Can LLMs Learn from Their Mistakes?
Self-Correcting Instruction Tuning for Named Entity Recognition

Takumi Takahashi, Tomoki Taniguchi, Chencheng Zhu, Tomoko Ohkuma
Asahi Kasei Corporation
{takahashi.tkr, taniguchi.tcr, zhu.cd, okuma.td}@om.asahi-kasei.co.jp

Abstract

Recent instruction-tuned large language mod-
els (LLMs) have demonstrated remarkable per-
formance on various downstream tasks, includ-
ing named entity recognition (NER). However,
previous approaches often generate incorrect
predictions, particularly regarding entity bound-
aries and types. Many of these errors can be
corrected to match the ground truth by revising
the entity boundaries and/or types. In this paper,
we propose a self-correcting instruction tuning
approach that simultaneously learns to perform
NER and correct errors through natural lan-
guage instructions. Self-correcting instruction
tuning requires only a standard annotated NER
dataset. Supervision for self-correction can be
automatically generated from error patterns ob-
served in LLM:s fine-tuned solely on NER tasks.
We conducted extensive experiments on eight
NER datasets with two LLMs to validate the
effectiveness of the proposed approach. The
results demonstrate that the proposed approach
enhances NER performance by effectively cor-
recting prediction errors and substantially re-
ducing false positives. We further analyze the
self-correction behavior to better understand
how the models improve performance.

1 Introduction

Named entity recognition (NER) is a fundamental
task in natural language processing that extracts en-
tity mentions from the input text and classifies them
into predefined types. Although previous studies
have addressed the NER task as a sequence tagging
problem (Hammerton, 2003; Lample et al., 2016;
Devlin et al., 2019; Yamada et al., 2020), recent
advances in large language models (LLMs) have
achieved promising results by formulating it as a
text generation task (Xie et al., 2023, 2024; Wang
et al., 2025). Moreover, state-of-the-art approaches
based on instruction tuning have further enhanced
the performance of NER (Wang et al., 2023a; Sainz
et al., 2024; Zhou et al., 2024; Li et al., 2024).
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Figure 1: Top: Initial prediction of the fine-tuned LLM
on the OntoNotes 5.0 dataset. The prediction marked
with solid lines is correct, while the prediction marked
with dashed lines is incorrect. Middle: Verification to
classify the predicted entity into an error type and re-
finement to revise the incorrect entity based on the error
type. Bottom: Revised prediction after the verification
and refinement process.

Despite the promising results of recent ap-
proaches, LLMs still face challenges in accurately
identifying entity boundaries and types. As shown
in Figure 1, the model produced a plausible but
incorrect prediction, even when instruction tuning
was applied to the target task'. For instance, the
predicted entity “The Commune Bond Research
Institute” has incorrect span boundaries due to un-
extracted tokens “of Japan,” while its entity type,
“ORG;,” is correct. According to our preliminary
analysis (§ 2.1), such NER errors remain prevalent.

Self-correction has recently emerged as a promis-
ing approach for improving responses generated by
LLMs (Madaan et al., 2023; Kamoi et al., 2024;
Gou et al., 2024; Kumar et al., 2025; Lee et al.,

'We employed the OLMo-2 model for this experi-
ment from the following link: https://huggingface.co/
allenai/OLMo-2-0425-1B
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2025). While it has demonstrated remarkable per-
formance on reasoning tasks (Pan et al., 2023; Chen
et al., 2024; Ma et al., 2025), its application to in-
formation extraction tasks remains unexplored.

In this paper, we propose a self-correcting
instruction tuning approach that simultaneously
learns to extract entities and correct errors. To this
end, the task of self-correcting errors consists of
two stages: self-verification and self-refinement,
as illustrated in the middle part of Figure 1. The
self-verification stage aims to assess whether the
predicted entity is correct. Additionally, it classifies
the erroneous entity into a predefined error type,
offering clues for the subsequent self-refinement
stage. In the self-refinement stage, the model re-
vises its prediction based on the error type iden-
tified during the self-verification stage. To imple-
ment this approach, supervision for self-correction
can be automatically derived from the outputs of
LLMs and the ground truth labels of NER (§ 3.4).
Therefore, a manually annotated dataset for self-
correction is not required.

This paper makes the following contributions:

* We propose a self-correcting instruction tun-
ing approach that enables LLMs to perform
NER and revise their own mistakes. With
this approach, only a standard annotated NER
dataset is required.

* We demonstrate the effectiveness of the pro-
posed approach through extensive experi-
ments on eight NER datasets using two LLM:s.

* We analyze the self-correction behavior to
gain deeper insights into how the proposed
approach improves performance.

2 Preliminary Analyses

In this section, we conduct preliminary analyses to
investigate error patterns in NER and to validate
the effects regarding self-correction in NER. We
begin by defining common NER error types and
analyzing their distribution across predictions from
several models (§ 2.1). We then investigate whether
LLMs can revise their own mistakes using only
intrinsic knowledge, without relying on external
resources or fine-tuning (§ 2.2).

2.1 NER Error Types and Their Distributions

As described in § 1, common NER errors fall into
two primary categories: entity boundary errors and
type errors. Following Kim et al. (2024), we define
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Figure 2: Distribution of NER errors on OntoNotes 5.0.
Each model was fine-tuned on the target dataset using
the InstructUIE framework (Wang et al., 2023a).

five common error types that further detail these
categories.
Over-extraction (OE). The predicted entity has
the correct type, but its boundaries are incorrect
due to unnecessary tokens.
Under-extraction (UE). The predicted entity has
the correct type, but its boundaries are incorrect
due to missing tokens.
Type. The predicted entity boundaries are correct,
but the entity type is incorrect.
Span+Type. Both the entity boundaries and type
are incorrect.
Spurious. The predicted entity does not partially
match any ground truth entity boundaries.
Subsequently, we analyze the erroneous entities
predicted by the fine-tuned models that appear in
the actual dataset. As illustrated in Figure 2, com-
mon NER errors remain prevalent, even when mod-
els were fine-tuned on the target task. Specifically,
four error types excluding Spurious account for
70-78% of all errors. These erroneous entities can
be aligned with the ground truth by correcting en-
tity boundaries and/or types. In contrast, Spurious
entities that do not partially match the gold entity
boundaries can be discarded to reduce false posi-
tives. These findings highlight the importance of
addressing such errors to enhance model perfor-
mance. Therefore, we incorporate five common
error types into the self-verification stage.

2.2 Can Intrinsic Self-correction Improve
NER Performance?

Self-correction has recently attracted increasing at-
tention in the context of reasoning tasks such as
arithmetic reasoning (Madaan et al., 2023), code
generation (Chen et al., 2024), and logical reason-
ing (Pan et al., 2023). However, the potential of
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Figure 3: Performance of baseline vs. intrinsic self-correction. We used GPT-40-mini as the LLM in the experiment.
BC5CDR (Wei et al., 2016), OntoNotes 5.0 (Pradhan et al., 2013), WNUT 2017 (Derczynski et al., 2017), and
SciER(Zhang et al., 2024a) were used to evaluate the effectiveness of intrinsic self-correction.

self-correction to improve information extraction
remains unexplored.

In this section, we examine whether LLMs can
self-correct their own mistakes in NER by relying
solely on intrinsic knowledge, without access to
external resources or fine-tuning. We employ GPT-
4o-mini to assess its self-correction ability in NER.
Figure 3 illustrates the performance of intrinsic
self-correction across various NER datasets. This
suggests that intrinsic self-correction still struggles
to improve performance, as reported in previous
work (Huang et al., 2024; Tyen et al., 2024; Kamoi
et al., 2024; Zhang et al., 2025). Therefore, we
are motivated to endow LLMs with self-correction
capabilities via instruction tuning.

3 Method

In this section, we propose an instruction tuning ap-
proach that simultaneously learns to perform NER
and correct NER errors through multi-task instruc-
tion tuning. We employ InstructUIE (Wang et al.,
2023a), an architecture for instruction tuning on
various information extraction tasks with natural
language instructions. The overview of the pro-
posed model is illustrated in Figure 4.

3.1 Instruction Tuning for NER

In this section, we describe a prevalent method for
instruction tuning on NER. Following Wang et al.
(2023a), we decompose NER into two auxiliary
tasks: span extraction (SE) and entity typing (ET),
which are used to train the model.

Named Entity Recognition

Formally, given an input text 7' and prompt PNER,
we aim to generate a list of named entities S =
{s1,...,sn}, where s; is the i-th entity e; classified
with [;, denoted as s; = (e;, ;). The task prompt
PnERr consists of three parts: a task instruction
INER, label candidates Lngr = {l1,...,lm}, and

their label descriptions Dxgr = {d1,...,dy}.
The complete prompt is represented as PNgr =
[INER; LNER; DNER], Where ; denotes a concate-
nation operator. We now summarize the input for-
mula to the model as follows: X = [T'; Pxgr].
Therefore, the loss function for generating an out-
put sequence is formalized as follows:

N
L= _ ZlogIP’(yt\X, Y<t), (D
t=1

where y; denotes a subword token of the generated
sequence and N is the total number of subword
tokens in the output sequence.

Span Extraction and Entity Typing

Since auxiliary tasks can be leveraged to improve
NER performance (Wang et al., 2023a; Zhang
et al., 2023), we employ SE as one of the aux-
iliary tasks. Specifically, given an input text 7',
task prompt Psg = [Isg; LNer; DNER], and target
label [;, we define the input formula as follows:
X = [T; Psg; l;]. Therefore, we train the model to
perform entity extraction by optimizing Equation 1.

Similarly, we adopt ET as an auxiliary task to
boost NER performance. In this task, given a
task prompt Pt = [IET; LNER; DNER] and tar-
get mention e; in the text 1", we also describe the
input formula as follows: X = [Pgr;e;]. Finally,
we train the model to perform entity typing by op-
timizing Equation 1. For more details, we provide
the full prompts in Appendix E.

3.2 Instruction Tuning for Self-correction

Based on instruction tuning for the downstream
tasks described in § 3.1, we endow the model with
the ability to verify its predictions and revise its
own mistakes. Following previous work in self-
correction (Kamoi et al., 2024), we decompose
self-correction into two primary components: self-
verification (SV) and self-refinement (SR).
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Figure 4: Overview of the proposed model. Top: Multi-task instruction tuning on NER and self-correction. Bottom:
Pipeline for self-correcting NER at test time. In steps 2 and 3, the model verifies its own predictions and iteratively
refines them until either the predefined number of iteration steps is reached or the prediction is verified as correct.

Self-verification

This component aims to verify whether the entity
generated by the model is correct. The model
further classifies its own prediction into prede-
fined error types, as described in § 2.1. Specifi-
cally, given an input text 7, task prompt Pgy
[IS\I; DNER; Lsv; DSV], and predicted entity 3;,
the model predicts the correctness 9;> and error
type & of its own prediction. Formally, given
the input X = [T; Psy; §;], we train the model to
verify its own prediction by optimizing Equation 1.

Self-refinement

Finally, the incorrect entity is revised based on the
error type ¢;. Specifically, given an input text 7T,
task prompt Psg = [Isr; Lner; DNER], predicted
entity s;, and its verification results 9; and ¢;, the
model revises its own prediction if ¥; is incorrect
and ¢; is not Spurious. If v; is correct, the pre-

The correctness candidates are correct and incorrect.
3The error type candidates consist of five types, as de-
scribed in § 2.1 and None (v, = correct).

dicted entity is retained as the revised entity. If ¢;
is Spurious, the predicted entity is discarded. To
this end, given the input X = [T’; Psg; 5;; v4; ¢,
we train the model to revise the incorrect entity by
optimizing Equation 1. For more details, the full
prompts are provided in Appendix E.

3.3 Inference with Self-correction

After instruction tuning on the NER and self-
correction tasks, the model can perform NER more
accurately by correcting its own mistakes during
inference. As illustrated in the bottom part of Fig-
ure 4, the inference process consists of three com-
ponents: (1) NER, (2) SV, and (3) SR.

For NER, the model generates a list of named
entities S = {51,...,35,} from the input text 7" as
its initial response. The output sequence S is fed
into the subsequent process, SV.

In the SV stage, the model verifies its initial
response S; € S from the input text 7" and task
prompts Pgy as described in § 3.2. This process
yields the correctness v; and error type ¢; corre-
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Algorithm 1 Self-Correction dataset creation

Require: NER dataset Dxgr = {d1,...,dx}
1: fori=1to K do ~
2:  Train LLMI\{ER on all folds except d;

3 for all v in d; do

4 Let S be the ground truth entities of u

5 S« LLM%  (u)

6: for each predicted entity 3 € S do

7

8

if 55, € ground truth S then
correctness vy, — correct

2 90

error type ¢, <— None
10: revised entity §i < Sk
11: else
12: Uk < incorrect
13: ¢ <+ classify_error_type(8k, S)
14: 3k + revise_entity(Sk, S, ck)
15: end if ~
16: Add z = (8k, vk, ck, Sk) to d;
17: end for
18: end for
19: end for

20: return Dngr4sc = UlK:l d;

sponding to the predicted entity s;. We select the
entity §; as part of the final response if the verifi-
cation result v; is correct. In contrast, we discard
the response §; classified as ¢; = Spurious, which
cannot be revised. Otherwise, the predicted entity
3; is fed into the subsequent process, SR.

Lastly, the model revises its initial response §;
based on the error type ¢; and label description
DnEr in the SR stage. The output of this stage is
then fed back into the SV stage to repeatedly verify
its own predictions to further improve NER per-
formance. This repetitive process will be stopped
if the predicted entity s; is verified as correct,
the error type ¢; is classified as Spurious, or the
predefined number of iteration steps is reached.

3.4 Dataset Creation for Self-correction

In this section, we construct a self-correcting
NER dataset Dngr+sc using only the NER dataset
DnEr and a fine-tuned NER model. Specifically,
we first split the NER dataset Dygg into K -fold
subsets DNgr = {di,...,dx}. For each fold

Ji, we train the NER model LLMI\\IGZEZ'R on the re-
maining K — 1 folds and generate a list of entities
S ={51,...,5,} using the fine-tuned model. For
each entity 5, we determine its correctness v, er-
ror type ¢, and revised entity 5 by comparing it
with the list of gold entities S. Algorithm 1 details
the dataset creation process, and dataset statistics
are summarized in Appendix A.2.

4 Experiments

4.1 Datasets

To evaluate the baseline and proposed ap-
proaches, we employed eight NER datasets from
T-NER (Ushio and Camacho-Collados, 2021) and
SciER (Zhang et al., 2024a). The T-NER dataset
includes seven NER datasets, BCSCDR (Wei et al.,
2016), BioNLP 2004 (Collier et al., 2004), CoNLL
2003 (Tjong Kim Sang and De Meulder, 2003),
FIN (Salinas Alvarado et al., 2015), OntoNotes
5.0 (Pradhan et al., 2013), WikiAnn (Pan et al.,
2017), and WNUT 2017 (Derczynski et al., 2017),
which are used to examine the effectiveness of mod-
els across various domains and label schemes in
the experiment. The statistics of these datasets can
be found in Appendix A.1.

4.2 Experimental Setup

Model Configurations. We employed two open-
sourced LLMs, OLMo-2 (OLMo et al., 2024) and
Qwen2.5 (Yang et al., 2024), as the fundamental
models. We used two parameter variants, 1B/1.5B
(tiny &) and 7B (small <»), from the OLMo-2 and
Qwen2.5 models, respectively. Additionally, we
further adopted two parameter variants, 13B/14B
(medium ) and 32B (large #), to assess the consis-
tent impact of parameter scaling in LLMs (§ 4.5).
The baseline model, LLMygRr, was trained on
NER with the auxiliary tasks (§ 3.1), while the pro-
posed model, LLMngR+sc, was trained on both
the NER and self-correction tasks (§ 3.2). Further-
more, LLMnER+sc + Self-correct is a model vari-
ant that performs self-correction at test time. For
instruction tuning, we adopted QLoRA (Dettmers
et al., 2023) to update the parameters in LLMs due
to limited computational resources. All hyperpa-
rameters in our experiments are in Appendix B.
For prediction, we employed greedy decoding
to generate the output sequence of named entities,
S = {51,...,5,}. Additionally, the maximum
number of iteration steps in the self-correction pro-
cess, as described in § 3.3, was set to 8.
Dataset Generation. To construct the self-
correcting NER dataset, as described in § 3.4,
we first trained the baseline models separately for
each size. To collect diverse correct and incorrect
predictions generated by LLMs, we applied the
instruction-tuned model to each dataset using the
Top-K sampling* (Fan et al., 2018).

*In this experiment, we set top-k to 40 and generated 16
diverse samples per instance.
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Model bcScdr  bionlp  conll fin ontonotes wikiann wnut scier mean
& Tiny models (OLMo-2 1B and Qwen2.5 1.5B)

OLMongr 0.870 0.731 0910 0.605 0.835 0.709 0.431 0.789 0.735
*OLMonNER+sC 0.877 0.730 0907 0.674 0.849 0.705 0482 0.795 0.752
* + Self-correct 0.882 0.747 0914 0.684 0.853 0.735 0414 0.794 0.753
f + Self-correct w/ Oracle SV 0.942 0.882 0965 0.795 0.919 0.819 0.567 0925 0.852
Qwenygr 0.888  0.735 0.920 0.652 0.844 0.705 0.504 0.801 0.756
*vienNERJrSC 0.889 0.742 0909 0.707 0.854 0.713  0.506 0.794 0.764
* + Self-correct 0.895 0.743 0914 0.762 0.862 0.741 0473 0.805 0.774
t + Self-correct w/ Oracle SV 0.955 0.888 0.970 0.840 0.922 0.824 0.617 0934 0.869
& Small models (OLMo-2 7B and Qwen2.5 7B)

OLMongr 0.895 0.745 0.922 0.696 0.851 0.723 0.512 0.801 0.768
*OLMoONER+sC 0.894 0.746  0.927 0.720 0.857 0.724 0.509 0.805 0.773
* + Self-correct 0.901 0.756 0.929 0.763 0.865 0.755 0497 0.808 0.784
t + Self-correct w/ Oracle SV 0.957 0.889 0975 0.854 0.925 0.830 0.635 0922 0.874
Qwenypr 0.897 0.752 0929 0.719 0.848 0.725 0.500 0.822 0.774
*QW€HNER+SC 0.895 0.750 0.925 0.737 0.858 0.726  0.509 0.813 0.777
* + Self-correct 0900 0.756 0.927 0.768 0.868 0.751 0484 03815 0.784
T+ Self-correct w/ Oracle SV 0.961 0.890 0978 0.873 0.927 0.828 0.622 0937 0.877

Table 1: Experimental results of the baseline and proposed models on eight NER datasets. The shaded rows (gray)
represent the baseline models trained solely on the NER task with the auxiliary tasks. The mark * indicates the
proposed approach and f indicates the upper bound performance in self-correction with an oracle self-verification.
The green and red values indicate increased and decreased performance compared to the baseline model, respectively.

Evaluation Metric. We employed the Micro-F1
score for a standard NER evaluation. To measure
performance, we consider a predicted entity s; to
be correct if it exactly matches any entity in the
gold entities S = {s1,...,5p}.

4.3 Results

Table 1 presents the main results. We observe that
the self-correcting instruction tuning, denoted as
*LLMNER4+sc, consistently improves overall NER
performance on all model variants. The results sug-
gest that incorporating self-correction as an auxil-
iary task during instruction tuning allows the model
to identify and revise its mistakes, thereby improv-
ing base NER performance. Furthermore, applying
self-correction to inference, denoted as * + Self-
correct, yields further improvements in NER per-
formance. While intrinsic self-correction does not
perform well (§ 2.2), our approach improves NER
performance by self-correcting errors at test time.
Furthermore, our approaches show performance
improvements in 81% and 75% (& and <) of the
datasets, respectively. These results support the
effectiveness of our approaches across various do-
mains rather than being limited to specific ones.

4.4 Self-correction using Oracle Verification

We also assess the effectiveness of self-correction
involving an oracle verifier that receives the ground
truth of SV and then feeds it into the subsequent
SR stage. As shown in the blue rows of Table 1,

0.80
0.79 1
0.78
~
u
© 0.77
Y
=
0.76
@ OLMo-2 (NER+SC)
A+ Qwen2.5 (NER+SC)
0.75 1 ~® OLMo-2 (NER+5C w/ Self-correct)
—&— Qwen2.5 (NER+SC w/ Self-correct)
0.74

1B 7B 138 328
Model Size (Billions of Parameters)

Figure 5: Performance scaling across different model
sizes (averaged Micro-F1 scores over eight NER
datasets). NER+SC and NER+SC w/ Self-correct refer
to *LLMNER+sc and * + Self-correct, respectively.

denoted as T w/ Oracle SV, these models have
drastically improved NER performance across all
datasets. These results indicate that the models are
capable of effectively correcting their own errors
when accurate SV outputs are provided. There-
fore, the bottleneck of self-correction lies in SV
rather than SR, which is consistent with previous
work (Tyen et al., 2024). These findings motivate
future work to enhance SV performance to further
improve NER performance.

4.5 Performance Scaling on Large Models

We demonstrated the effectiveness of our approach
on tiny (&) and small ({») model sizes, as described
in § 4.3. In this section, we extend the analysis to
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Error type  OLMongr+sc  Qwenyggrisc
None 0.919 0.928
OE 0.262 0.277
UE 0.396 0.453
Type 0.255 0.352
Span+Type 0.291 0.389
Spurious 0.528 0.591
Micro-F1 0.850 0.863
Macro-F1 0.500 0.550

Table 2: Performance of self-verification (averaged F1
scores over eight NER dataset). Tiny models (&) are
used in the experiment. Details are in Appendix D.

larger models, such as O and #. As illustrated in
Figure 5, our approach consistently improves NER
performance as the model size increases.

5 Discussion

In this section, we analyze the self-correction be-
havior of our approach to gain deeper insights into
the mechanisms underlying its performance im-
provements.

5.1 Performance of Self-verification

In § 4.4, we demonstrated that self-verification
performance still has substantial room for im-
provement. To this end, we evaluate the perfor-
mance of self-verification using two model variants,
OLMonEgRr+sc () and Qwenygg s ().

As shown in Table 2, the proposed approaches
perform well on correct entities (None). However,
the performance of these models on other error
types (i.e., incorrect entities) remains insufficient.
Unlike previous studies (Huang et al., 2024; Zhang
et al., 2025), our results suggest that the proposed
approach prevents the excessive refinement of cor-
rect entities. However, it still struggles to ade-
quately revise its own mistakes. Therefore, in the
subsequent section, we further analyze erroneous
entities by error type in predictions.

5.2 Distribution of Erroneous Entities

Figure 6 illustrates the distribution of erroneous
entities across different error types. Comparing
OLMonggr with OLMongR+sc, our approach re-
duces the number of erroneous entities across sev-
eral error types. This indicates that self-correcting
instruction tuning not only improves NER perfor-
mance but also helps prevent the generation of er-
roneous entities. Additionally, OLMonggr+sc +

[ Self-correction
[ SC w/ Oracle SV

6001 /1 NER
[ NER+SC
5004

- H—}_IT
0 | | e R I
OE UE

Type Span+Type Spurious

N
o
o

N
o
o

# of erroneous entities
w
o
o

Figure 6: Distributions of erroneous entities across
different error types in BC5CDR. NER, NER+SC,
Self-correction, and SC w/ Oracle SV correspond to
OLMONER, OLMONER+Sc, OLMONER+SC + Self-
correct, and OLMongr+sc + Self-correct w/ Oracle
SV, respectively.

Self-correct further reduces the generation of er-
roneous entities across all error types, especially
Spurious. Therefore, the proposed approach con-
tributes to further refining the LLLM’s predictions
in NER. The detailed case study can be found in
Appendix C.

5.3 Ablation Study

Role of Self-correcting Instruction Tuning

In this section, we investigate how self-correcting
instruction tuning endows LLMs with the capabil-
ity to understand correct and incorrect patterns in
NER. As described in § 3.1, we employed two aux-
iliary tasks, SE and ET. These tasks are designed to
enhance the model’s understanding of entity bound-
aries and types, while self-correction aims to refine
this understanding. To assess their impact, we con-
duct an ablation study on instruction tuning.

As shown in Table 3, we first observe that NER
performance of the baseline model, OLMongg,
decreases when it is trained solely on the NER
task (i.e., w/o SE and ET). This indicates that the
auxiliary tasks, SE and ET, play an important role
in better understanding the NER task via instruction
tuning.

In contrast, self-correcting instruction tuning
without auxiliary tasks (i.e., w/o SE and ET) does
not negatively affect NER performance. Further-
more, this result is consistent with applying self-
correction at test time. These findings suggest that
SV and SR tasks endow LLMs with the capabil-
ity to understand not only correct and incorrect
patterns in NER but also characteristics of entity
boundaries and types.
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Model bcScdr  bionlp  conll fin ontonotes wikiann wnut scier mean
& w/o self-correcting instruction tuning

OLMonEer 0.870  0.731 0910 0.605 0.835 0.709 0.431 0.789 0.735
w/o SE and ET 0.852 0.730 0916 0.417 0.842 0.715 0451 0.785 0.714
& w/ self-correcting instruction tuning

OLMonER+sc 0.877 0.730  0.907 0.674 0.849 0.705 0482 0.795 0.752
w/o SE and ET 0.879 0.735 0917 0.655 0.845 0.712 0466 0.793 0.750
w/o SV 0.873 0.734 0.908 0.667 0.848 0.712 0471 0.791 0.750
w/o SR 0.880  0.737 0913 0.660 0.849 0.708 0.460 0.794 0.750
OLMonEgr+sc + Self-correct 0.882 0.747 0914 0.684 0.853 0.735 0414 0.794 0.753
w/o SE and ET 0.882 0.747 0.923 0.673 0.855 0.738 0.414 0.795 0.753
w/o SV 0.874  0.730 0912 0.691 0.854 0.713 0474 0.795 0.755
w/o SR 0.886 0.740 0917 0.720 0.856 0.734 0362 0.794 0.751

Table 3: Results of the ablation study on self-correcting instruction tuning (Micro-F1 scores).

Self-verification vs. Self-refinement

As shown in Table 3, we also investigate how intro-
ducing SV and SR contributes to the NER task. For
the base model OLMonggr+sc, SV and SR tasks
contribute equally to the downstream task. How-
ever, when applying self-correction at test time
(i.e., OLMoNEgR+sc + Self-correct), NER perfor-
mance varies depending on SV performance. For
the WNUT 2017 dataset, although NER perfor-
mance substantially increases when applying self-
correction without SV, it drastically decreases when
SR alone is excluded’. This is because SV perfor-
mance on WNUT 2017 is relatively lower than that
on other datasets, as shown in Table 10. In con-
trast, NER performance of OLMongr+sc + Self-
correct is relatively high on BC5CDR, BioNLP
2004, and WikiAnn, where SV performance is also
high. Therefore, the SV task plays a more critical
role in correcting NER errors, enabling the model
to revise its own mistakes more precisely.

5.4 Impact of Iterative Self-correction

We conduct a quantitative analysis of the trade-offs
between the number of self-correction iterations
and performance improvements to better under-
stand how iterative self-correction contributes to
overall performance. To this end, we used 1,000
randomly sampled instances from the entire Dev
split of OntoNotes 5.0. For a comprehensive anal-
ysis, we employed OLMonggr+sc With different
parameter sizes, denoted as &, >, O, and #.

As illustrated in the left part of Figure 7, the
proposed approach increases NER performance by
up to 1.93% after three iterations. While applying
self-correction only once yields sufficient perfor-
mance improvements, iterative self-correction is

5The detailed inference process for self-correction without
SV and SR is described in Appendix B.

consistently more effective. Furthermore, since all
variants reach performance saturation after four it-
erations, the associated computational cost is likely
acceptable for real-world applications.

We further analyze the relationship between pre-
cision and recall to better understand how the
proposed approach behaves during iterative self-
correction. As illustrated in the middle part of Fig-
ure 7, self-correction substantially improves overall
precision by up to 6.12% compared to the baseline
model OLMongr-+sc, which does not apply self-
correction. However, as illustrated in the right part
of Figure 7, self-correction moderately decreases
recall by up to 2.51% when the number of iterations
is one, resulting in a trade-off between precision
and recall. Nevertheless, iterative self-correction
slightly recovers its recall after two iterations, in-
dicating that the proposed approach can revise its
own mistakes arising from self-correction.

6 Related Work

6.1 Named Entity Recognition

Traditional approaches formulate NER as a se-
quence tagging problem, predicting the probabil-
ity distribution over entity types and assigning a
predefined label to each token (Hammerton, 2003;
Lample et al., 2016; Devlin et al., 2019; Yamada
et al., 2020). In contrast, generative approaches
have been proposed to formulate NER as a text
generation task (Xie et al., 2023, 2024; Wang et al.,
2025). Based on instruction tuning approaches,
models have shown remarkable performance in a
wide range of datasets (Wang et al., 2023a; Sainz
etal., 2024; Zhou et al., 2024; Li et al., 2024). How-
ever, erroneous predictions, including entity bound-
aries and types, remain a persistent challenge.

To address this issue, Li et al. (2023) explored
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Figure 7: Performance improvements over iterative self-correction on OntoNotes 5.0. OLMongr+sc with different
model sizes was used in the experiments. An iteration count of 0 indicates that the model extracts entities without
self-correction; for higher counts, self-correction is applied iteratively.

an approach to correct erroneous entities without
re-training, by leveraging a gazetteer that maps
correct entities to their types. The approach is a
training-free method to revise its own mistakes, but
relies heavily on the gazetteer. Meanwhile, Wang
et al. (2025) introduced a self-verification strat-
egy for NER to validate predicted entities, but it
does not focus on error correction. Additionally,
Kim et al. (2024) proposed a post-hoc approach to
revise incorrect entities via knowledge-grounded
reasoning based on self-consistency (Wang et al.,
2023b). However, this approach has two short-
comings: (1) an elaborate knowledge base is not
always available, and (2) self-consistency-based
refinement ignores entities with minority votes.
This study focuses on correcting erroneous en-
tities in LLMs through self-correcting instruction
tuning, which enables an LLLM to perform NER
and correct its own mistakes. Notably, the dataset
used for self-correcting instruction tuning can be
constructed solely from a standard NER dataset.

6.2 Self-correction

Self-correction aims to improve responses from
LLMs by verifying their own responses and refin-
ing them (Madaan et al., 2023; Chen et al., 2024;
Pan et al., 2023; Gou et al., 2024; Kamoi et al.,
2024; Kumar et al., 2025). Despite the signifi-
cant capabilities of LLMs, recent studies have re-
ported negative results, showing that intrinsic self-
correction often fails to correct mistakes (Huang
et al., 2024; Zhang et al., 2025). To tackle this
issue, recent studies have explored the effective-
ness of supervised fine-tuning (Ranaldi and Freitas,
2024; Zhang et al., 2024b; Lee et al., 2025). While
these approaches have focused mainly on reasoning
tasks (Pan et al., 2023; Chen et al., 2024; Ma et al.,

2025), little work has explored self-correction to en-
hance performance in information extraction tasks,
such as NER.

This study is the first attempt to explore the ef-
fectiveness of self-correction in NER through self-
correcting instruction tuning.

7 Conclusion

In this paper, we proposed a self-correcting instruc-
tion tuning approach that simultaneously learns to
perform NER and correct its own mistakes. Our
approach requires only a standard annotated NER
dataset, as supervision for self-correcting instruc-
tion tuning can be derived from the outputs of
LLMs. Experimental results demonstrated remark-
able performance improvements across eight NER
datasets using two LLMs. We further analyzed the
behavior of self-correction to better understand our
approach and bridge the gap toward future research.

As future work, we first aim to improve self-
verification to further enhance NER performance.
We also plan to explore the application of our ap-
proach to other information extraction tasks, such
as relation extraction.

Limitations

While our approach demonstrated notable perfor-
mance improvements across eight widely used
NER datasets and two LLMs, several limitations
remain. First, the zero-shot setting, widely used
in prior work to assess the generalization ability
of models (Wang et al., 2023a; Sainz et al., 2024;
Zhou et al., 2024), is not directly focused on this
study. Therefore, our approach may be suboptimal
in this scenario. We plan to evaluate the effec-
tiveness of our approach under such conditions in
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future work. Second, the iterative self-correction
process at test time increases the computational
cost compared to previous methods. This issue can
be mitigated by adjusting the number of iterations
in the self-correction process, but the trade-offs
between efficiency and performance need further
exploration.

Ethics Statement

This research was conducted in accordance with the
ACL Ethics Policy. This study focuses on named
entity recognition using self-correcting instruction
tuning. We employed two open-sourced LLMs,
OLMo-2 (OLMo et al., 2024) and Qwen2.5 (Yang
et al., 2024), both of which are released under the
Apache 2.0 license. We used them in accordance
with the terms of their respective licenses. The
datasets used in our experiments may contain per-
sonally identifiable information (PII), as is com-
mon in NER tasks. However, all datasets were
publicly released for research purposes, and we
used them strictly within that context. No man-
ual inspection or annotation of sensitive content
was performed, and our models were not trained to
identify or generate personal information beyond
the existing dataset annotations.
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A Dataset Statistics

In this section, we provide detailed statistics for
each dataset used in the experiments.

A.1 NER Datasets

In this paper, we conducted comprehensive ex-
periments on eight NER datasets, as described in
§ 4. For T-NER (Ushio and Camacho-Collados,
2021), the datasets were downloaded from the
Hugging Face repository: https://huggingface.
co/tner/datasets, while SciER (Zhang et al.,
2024a) was obtained from the GitHub repository:
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Dataset # types Train Dev Test
BC5CDR 2 5,228 5,330 5,865
BioNLP 2004 5 16,619 1,927 3,856
CoNLL 2003 4 14,041 3,250 3,453
FIN 4 1,018 150 305
OntoNotes 5.0 18 59,924 8,528 8,262
WikiAnn 3 20,000 10,000 10,000
WNUT 2017 6 2,395 1,009 1,287
SciER 3 5,575 713 854

Table 4: Dataset statistics for NER. Train, Dev, and
Test indicate the number of sentences in each split.

https://github.com/edzq/SciER. For experi-
ments and analyses, we divided each dataset into
three splits: Train, Dev, and Test. We used Test
split in the main experiment and ablation study, as
described in § 4 and § 5.3. We also used Dev split
in analyses, as described in § 2, § 5.1, § 5.2, and
§ 5.4. The statistics of these datasets are shown in
Table 4.

A.2 Self-correction Datasets

To perform self-correcting instruction tuning, we
first generated datasets to train the model, as de-
scribed in § 3.4. The statistics of the generated
datasets are shown in Table 5 and 6.

B Implementation Details

Training Configurations. We employed two
open-sourced LLMs, OLMo-2 (OLMo et al., 2024)
and Qwen2.5(Yang et al., 2024). These models
can be downloaded from the following repositories:
OLMo-2 (https://huggingface.co/allenai/
OLMo-2-0425-1B) and Qwen2.5 1.5B (https://
huggingface.co/Qwen/Qwen2.5-1.5B), respec-
tively. We used these models via the Hugging Face
Transformers library (Wolf et al., 2020). For in-
struction tuning, we employed QLoRA (Dettmers
et al., 2023) with o« = 128 and r = 64 to update
the learnable parameters in LLMs. The models
were trained for 3 epochs using the AdamW opti-
mizer (Loshchilov and Hutter, 2019) with a batch
size of 32 and a learning rate of 2 x 107°. We
used a cosine learning rate schedule with a warmup
ratio of 0.1. To avoid overfitting, we applied early
stopping based on the NER Micro-F1 score. We
trained the model on a single NVIDIA H200 GPU,
which took approximately 3 to 32 hours® to com-
plete 3 epochs. To reduce computation time dur-
ing instruction tuning, we employed the Unsloth

The training time depends heavily on the model and
dataset sizes.

library (Daniel Han and team, 2023).

Inference Configurations. For inference, we
used greedy decoding to generate named entities,
their verification results, and their revisions. The
maximum number of subword tokens was set to
128, 12, and 16 for NER, SV, and SR, respectively.
In § 5.3, self-correction without SV directly re-
vises all predicted entities once. Additionally, self-
correction without SR applies only the SV compo-
nent after NER prediction. Specifically, a predicted
entity is discarded if the SV component predicts the
verification result v; as incorrect, and included
in the final outputs if v; is predicted as correct.

C Case Study

In this section, we present and discuss represen-
tative case studies that shed light on the model’s
strengths and limitations.

UE error correction. Table 7 presents an exam-
ple of UE error correction. The baseline model,
OLMongg, fails to extract any correct entities. In
contrast, the proposed model, OLMonEgR+sc, sSuc-
cessfully extracts the correct entity (‘STZ’, ‘chem-
ical’), although an incorrect one is also extracted.
The proposed model with self-correcting inference,
OLMonEgRr+sc + Self-correct, retains only the cor-
rect entity while the incorrect entity is discarded
during the self-verification process. Since the er-
ror type of the discarded entity is UE which can be
revised during self-refinement, designing a more
accurate refinement process is left for future work.
Type error correction. Table 8 presents an ex-
ample of Type error correction. Although the base-
line model generates the correct span boundaries,
it misclassifies their types. The proposed model
OLMonEgRr+sc successfully recognizes entity men-
tions and classifies them with the correct type. This
demonstration suggests that self-correcting instruc-
tion tuning enables LLMs to better understand the
characteristics of entity types, as discussed in § 5.3.
Spurious error correction. Table 9 represents
an example of Spurious error correction. The
baseline model extracts an incorrect entity, which
has no partial overlap with any ground truth en-
tity. On the other hand, the proposed model,
OLMonEgRr+sc, successfully extracts correct en-
tities that are missed by the baseline model. Fur-
thermore, the proposed model with self-correcting
inference, OLMongRr+sc + Self-correct, also ex-
tracts correct entities while discarding the incorrect
entity classified as Spurious.
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Dataset Correct OE UE Type Span+Type Spurious

& OLMo-2

BC5CDR 8,063 873 731 57 111 3,297
BioNLP 2004 37,170 4,268 7,074 4,335 3,714 13,561
CoNLL 2003 22,151 424 682 1,779 572 1,823
FIN 590 76 80 67 91 2,022
OntoNotes 5.0 68,638 9,528 10,871 13,683 13,788 32,394
WikiAnn 20,132 1,122 4,527 11,439 3,541 14,937
WNUT 2017 1,147 212 221 636 327 5,679
SciER 15,364 2,665 2,410 1,352 1,262 10,210
& Qwen2.5

BC5CDR 8,116 634 598 50 38 1,862
BioNLP 2004 37,454 4,108 6,700 4,263 3,731 12,592
CoNLL 2003 22,220 252 561 1,295 500 1,138
FIN 589 48 72 28 77 1,640
OntoNotes 5.0 69,010 6,866 12,462 15,029 12,051 22,709
WikiAnn 19,643 547 2,192 6,561 1,599 6,503
WNUT 2017 1107 102 129 298 114 1,334
SciER 15,107 1,568 1,388 966 778 3408

Table 5: Dataset statistics for self-correction in the Train split. Each number represents the number of entities in
the category. To generate these datasets, we used two LLMs fine-tuned on the target dataset: OLMo-2 (&) and
Qwen2.5 (&%). The number of sentences in each dataset is equal to the NER dataset.

Dataset Correct OE UE Type Span+Type Spurious
<> OLMo-2

BC5CDR 8,152 526 570 28 58 1,573
BioNLP 2004 37,609 4,217 7,204 4,346 3,655 11,789
CoNLL 2003 22,317 244 544 1,110 427 774
FIN 613 50 98 43 68 1,493
OntoNotes 5.0 69,347 5,990 9,989 12,149 9,061 20,132
WikiAnn 19,419 342 1,485 3,567 875 4,356
WNUT 2017 1,130 83 108 263 90 1,130
SciER 15,116 1,426 1,350 970 698 2,984
$ Qwen2.5

BC5CDR 8,155 470 483 38 58 1,201
BioNLP 2004 37,370 3,381 6,492 4,132 3,231 9,557
CoNLL 2003 22,312 205 463 1,208 389 608
FIN 600 38 82 32 49 838
OntoNotes 5.0 69,118 4,939 8,366 10,705 7,726 14,884
WikiAnn 19,609 421 1,765 4,992 1,230 4,643
WNUT 2017 1,102 54 93 263 78 772
SciER 15,180 1,190 1,164 734 685 2,328

Table 6: Dataset statistics for self-correction in the Train split. Each number represents the number of entities in
the category. To generate these datasets, we used two LLMs fine-tuned on the target dataset: OLMo-2 ({>) and
Qwen2.5 (<»). The number of sentences in each dataset is equal to the NER dataset.
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Example of UE error correction on BC5CDR (Wei et al., 2016)
Input Text T' In Alzheimer’s disease groups, rats were injected with STZ - icv

bilaterally (3 mg / kg) in first day and 3 days later, a similar STZ - icv
application was repeated.

Ground Truth S [[‘Alzheimer’s disease’, ‘disease’], [‘'STZ’, ‘chemical’]]
Model Prediction

OLMongr [[‘s disease’, ‘disease’]]

OLMonER4+sC [[‘s disease’, ‘disease’], [‘'STZ’, ‘chemical’]]

OLMonNgRr+sc + Self-correct  [[‘STZ’, ‘chemical’]]

Table 7: Example of an UE error correction from the SciER dataset. The correct and incorrect entities are
highlighted in the table. The format of the ground truth and prediction is as follows: [[‘entity’, ‘type’], .. .].

Example of Type error correction on SciER (Zhang et al., 2024a)

Input Text T' In addition both Granard Town Council and Longford Town Council
were abolished.

Ground Truth S [[‘Granard Town Council’, ‘location’], [‘Longford Town Council’,
‘location’]]

Model Prediction

OLMonEgR [[‘Granard Town Council’, ‘organization’], [ ‘Longford Town Coun-
cil’, ‘organization’]]

OLMoNER+SC [[‘Granard Town Council’, ‘location’], [‘Longford Town Council’,

‘location’]]
OLMongRr+sc + Self-correct  [[‘Granard Town Council’, ‘location’], [‘Longford Town Council’,
‘location’]]

Table 8: Example of a Type error correction from the SciER dataset. The correct and incorrect entities are
highlighted in the table. The format of the ground truth and prediction is as follows: [[‘entity’, ‘type’], .. .].

Example of Spurious error correction on BioNLP 2004 (Collier et al., 2004)

Input Text T’ Fewer virus-exposed cells from elderly donors stained for Fos and
Jun at each data point compared with cells from young donors.

Ground Truth S [[‘Fos’, ‘protein’], [‘Jun’, ‘protein’]]

Model Prediction

OLMongR [[‘virus-exposed cells’, ‘cell line’]]

OLMonER+sC [[“virus-exposed cells’, ‘cell line’], [‘Fos’, ‘protein’], [‘Jun’, ‘pro-
tein’]]

OLMonEgRr+sc + Self-correct  [[‘Fos’, ‘protein’], [‘Jun’, ‘protein’]]

Table 9: Example of a Spurious error correction from the BioNLP 2004 dataset. The correct and incorrect

entities are highlighted in the table. The format of the ground truth and prediction is as follows: [[‘entity’, ‘type’],
-
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Error type  bcScdr  bionlp  conll fin ontonotes wikiann wnut scier mean
None 0.951 0912 0976 0.989 0.942 0918 0.782 0.8384 0.919
OE 0.562 0.235 0.000 0.000 0.359 0.222 0.256 0463 0.262
UE 0376  0.525 0.478 0.000 0.594 0.697 0.140 0362 0.396
Type 0.000 0.317 0.328 0.000 0.327 0.376 0.344 0.345 0.255
Span+Type 0.333  0.330 0.143 0.000 0.656 0473 0.235 0.157 0.291
Spurious 0.612 0.386 0.359 0.857 0.169 0.925 0485 0432 0.528
Micro-F1 0903  0.832 0943 0.968 0.883 0.859 0.629 0.778 0.850
Macro-F1 0.534  0.505 0.461 0.402 0.562 0.639 0.410 0489 0.500

Table 10: Detailed self-verification performance of OLMongr+sc (&) on eight NER datasets.

Error type ~ bcScdr  bionlp  conll fin ontonotes wikiann wnut scier mean
None 0956  0.905 0978 1.000 0.951 0923 0.787 0921 0.928
OE 0.548  0.146 0.000 0.000 0.488 0222  0.385 0430 0.277
UE 0494  0.539 0.773  0.000 0.594 0.650 0.133 0.437 0453
Type 0.500  0.373 0.395 0.000 0.357 0418 0.348 0422 0.352
Span+Type 0444 0409 0476 0.000 0.746 0367 0.318 0353 0.389
Spurious 0.630  0.361 0.500 0.933 0.471 0922 0386 0.529 0.591
Micro-F1 0912  0.817 0.954 0.989 0.901 0.863 0.634 0.837 0.863
Macro-F1 0.640  0.507 0.582 0.418 0.644 0.624 0427 0561 0.550

Table 11: Detailed self-verification performance of Qwenygg 5c () on eight NER datasets.

D Self-verification Performance

Tables 10 and 11 present the detailed SV perfor-
mance of OLMongr+sc () and Qwenygr . sc

(&), complementing Table 2.

E Prompts

We provide comprehensive prompts for each task
as listed in Table 12 and 13. As described in § 3,
each prompt consists of the following components:
(1) task instruction I, (2) label candidates L, and
(3) label descriptions D. These prompts were used

during training and inference phases.
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Prompts for NER on SciER (Zhang et al., 2024a)

Task instruction INgr Please list all the entity words associated with the category in the given
text.
Output format should be { ‘ner’: [[‘entity’, ‘type’], [‘entity’, ‘type’],...]}
Label candidates Lxygr ~ The entity type candidates are , , and

Label description Dxgr ~ The descriptions of each label are as follows:

: A realistic collection of data that is used for training, validating
or testing the algorithms. These datasets can consist of various forms
of data such as text, images, videos, or structured data. For example,
MNIST, COCO, AGNews, IMDb, etc.

: A task in machine learning refers to the specific problem or type
of problem that a ML/AI model is designed to solve. Tasks can be broad,
like classification, regression, or clustering, or they can be very specific,
such as Pedestrian Detection, Autonomous Driving, Sentiment Analysis,
Named Entity Recognition and Relation Extraction.

: A method entity refers to the approach, algorithm, or technique
used to solve a specific task/problem. Methods encompass the com-
putational algorithms, model architectures, and the training procedures
that are employed to make predictions or decisions based on data. For
example, Convolutional Neural Networks (CNNs), Dropout, data aug-
mentation, recurrent neural networks, etc.

Prompts for SE on SciER (Zhang et al., 2024a)
Task instruction Isg Please list all entity words in the text that fit the target label described
below.
The target label to extract entities is [PLACEHOLDER].
Output format should be {‘se’: [[‘entity’, ‘type’], [‘entity’, ‘type’],...]}
Label candidates Lygr =~ Same as NER (LngR).
Label description Dygr =~ Same as NER (DNgR)-
Prompts for ET on SciER (Zhang et al., 2024a)
Task instruction /gt Given options, please list all entity types of all the listed entity words.
Output format should be {‘et’: [[‘entity’, ‘type’], [ ‘entity’, ‘type’]....]}
Label candidates Lygr =~ Same as NER (LygR).
Label description Dygr =~ Same as NER (DNgR)-

Table 12: Prompts for the NER, SE, and ET tasks on SciER. The variable [PLACEHOLDER] in Igg is replaced with
the target label /;. Label candidates and their descriptions in the SE and ET tasks are omitted, as these prompts are
same as NER.
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Prompts for SV on SciER (Zhang et al., 2024a)

Task instruction Igy Given the input text, label candidates, and their descriptions, please check
whether or not the named entity which is given as the input is correct.
Additionally, if the named entity is incorrect, please classify the error
type of the incorrect entity from the given options.
Note that the output of the error type should be if the entity is
correct.
The output should be in the JSON format like this: {‘sv’: (CORRECTNESS,
ERROR_TYPE) }

- CORRECTNESS: or
- ERROR_TYPE: R s R
, , or
Label description Dygr =~ Same as NER (Dngr).
Label candidates Lgy The correctness candidates are and
The error type candidates are , ,
, s , and .

Label description Dgy The definitions of each error type are as follows:

: The type of input entity is correct but the input entity
includes redundant tokens compared with the gold entity so that several
tokens should be discarded.

: The type of input entity is correct but the input
entity lacks several tokens that are included in the gold entity so that
several tokens from the input text should be added.

: The input entity is exactly matched to the gold entity but the type

of the input entity is incorrect compared with the type of the gold entity.
: Both the input entity and its type is incorrect.

: A completely incorrect entity that gold annotation does not

exist.
Prompts for SR on SciER (Zhang et al., 2024a)
Task instruction Iggp Given the entity extracted from the input text, please revise the entity

correctly while carefully comparing the entity to the label descriptions.
Note that the output should be the same for the input entity if the entity
was correct (i.e., no need to revise).
The output should be in the JSON format like this: {‘sr’: (‘entity’,
‘type’)}

Label candidates Lygr =~ Same as NER (LngR).

Label description Dygr =~ Same as NER (DngRr)-

Table 13: Prompts for the SV and SR tasks on SciER. Label candidates and their descriptions in the SV and SR
tasks are omitted, as these prompts are same as NER.
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