during the training process.

G Algorithm

We provide the pseudocode algorithm for our
framework in Algorithm 1 and 2 below.

H Usage of AI Assistant

In this paper, we used ChatGPT and CoPilot to help
with grammar mistakes and writing fluency only.
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Algorithm 1: OPTAGENT Training Framework

Input: Group of LLM Agents { M, ..., M} }; Training Samples D; Initial Scores of the
Connections W = {wy, ..., w; }, Meta Agents LLM e, LL M, ¢ fiect
Output: Trained Weights {wo, ..., w;}
1 for Datapoint d € D do
2 Initialize R = () to store reflection history
3 while Unmarked Connection Exists in W do
4 w; = MakeConnection(LLMqct, R)
5 foreach M;. connected by w; do
6 L AgentSolve(yx ~ My)

Ynewis Ynewj — Debate(M'ia Mja Yi, yj)

8 (K RefleCt(LLMreflect7 Ynewir Ynewj, Yis yj)

9 Save(R < ;)

10 w; < Decide(LLMqct, ;) ~Update Current Weight
11 Mark(W <— w;)

12 return {wo, ..., w;};

Algorithm 2: OPTAGENT Inference Framework

Input: Group of LLM Agents { M, ..., M; }; Testing Samples D; Trained Weights
W = {wo, ...,w;}, Meta Agents LLM ey, LLMycfiect
Output: Final Answer Set Y
1 for Datapoint d € D do

2 Initialize Connected <+ () to Store Connected Agents in Graph
3 for w; € W do
4 Initialize Curr < () to Store Agents Connected by Current w;
5 Initialize Ans < () to Store Answers Given by Agents Connected by Current w;
6 foreach M, connected by w; do
7 yr, < AgentSolve (d~ M)
8 Insert(Connected, My)
9 Insert(Curr, My)
10 Insert(Ans, yi)
1 Yp, Yq < Debate(Curr, Ans)
12 Update(yy, yq, Curr) >Update the Answers for Agents in Curr
13 if Connected Contains All Agent Instances then
14 Y final < Score ({yk}izo) ~Majority Voting for All Agents’ Answers
15 Save (K yfinal)
16 Continue to Next Datapoint
17 return Y;
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