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Abstract

Knowledge distillation (KD) is a popular
method of transferring knowledge from a large
“teacher” model to a small “student” model.
Previous work has explored various layer-
selection strategies (e.g., forward matching and
in-order random matching) for intermediate-
layer matching in KD, where a student layer is
forced to resemble a certain teacher layer. In
this work, we revisit such layer-selection strate-
gies and observe an intriguing phenomenon
that layer-selection strategy does not matter
(much) in intermediate-layer matching—even
seemingly nonsensical matching strategies such
as reverse matching still result in surprisingly
good student performance. We provide an in-
terpretation for this phenomenon by examining
the angles between teacher layers viewed from
the student’s perspective. Our work sheds light
on KD practice, as layer-selection strategies
may not be the main focus of KD system de-
sign, and vanilla forward matching works well
in most setups. '

1 Introduction

Large language models have achieved impressive
performance in various NLP tasks (Hurst et al.,
2024; Guo et al., 2025). However, they need a large
number of parameters, making the models cumber-
some and difficult to run in resource-restricted sce-
narios. Knowledge distillation (KD; Hinton et al.,
2015) is a widely adopted method to reduce model
parameters by training a small “student” model
from a large “teacher.” With KD, the student is of-
ten able to retain most of the teacher’s performance
while using a fraction of its parameters (Gu et al.,
2024; Guo et al., 2025; Wen et al., 2025; Yang et al.,
2025).

Common KD approaches can be generally di-
vided into two categories: prediction matching and
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intermediate-layer matching. Matching the predic-
tion is usually mandatory, as it informs the stu-
dent of the task to solve. This can be achieved by
minimizing the divergence of predicted distribu-
tions (Hinton et al., 2015; Wen et al., 2023; Cui
et al., 2025) or using reinforcement learning (Hao
et al., 2022; Li et al., 2024).

Intermediate-layer matching distills the teacher’s
hidden states (i.e., intermediate layers) to the stu-
dent (Sun et al., 2019; Jiao et al., 2020; Gromov
et al., 2025). This approach often involves minimiz-
ing the distance between the student’s and teacher’s
hidden states (usually with a linear mapping if the
dimensions do not match). Also, a layer-selection
strategy is required to specify which teacher layer
is matched to which student layer.

Traditionally, researchers have explored various
layer-selection strategies. Sun et al. (2019) match
the student’s layers to evenly spaced teacher layers;
Passban et al. (2021) and Wu et al. (2021) learn
an attention mechanism over the teacher’s layers;
Haidar et al. (2022) match the student’s layers to
randomly selected layers from the teacher, albeit in
sorted order; and Wang et al. (2021) match the last
student layer to a teacher layer close to the end.

Despite numerous previous efforts, we observe
that the effectiveness of existing layer-selection
strategies is not convincing, as previous studies of-
ten lack proper controlled comparisons. For exam-
ple, Passban et al. (2021) only compare their work
with the vanilla layer-matching baseline, and Wang
et al. (2021) compare layer-selection strategies
without controlling weight initializations. In ad-
dition, existing work tends to omit important distil-
lation settings such as decoder-only model architec-
tures. As a result, there is a lack of understanding
about how different strategies compare against each
other.

In this work, we aim to better understand
how layer-selection strategies affect student per-
formance in KD. We conduct systematic controlled
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experiments across four models (BERT, BART, T5,
and Qwen3) on eight tasks (including both clas-
sification and generation). We also consider two
weight initialization strategies: random initializa-
tion and weight copying from the teacher. Our
experiments reveal intriguing findings that

1. The layer-selection strategy doesn’t matter
(much), as different strategies perform sim-
ilarly to each other, and

2. Regardless of layer-selection strategies,
intermediate-layer matching itself is a highly
effective KD method, outperforming the
no-matching baseline.

We provide an interpretation for this phenomenon
based on geometric analysis of the hidden states:
from the student’s point of view, the angles between
two teacher layers are often acute; thus, matching
any teacher layer pulls the student layer in a similar
direction. As a result, intermediate-layer matching
indeed benefits KD, although the matching strategy
does not matter (much).

Our study offers a practical suggestion for KD:
we recommend KD practitioners to focus on other
aspects of KD systems (e.g., distillation tempera-
ture, choice of f-divergence loss functions), while
simply using forward matching for intermediate-
layer matching as a default strategy, if computing
resources are limited.

2 Background and Related Work

Knowledge Distillation (KD) is a method of trans-
ferring rich knowledge contained in a teacher
model to a student model. To inform the student
of the task, it is essential to match the student’s
and teacher’s predictions (Bucild et al., 2006). Hin-
ton et al. (2015) suggest minimizing the Kullback—
Leibler (KL) divergence between the teacher and
student distributions, denoted by p and gg,, respec-
tively. The KL distillation loss is given by

p(ylx)

Lra(6:) =E worg) O

y~p(y[x) {1og
where x represents the input, and the output y (con-
ditioned on x) is sampled from p. The student’s
parameters 6 are optimized, whereas the teacher’s
parameters are frozen.

Other than minimizing KL, different prediction
matching approaches have been proposed. When
the teacher distribution is diverse, for example,

the reverse KL divergence (Tu et al., 2020; Gu
et al., 2024) is used due to its mode-seeking be-
havior, i.e., the student only focuses on one of
the high-probability regions in the teacher distri-
bution (Bishop, 2006). Wen et al. (2023) propose
an f-divergence KD framework, where symmet-
ric divergences (such as Jensen—Shannon and total
variation distance) provide a balance between mode
averaging and mode seeking. Reinforcement learn-
ing can also be applied to KD (Hao et al., 2022;
Li et al., 2024), which makes the student aware
of its prefix and addresses the exposure bias prob-
lem (Bengio et al., 2015).

Regarding intermediate-layer matching, it dis-
tills the teacher’s hidden states, thus providing addi-
tional supervisory signals to the student (Sun et al.,
2019; Wen et al., 2025). Let M = {(;,74)}: be
the mapping between certain student and teacher
layers, i.e., the g;th layer of the student is mapped
to the 7;th layer of the teacher. Intermediate-layer
matching typically penalizes the distance between
the matched layers, given by

Z dist(A

where dist is a distance metric (such as mean
squared error). The trainable linear operator A;

Lria(8s, {Ai}s) SO SO G))

transforms the student’s hidden state hgf) to the

space of the teacher’s hidden state h(T,tL.), if their di-
mensions do not match. Otherwise, A; may be an
identity matrix.

Intermediate-layer matching can be applied to
different types of representations. Traditionally,
this is achieved by matching the student’s and
teacher’s activations (Sun et al., 2019; Sanh et al.,
2019). Other studies match attention logits (Jiao
et al., 2020), query—key—value relations (Wang
et al., 2021), and cross-sample relations (Park et al.,
2019; Huang et al., 2023). In our work, we focus
on matching activations because it is the most fun-
damental approach in intermediate-layer matching.

Various layer-selection strategies have been pro-
posed for matching a shallow student to a deep
teacher. Sun et al. (2019) and Jiao et al. (2020)
suggest mapping evenly spaced teacher layers to
the student. Passban et al. (2021) and Wu et al.
(2021) match each student layer to a weighted com-
bination of all teacher layers to retain more knowl-
edge. Haidar et al. (2022) randomly reselect a
sequence of teacher layers to match with the stu-
dent (in order) after each epoch, so that the student
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is exposed to different teacher layers. Wang et al.
(2021) and Ko et al. (2023) suggest mapping the
last non-prediction student layer to a teacher layer
close to the end.

Overall, although previously proposed methods
work well within their environments, it remains
unclear how various layer-selection strategies com-
pare under a controlled setup, or the extent they
contribute to KD. Thus, we address this by con-
ducting systematic investigations across numerous
tasks, models, and initialization strategies, and pro-
vide an interpretation for our observations.

3 Approaches

Intermediate-layer matching requires a strategy
to select which teacher layers are matched with
which student layers. In this study, we explore both
standard and seemingly nonsensical layer-selection
strategies to uncover its effect on intermediate-layer
matching KD.

Forward Matching. In this variant, lower stu-
dent layers are matched to lower teacher layers. In
particular, we follow Sun et al. (2019) and select
evenly spaced teacher layers for matching.

All-to-One Matching. In this variant, all stu-
dent layers are matched to the middle teacher layer.
While the idea of matching to one layer is proposed
by previous studies (Wang et al., 2020, 2021), we
slightly modify their approaches (i.e., matching all
student layers instead of one), for fair comparison
with the rest of our settings.

Reverse Matching. We experiment with a coun-
terintuitive strategy, where matching is in reverse
order (i.e., lower student layers matched to upper
teacher layers). This seemingly nonsensical strat-
egy sheds light on the mechanism of intermediate-
layer matching.

Out-of-Order Random Matching. We choose
the same teacher layers as forward matching, then
randomly shuffle the order. The order is maintained
during distillation. We average the performance
across five seeds to evaluate the effect of different
random mappings.

Note that the intermediate-layer matching loss
is combined with the predictor’s KL loss by £ =
Lxr, + ALpig, where A is a hyperparameter to bal-
ance the losses. We experimentally determined
A = 3 to be a good balance between KL and
intermediate-layer matching losses, since it pro-
duces improved performance over the No Match-
ing (A = 0) baseline, while higher values of A\ may

negatively impact performance.

We emphasize that across all layer-selection
strategies, we fix the set of teacher layers that
are available for the student to learn from. In
other words, the only difference among the layer-
selection strategies is the order of matching.

4 Results and Analysis

Setups. We analyzed different layer-selection
strategies on both classification and generation
tasks. For classification, we adopt the widely used
MNLI (Williams et al., 2018), QQP,> QNLI (Ra-
jpurkar et al., 2016), and SST-2 (Socher et al.,
2013) using the BERT model (Devlin et al., 2019).
We also include more challenging tasks, namely
HellaSwag (Zellers et al., 2019) and Common-
senseQA (CoQA; Talmor et al., 2019), using the
more recent Qwen3 models (Yang et al., 2025). For
generation, we use the popular DART (Nan et al.,
2021) and WMT16 En-Ro (Bojar et al., 2016)
datasets. We evaluate BART (Lewis et al., 2020) on
the DART benchmark and T5 (Raffel et al., 2020)
on WMT16, respectively. Our selection of tasks
and models give a comprehensive coverage of dif-
ferent tasks and model architectures.

For moderate-sized student models (BERT,
BART, and T5), we explore two parameter initial-
ization strategies: copying the weights from select
teacher layers and random initialization. The for-
mer is a practical method used to quickly transfer
knowledge from select teacher layers to the stu-
dent (Sanh et al., 2019; Shleifer and Rush, 2020),
and the latter is used to study the effects of layer-
selection strategy in isolation. For the Qwen3 large
language model, we only perform weight-copying
because it is often not feasible to directly finetune
large models on downstream tasks without warm-
ing up the weights (commonly achieved through
pretraining).

More experimental details can be found in Ap-
pendix A.

Main Results. In Table 1, we present the
main results of our layer-selection experiments. In
Rows 1-2, our finetuned teachers perform simi-
larly to previous work (Devlin et al., 2019; Nan
et al., 2021; Wen et al., 2023), showing that we
have successfully set up the environment for KD
experiments.

We examine different layer-selection strategies.
As shown in Rows 9-12, the student model

2https: //www.kaggle.com/c/quora-question-pairs
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Layer Classification Tasks Generation Tasks
Model Matching # | MNLI-m/mm QQP QNLI SST-2 | DART WMTI16
Acc Acc / Fl Acc Acc | BLEU BLEU
Teacher Previous work | — 1| 84.6/ 834 - /712 905 93.5 48.56 25.82
Our replication | — 2| 845/841 89.0/ 714 90.8 93.1 48.80 25.90
None 31 63.2/63.6 815/54 612 81.1 38.76 8.02
Randomly Forward 41 725/ 720 839 /613 64.7 85.1 32.64 18.13
initialized Reverse 5| 6937689 843/ 61.8 65.2 83.3 33.12 17.15
All-to-one 6| 740 / 73.8 834/ 602 650 854 | 33.86 17.16
Student Out-of-orderrand | 7 | 70.5 /705 824/ 58.8 644 829 | 32.73 16.71
None 8| 774 /765 87.6/ 671 812 88.7 | 46.32 22.36
Forward 91| 79.7 / 788 88.2 / 69.1 83.8 92.3 | 47.94 22.65
Weights copied | Reverse 10| 79.2 /782 88.1/ 683 832 89.6 | 48.45 21.57
All-to-one 11| 794 /787 876/ 68.6 82.8 914 | 47.10 21.89
Out-of-orderrand | 12 | 79.0 / 780 875/ 672 826 90.7 | 47.99 22.01

. HellaSwag CoQA

Model | Layer Matching | # Acc Exact Match
Teacher | — 1 63.11 75.02
None 2 35.16 33.73
Forward 3 37.85 35.40
Student | Reverse 4 35.01 37.67
All-to-one 5 34.99 37.35
Out-of-order rand | 6 35.47 34.80

Table 2: KD results on more challenging tasks using the
recent Qwen3 model.

achieves similar results across different strategies,
with only 2-3 points difference in accuracy for
classification tasks and 1-2 points difference in
BLEU for generation tasks. Notice that Reverse
Matching and Out-of-Order Random Matching ap-
pear nonsensical, when in fact they still achieve
close performance to Forward Matching, largely
outperforming No Matching. The results show that
layer-selection strategy has an unexpectedly small
effect on student performance.

It should be emphasized that intermediate-layer
matching indeed helps KD compared with No
Matching,? even though the matching strategy does
not play a significant role. On MNLI, for example,
all strategies improve upon No Matching by six to
ten points with random weight initialization and
two points with weight-copying.

Next, we take a closer look at how different layer-
selection strategies behave under the two parameter
initialization settings. To reiterate, weight-copying
is a simple and practical method of transferring
the teacher’s knowledge to the student (Sanh et al.,

3One exception is the DART experiment with randomly
initialized weights, for which we suspect intermediate-layer
matching causes the student to overfit. That said, differ-
ent strategies still perform similarly to conventional Forward
Matching, and thus, it does not contradict our general finding.

Table 1: Main results. We use BERT on classification tasks, BART on DART, and T5 on WMT16.

2019; Shleifer and Rush, 2020). We also experi-
ment with randomly initialized students in order
to disentangle the effects of layer-matching. In
Rows 4-7, we see that layer-selection strategies
perform similarly to one another, and for the most
part better than No Matching.

Results on Challenging Tasks. We further com-
pare different layer-selection strategies on the more
challenging HellaSwag and CoQA tasks, which
involve more reasoning. As such, we employ the
newer Qwen3 models. As shown in Table 2, we
observe a similar trend as in our main results, i.e.,
different strategies generally produce similar re-
sults. This suggests the generality of our findings.

An Interpretation Based on Vector Angles. A
curious question arises from these observations:
why does intermediate-layer matching help KD,
but different layer-selection strategies perform sim-
ilarly? To answer this, we measure the angles be-
tween the teacher’s layers, viewed from the student.
Specifically, we measure the angles formed by two
teacher layers’ and one student layer’s vector rep-
resentations, depicted in Figure 1a. We show the
phenomenon in the MNLI and WMT16 En-Ro
datasets in Figures. 1b, 1c and 1d. We see that in
both randomly initialized and weight-copied set-
tings, the cosine similarity is positive, suggesting
that the angles are mostly acute. In other words, the
student layer is pulled to the same general direction
regardless of which teacher layer it is matched to.
This finding is consistent with Men et al. (2025)
and Gromov et al. (2025), where they show that
different layers may contain similar knowledge.

Additional Results. We further analyze the stu-
dent depth in Appendix B and experimental stabil-
ity in Appendix C.
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Figure 1: (a) Illustration of the angle calculation. Co-
sine similarities are shown for (b) MNLI classification,
(c) Encoder in the WMT task, (d) and Decoder in WMT
(bottom). Orange refers to the setup of random pa-
rameter initialization and blue refers to student weights
initialized by the teacher.

5 Concluding Remarks

In this paper, we observe an intriguing phenomenon
that, although intermediate-layer matching helps
knowledge distillation, the layer-selection strategy
does not matter (much); we also provide an inter-
pretation based on the angles of teacher and student

layers. Our work suggests potential limitations
and oversights in previous work, where researchers
present various heuristic layer matching methods
when training their distilled systems, but their ef-
fect is not comprehensively studied. We advise
the KD practitioners to focus their efforts on other
areas of KD, for example, loss functions, initializa-
tions, and representation learning.

6 Limitations

In our work, we have experimented with various
setups, including eight tasks (six classification and
two generation), four model architectures, and two
parameter initialization methods. Although the re-
sults are generally consistent, there is one exception
that intermediate-layer matching does not help in
the DART setup. This is understandable as em-
pirical findings are often noisy. We suspect that
it is due to the student model overfitting to the
teacher’s representations, since we are training a
wider student model (compared to TS and BERT
students) from randomly initialized weights on a
small dataset. That said, this does not contradict
our conclusions, as all layer-selection strategies
still perform equally bad.

Additionally, we clarify that our work focuses
on KD in the fine-tuning regime (for a certain task)
instead of pretraining, due to the limited resources.
It is noticed that fine-tuning is the typical setting
of how most practitioners perform KD. We also
mention that this paper is intended for an NLP
audience, therefore non-NLP experiments (such as
computer vision) are outside the scope of this work.

It is also worth mentioning that our work does
not suggest intermediate-layer matching is unhelp-
ful for KD. Rather, we present an interesting phe-
nomenon that the layer-selection strategy plays an
insignificant role in the process. We argue that fu-
ture studies on layer selection should have a more
rigorous comparison of its effect.
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A Datasets and Models

We evaluate our layer-selection strategies on a vari-
ety of classification and generation tasks.

GLUE. The General Language Understanding
Evaluation (GLUE) benchmark is a popular suite
for natural language classification. From GLUE,
we chose MNLI (Williams et al., 2018), QQP,4
QNLI (Rajpurkar et al., 2016), and SST-2 (Socher
et al., 2013), as these tasks have large training sets
and produce robust model performance. For each
task, we finetune the 12-layer BERTg,s (Devlin
et al., 2019) as the teacher. We adopted standard
evaluation metrics, namely, accuracy for all tasks
and [ as an additional metric for QQP.

DART. The DART dataset (Nan et al., 2021) is a
popular data-to-text generation task. We followed
Nan et al. (2021) and finetuned BARTY 3¢ (Lewis
et al., 2020) with 12 encoder and 12 decoder layers,
which is the teacher model in the experiment. We
report BLEU scores measuring textual overlap (Pa-
pineni et al., 2002).

WMT16 En—Ro. The WMT16 dataset (Bojar
et al., 2016) provides parallel text between six dif-
ferent language pairs. For our experiments, we fol-
lowed the setups in Wen et al. (2023), who chose
the English—Romanian translation direction and
used 100K from the 614K total samples for effi-
ciency considerations. We also followed Wen et al.
(2023) and finetuned 12-layer T5p,s (Raffel et al.,
2020) as the teacher, which has the same number
of layers as the DART experiment. We also report
BLEU scores as the evaluation metric.

CommonsenseQA. The CommonsenseQA
dataset (Talmor et al.,, 2019) is a question-
answering task where each question is followed
by five possible answers. We concatenated the
correct answer with the question, then finetuned
the 40-layer Qwen3-8B for next-token prediction
to use as the teacher. Following Biderman et al.
(2024), we use zero-shot prompting to obtain

4ht’cps ://www.kaggle.com/c/quora-question-pairs

responses from the language model and report
exact match with the ground truth.

HellaSwag. The HellaSwag dataset (Zellers
et al., 2019) is a difficult sentence completion task
that presents prefix sequence along with four possi-
ble endings. Like the previous task, we finetuned a
40-layer Qwen3-8B model for next-token predic-
tion. We follow Biderman et al. (2024) and use the
language model to rank each ending according to
perplexity, conditioned on the prefix.

For the student, we adopted the teacher’s archi-
tecture but reduced the number of layers to three in
the main experiments. Specifically, we use teacher
Layers 4, 8, and 12 for matching. Note that, for
BART and T5 models, this means three layers for
the encoder and another three layers for the decoder.
Moreover, we employed two parameter initializa-
tion strategies for the student: randomly initializ-
ing the weights and copying the weights from the
corresponding teacher layer. The former isolates
the effects of intermediate-layer matching from
weight copying, whereas the latter is a more practi-
cal method that yields higher performance (Sanh
et al., 2019; Shleifer and Rush, 2020).

Regarding the more challenging experiments,
namely HellaSwag and CommonsenseQA, we
shrunk the student by the same proportions as in
the main setup. Specifically, we distilled the 40-
layer teacher to a 10-layer student, using Layers 4,
8, - - -, and 40 in the teacher model for matching.

B Analysis of Student Depths

We validate our intriguing phenomenon across stu-
dents with different depths. Due to the limit of com-
puting resources, we selected MNLI as the repre-
sentative classification task, but include both DART
and WMT16 En—Ro generation tasks. Specifically,
we experimented with student models containing
three, six, and nine layers, initialized by copying
the teacher’s weights. As seen in Table 3, differ-
ent layer-selection strategies show similar perfor-
mances, confirming that the layer-selection strate-
gies do not matter (much) across student models
with various depths.

C Experimental Stability

In the main results (Table 1), excluding the Out-
of-Order Random Matching setup, we ran every
experiment only once due to the large number of
models, tasks, and setups.

We show the stability of our results in Table 4

1693


https://arxiv.org/abs/2505.09388
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://www.kaggle.com/c/quora-question-pairs

. MNLI-m/mm DART WMTI16

Model Depth Layer Matching # Acc BLEU BLEU
Teacher | 12-layer | — 1| 845/ 841  48.80 25.90
None 21 7747765 46.32 22.36

Forward 3| 79.7 /788 47.94 22.65

3-layer | Reverse 41 792/ 782 4845 21.57
All-to-one 51 794 /787 47.10 21.89

Out-of-orderrand | 6 | 79.0 / 78.0  48.18 22.04

None 7| 821/ 813 46.88 24.91

Forward 8| 835/ 829 4845 25.00

Student | 6-layer | Reverse 9| 82.1/809 4845 24.30
All-to-one 10| 823/ 81.8 4839 24.44

Out-of-orderrand | 11 | 82.3 / 81.5 48.03 24.38

None 12| 842/ 833 46.05 25.88

Forward 13| 84.1 / 834 47.66 25.67

9-layer | Reverse 14| 8327/ 824 47.01 25.11
All-to-one 15| 832/ 825 46.95 25.43

Out-of-orderrand | 16 | 84.4 / 83.3  47.37 25.41

Table 3: Performance of different layer-selection strategies on students of different depths. Student’s parameters are
initialized by copying the weights of the teacher.

Model Run MNLI-m/mm DART WMT16
Acc BLEU BLEU
1 712 /712 32.44 16.05
2 72.2 / 71.8 32.41 16.90
Randomly 3 70.8 / 71.1 33.33 16.95
Initialized 4 70.5 / 70.8 33.13 17.01
5 67.9 / 67.8 32.35 16.65
3-layer Mean /77%551111 32.73£0.41 16.71+0.35
Student 1 79.3 /783 48.18 21.79
2 785 1 714 48.49 21.93
Weights 3 79.7 / 78.6 47.65 21.86
Copied 4 79.2 1 78.5 48.08 22.53
5 785 /1 713 47.54 21.95
79.0+£0.47
Mean /78.0£0.56 47.99+0.35 22.01+0.27

Table 4: Out-of-Order Random Matching experiments on MNLI, DART, and WMT16 En—Ro. For each task and
parameter initialization strategy, we computed the mean and standard deviation of five runs.

by computing the standard deviation of five runs.
Here, we chose Out-of-Order Random Matching
because this is in theory the most noisy setup due
to the stochasticity of layer matching.

In Table 4, we see that random initialization
yields higher standard deviation than the weight-
copied setting. This is understandable, as the for-
mer setup involves more randomness. Nevertheless,
the model performs stably in both settings, showing
that our results and findings are reliable.
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