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Abstract

Logical Table-to-Text (LT2T) generation re-
quires models to both verbalize tabular data and
reason over it - performing comparisons, aggre-
gations, and causal inference. While many gen-
eration tasks struggle with similar analytical
demands, LT2T provides a structured perspec-
tive on reasoning capabilities in natural lan-
guage generation. This survey uses LT2T as a
lens to focus on reasoning in data-to-text tasks.
By focusing narrowly on LT2T, we present a
deep taxonomy of methods that inject, struc-
ture, or verify reasoning steps, allowing a level
of technical granularity missing in broader sur-
veys. We review representative models and
evaluation metrics, and highlight how LT2T
techniques transfer to general generation chal-
lenges involving logic, numeracy, and faithful-
ness. Our goal is to distill lessons from LT2T
that apply more widely, while also guiding fu-
ture research in table-based reasoning.

1 Introduction

Tabular data is pervasive in domains such as fi-
nance, science, and sports, but is often obscure to
non-experts. Table-to-Text (T2T) models bridge
this gap by transforming structured tables into read-
able summaries. While early neural T2T models
improved fluency, they struggled to meet users’ an-
alytical expectations, often producing surface-level
descriptions that merely repeat table content.
Logical Table-to-Text (LT2T) raises the bar by re-
quiring reasoning-based generation. Instead of stat-
ing individual facts, LT2T models must infer log-
ical relationships. Figure 1 contrasts shallow and
logical outputs to illustrate this difference. Generat-
ing logical-level output introduces challenges such
as logical fidelity, numerical accuracy, and con-
trollable content selection, which also affect many
other natural language generation (NLG) tasks.
We chose LT2T to survey as it offers a compact,
well-defined testbed for the broader NLP goal of

Statistics of Three Countries in Middle East

Country  Area (km?) Population Density (per km?)
Israel 21,937 10,100,000 460
Iraq 438,317 45,521,000 104
Iran 1,648,195 87,500,000 53

Surface-level Generation

Sentence: Israel has an area of 21,937 km? and on average 460
persons live in each km?.

Logical-level Generation

Sentence: Israel has the smallest area among the three countries with
the highest population per square kilometer.

Figure 1: Comparing surface and logical-level outputs.

trustworthy text generation with reasoning because
the input structure is explicit and every valid op-
eration is enumerable. At the same time, limiting
the scope to LT2T allows us to offer a deep, action-
able taxonomy of reasoning strategies that would
be too shallow or generic in a broader survey. We
categorize methods by how they address issues to
enhance reasoning. This is especially useful for
practitioners entering the field or designing sys-
tems that require interpretable, faithful reasoning.

This survey therefore treats LT2T as a unique
frame of reference for reasoning-centric generation
research. Following background on LT2T and rea-
soning (Section 2), we review the primary datasets
developed for LT2T (Section 3). We outline the
key challenges that arise in this task (Section 4),
and organize existing methods into a unifying tax-
onomy (Section 5). Our taxonomy links challenges
to methods, enabling clearer comparisons and iden-
tification of underexplored directions. We then
compare these methods (Section 6), discuss how to
select them (Section 7), present future directions
(Section 8), and outline conclusions (Section 9). In
addition, we provide appendices that cover mod-
els (Appendix A), datasets and evaluation metrics
(Appendix B), common logic types and functions
(Appendix C), and further method comparisons
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(Appendix D). We hope this survey serves both as a
roadmap for LT2T and as a blueprint for reasoning-
aware generation more generally.

2 Background

This section briefly defines the Logical Table-to-
Text task and discusses the types of reasoning used.

2.1 Logical Table-to-Text

The Logical Table-to-Text (LT2T) task is to learn
a mapping from a table to an articulate natural
language sentence that can be derived from the
input table. Formally, the task can be defined as
follows (Chen et al., 2020a):

Given a table T denoted as T' = {T;; | 1 <
i < Rp, 1 <j < Cr}, where Rp and Cp are
the number of rows and columns, respectively, and
each cell entry 7; ; may contain a word, a number,
a phrase, or even an entire sentence; and reference
sentence(s) of the form W = (wy,wa,...,wy)
composed of words w;; the objective is to train
amodel P(W | T) that generates a hypothesis T/
that is both (i) fluent and (ii) logically entailed by
the information in 7T'.

2.2 Reasoning

Reasoning involves analyzing facts to infer new
insights, draw conclusions, or make decisions by
identifying patterns, comparisons, or causal rela-
tionships within data. In LT2T, reasoning enables
the generation of logically correct statements that
extend beyond surface-level information. This sur-
vey focuses specifically on two types of reasoning:
Logical: Logical reasoning is inferring analytical
relationships such as comparisons, superlatives, or
causal connections. For example, given statements
“A is taller than B” and “B is taller than C,” logical
reasoning can conclude that “A is taller than C.”
Numerical: Numerical reasoning refers to making
correct inferences from numerical data, including
arithmetic operations, magnitude comparison, and
numeric aggregation. For example, determining
the tallest individual is A given specific heights {A:
180 cm, B: 170 cm, C: 160 cm}.

Although numerical reasoning is a subset of log-
ical reasoning, it is considered separately here due
to the specialized challenges it presents for LT2T.

3 Datasets

Training a generative model for LT2T requires a
specific dataset, which typically consists of pairs

of tables and narratives that describe table con-
tents. Numerous datasets exist for generating de-
scriptive text from tables, such as WikiBio (Lebret
et al., 2016). However, our focus is on datasets
specifically designed to challenge and evaluate the
logical/numerical reasoning capabilities of LT2T
techniques. Table 1 summarizes LT2T datasets.

In the following, we first discuss what is cur-
rently considered in the design of existing LT2T
datasets and then what is missing.

LogicNLG (Chen et al., 2020a) increases logi-
cal difficulty through open-domain, unconstrained
schemas and diverse logical operations such as su-
perlatives and comparisons. The dataset’s tables
span multiple domains, though the distribution is
heavily skewed toward sports: approximately 35%
of tables concern teams/players and 25% concern
competitions, followed by entertainment and poli-
tics at roughly 15% each, with celebrity and science
domains appearing far less frequently.

Logic2Text (Chen et al., 2020b) pairs tables with
logical forms (LFs); it also quantifies structural rea-
soning complexity using LF graph size, including
number of nodes and function nodes. Each logi-
cal form contains on average nine nodes, including
about three function nodes. The dataset includes
seven logic types: Count (2.0k) and majority (1.8k)
are the most common, followed by unique (1.6k),
superlative and aggregation (1.4k each). Ordinal
and comparative (1.2-3k each) are less frequent.
This distribution shows that Logic2Text empha-
sizes summarization and highlighting prominent
rows, while explicit comparison and ranking opera-
tions are present but occur less often.

NumericNLG (Suadaa et al., 2021) and SciGen
(Moosavi et al., 2021) target numerical reasoning
by emphasizing arithmetic operations; SciGen fur-
ther introduces three splits, with the hardest split
containing longer, more analytical statements.

ContLOG (Liu et al., 2022) is a controllable
dataset built on Logic2Text that replaces LFs with
highlighted evidence cells to guide logical content
selection; it also provides a pre-training subset.

LoTNLG (Zhao et al., 2023d) is an evaluation-
only benchmark designed for zero-shot/prompted
LLM testing, conditioning generation on nine rea-
soning types to probe type-specific difficulty.

All of the above operate on flat tables. HiTab
(Cheng et al., 2022) makes the task harder by intro-
ducing hierarchical (multi-level header) tables and
shows that schema hierarchy stresses alignment
and reasoning.
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Dataset Tables Cell Num. Pairs Vocab Text Domain Source Reasoning Schema Cont. Struct.
LogicNLG 73K 91 35 37.0K 122K 14 Open (Wiki) Annot. Rich (Logical)  Unlimited No  Flat
Logic2Text 5.5k 64" 22" 10.7k 14k 16.7 Open (Wiki) Annot. Rich (Logical)  Unlimited No  Flat
NumericNLG 13K 35° 31° 13K 19.6K 94 Scientific Hybrid Rich (Numerical) Unlimited No  Flat
SciGen — 53 34 13K 11K 116 Scientific  Annot. Rich (Numerical) Unlimited No  Flat
ContLOG 55K 64" 22" 107K 14K" 16.7° Open Annot. Rich (Logical)  Unlimited Yes Flat
LoTNLG 862 84" 25" 43K 6.3K" 14" Open Annot. Rich (Logical)  Unlimited Yes Flat
HiTab 3597 190" 116" 10.6K 8.7K" 17.32" Open Annot. Rich (Numerical) Unlimited Yes Hier.

Table 1: Logical Table-to-Text Datasets.Tables = number of tables; Cell = avg total cells/table; Num = avg numeric
cells/table; Pairs = number of annotated pairs; Vocab/ Text = vocabulary size / avg description length (words).
Source = data origin (web, human-annotated, or hybrid). Schema = known (fixed columns/order) vs. unlimited
(arbitrary columns). Cont. = guidance on what to verbalize e.g. highlighted cells. Struct. = table structure (flat or

hierarchical). * = computed from released data.

Gaps and Directions. Despite these contributions,
current LT2T datasets leave room for growth in at
least three ways: (1) Schema realism: include hier-
archical headers and multi-table joins to reflect real
reports and dashboards. (2) Operation coverage:
cover more operations such as temporal (trends,
deltas, rolling statistics). (3) Complexity metadata:
release per-dataset distributions such as operation
types, domains, and numeric density.

4 Challenges in LT2T

This section discusses key challenges that have
been addressed by existing research, particularly to
improve LT2T.

Logical Fidelity: A generated sentence has perfect
fidelity when every conclusion it makes is entailed
by the information in the table. This means that
each claim must logically and necessarily follow
from the premises provided in the table. If a conclu-
sion cannot be derived solely from the information
presented, the text lacks fidelity. Common causes
of low fidelity include: (1) missing or incorrect
logical operations, (2) a mismatch between the se-
quence and logical order, and (3) over-reliance on
superficial correlations rather than causal relation-
ships grounded in the table.

Logical Controllability: The space of possible
valid descriptions is exponentially large, as mul-
tiple logical inferences can be made from the same
table. Current models struggle to determine which
logical operation to apply, leading to irrelevant
or uncontrolled outputs. Without guidance, mod-
els may select incorrect logic or reasoning paths.
Therefore, it matters how models decide what con-
tent to include when multiple valid statements can
be derived from a table.

Numerical Reasoning: Models commonly used

in T2T, such as Pre-trained Language Models
(PLMs) or general-purpose Large Language Mod-
els (LLMs), are trained as text token predictors
rather than explicit numerical reasoners. As a re-
sult, they often exhibit weaknesses in tasks that
require one or more of these numeric competen-
cies: (1) Magnitude Understanding: Magnitude in-
dicates the size of a number and is used to compare
or order values; (2) Arithmetic/Functional Opera-
tions: Performing exact or approximate operations
such as addition, subtraction, ratios, and aggre-
gates; (3) Number to Word Mapping: Choosing
appropriate lexical descriptors.

Data Scarcity: The success of many LT2T meth-
ods depends on the availability of large amounts of
annotated data. However, annotation is an expen-
sive task. Therefore, developing methods to enable
text generation with few-shot samples and reducing
annotation costs are critical.

Diversity: Models often focus on the same table
regions or apply the same logical operations, lead-
ing to repetitive outputs. To promote diversity, it is
essential to generate multiple distinct yet factually
accurate statements derived from a table.

User Preference: Different users may want dif-
ferent logical views, such as trends vs. outliers.
Ignoring this leads to mismatched summaries. Con-
ditioning generation on user intent improves rele-
vance and reasoning selection.

Evaluation Methodology: Conventional automatic
metrics such as BLEU (Papineni et al., 2002) re-
ward surface-level token overlap, so they miss logi-
cal inconsistencies and hallucinations. They also
lack explanations as to why outputs are (in)correct.
Consequently, the field needs logic-aware, explain-
able metrics that can both assess and justify a
model’s reasoning accuracy.
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Figure 2: Taxonomy of logical table-to-text methods

5 Methods for Logical Table-to-Text

This section groups methods by the challenges they
address; each method might appear in multiple
categories. Figure 2 visualizes this: orange boxes
mark key issues from Section 4, yellow and green
boxes show main method families, and blue boxes
list representative approaches. The diagram also
outlines the order of the subsections that follow.

51

This section reviews papers that propose ap-
proaches to enhance logical fidelity and faithful-
ness in LT2T. Because many of these methods si-
multaneously enhance controllability, we discuss
approaches for both issues here.

Logical Fidelity and Controllability

5.1.1 Template-Guided Implicit Reasoning

Auto-regressive generators emit tokens strictly left-
to-right; however, logical reasoning can require
performing step C before step B. This misalign-
ment between language order and logical order can
introduce reasoning errors (Chen et al., 2020a). To
address this issue, Chen et al. (2020a) propose a
two-stage coarse-to-fine decoder known as GPT-
C2F. First, the model generates a template by re-
placing entities and numbers with placeholders to
plan the logical structure. After fixing the global
structure, it generates the final sentence by condi-
tioning on both the table and its template to select
the correct entity or number for each placeholder.

Because the second pass treats the entire template
as fixed context, each placeholder attends to its left
and right neighbors and the connective words. This
allows the model to infer the intended operation
before selecting a value, thereby reducing order-
mismatch errors.

5.1.2 Symbolic Reasoning-Based Methods

Symbolic reasoning (SR) introduces an explicit
intermediate representation, such as logic forms
(LFs), programs, or modular operators that specify
exact operations to perform before text generation.
By dividing a reasoning task into a sequence of
clear, executable subtasks, SR approaches can val-
idate each step in isolation and discard logically
unsound paths before generating text. Because the
final output is grounded in a verified chain of oper-
ations, these methods substantially improve logical
fidelity and overall faithfulness.
Logic-Form—Based Methods: This subsection
reviews methods that utilize logic-forms during
different phases of their approach, such as pre-
training, training, or inference to address fidelity.
Logic2Text (Chen et al., 2020b) and LoFT (Zhao
et al., 2023b) both condition text generation on a
table and its logic form. In both methods, the LF
guides which table region and operation to refer-
ence, reducing ambiguity, and improving control
over content selection. Logic2Text uses gold, hand-
annotated Python-style LFs whose execution has
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already been validated on the table; no extra check-
ing is required. However, LoFT builds LFs auto-
matically via a Structure-Aware Semantic Parsing
(SASP) approach (Ou and Liu, 2022) at training
time and a synthesis pipeline (Liu et al., 2022) at
inference. Because automatically generated LFs
can be noisy, LoFT also treats them as fact veri-
fiers: each candidate LF must execute to True, and
a Natural Language Inference (NLI)-based method
filters out any sentence that the table does not en-
tail.

PLOG (Liu et al., 2022) utilizes LFs as pretrain-
ing signals to teach logical reasoning. The idea
is that by first training LFs, the model develops a
deeper understanding of logical structures, which
results in fewer logical errors in final text genera-
tion. In pretraining, a large synthetic dataset of (ta-
ble, LF) pairs is used. The model is then fine-tuned
to generate statements from tables. This approach
improves controllability by explicitly highlighting
which table cells are involved in each LF.
Table-Compatible Programming Language: SOR-
TIE (Zhao et al., 2023a) improves logical reason-
ing by decoupling language generation from rea-
soning. It builds on Chen et al. (2020a)’s two-
stage approach of generating a template, but fills
each template placeholder via symbolic program
execution instead of neural prediction. For every
placeholder, a Gated Recurrent Unit (GRU) (Chung
et al., 2014) scheduler picks an order based on log-
ical dependencies, and another GRU generates a
short, table-compatible program composed of oper-
ators and operands whose execution on the table re-
turns the exact value and prevents hallucination. To
handle missing annotations, SORTIE uses heuris-
tic pseudo-labels with self-adaptive training. This
clear division between what to say via template
and how to reason by programs enhances logical
fidelity and faithfulness.

Neuro-Symbolic Modular Reasoning: MURMUR
(Saha et al., 2023) is a neuro-symbolic, modular
framework designed to improve logical reasoning
by explicitly separating symbolic logical reason-
ing from linguistic generation. Its core idea is to
dynamically construct executable reasoning paths
composed of symbolic and neural modules, gov-
erned by grammar and guided by a saliency-based
value function during a best-first search. By explic-
itly performing logical operations using symbolic
modules and restricting permissible compositions
via grammar rules, MURMUR ensures each rea-
soning step is valid and verifiable. This approach

directly addresses pitfalls such as hallucination,
order mismatches, and semantic inconsistencies.
Once a valid reasoning path is constructed, a lan-
guage model converts it into a natural sentence.
This method improves both the accuracy and faith-
fulness of generated summaries by making the rea-
soning process explicit and reliable.

Template-Based Symbolic Reasoning: ReFactor
(Zhao et al., 2023c¢) explicitly retrieves and gener-
ates fact-guided reasoning signals. A set of pre-
defined templates is designed to target reasoning
skills such as numerical comparisons, aggregations,
and conjunctions. These templates are instantiated
and executed over tables using a fact generator to
produce multiple facts. Relevant facts are ranked
based on user input and included as signals to the
model. This improves factual accuracy by provid-
ing explicit symbolic reasoning during generation.

5.1.3 Causal Inference

DCVED (Chen et al., 2021) addresses logical in-
consistency caused by hidden confounders, unob-
served factors that create spurious correlations be-
tween the input table and the output text (Keith
et al., 2020). To resolve this, DCVED applies
causal intervention using do-calculus (Pearl, 2010),
shifting the learning objective from p(y | x) to
p(y | do(z)), thereby reducing the influence of
confounders. To implement this, DCVED frames
the generation process using a causal graph with
two key variables: (1) Mediator z,,: information
extracted from the table, (2) Confounder z..: a vari-
ational latent representing misleading patterns such
as frequent but irrelevant table entities. These la-
tent spaces are supervised to be meaningful: z,,
is guided by entities mentioned in the target sen-
tence, while z. is trained to predict unused but high-
frequency distractors. During inference, DCVED
samples multiple sentences by varying z. and uses
a trained model to select the most factually consis-
tent output. By combining causal reasoning with
variational modeling, spurious correlations are re-
duced, and logical fidelity is improved.

5.1.4 Knowledge Transfer

Liu et al. (2024) employs Reasoning Knowledge
Transfer (RKT) to improve logical fidelity in LT2T.
They fine-tune a LLaMA-2-6B as a transfer model
on Logic2Text to produce natural-language log-
ical rules from tables, synthesize such rules for
LogicNLG, and then train a two-stage BART sys-
tem: a reasoning module that predicts rules from
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tables and a summary module that generates text
conditioned on those rules—making outputs table-
entailed rather than correlation-driven. Noting that
some transferred rules are noisy, Bai et al. (2025)
introduces the Reasoning Knowledge Filter (RKF)
that employs a clean-up stage. RKF uses GPT-40
to annotate a subset of the training data for rea-
soning correctness. This subset is used to train a
BART-large classifier that filters low-quality rea-
soning traces from the rest of the dataset. This
filtering process improves SP-Acc (+1.4) and NLI-
Acc (+0.7) by ensuring the generator only sees
high-quality, table-consistent reasoning paths.

5.2 Numerical Reasoning

This section reviews methods that address numeri-
cal reasoning issues discussed in Section 4.

5.2.1 Understanding Numeric Attributes

CP-DUV (Gong et al., 2020) targets neural mod-
els’ poor grasp of numerical magnitude caused by
treating numbers as word tokens through two key
upgrades: (1) They inject magnitude-aware embed-
dings. A transformer is pre-trained to rank every
pair of numbers within a column; each number to-
ken is replaced at runtime by an embedding that
knows both its size and realistic context. (2) They
add a content-aware verification reward—a policy-
gradient signal that rewards summaries containing
correct entities and statistics in logical order while
penalizing omissions and redundancies. These ad-
ditions give the model a true sense of numbers,
reducing magnitude errors and ordering output.

Enc-AST (Li et al., 2021) enhances numerical
reasoning by addressing magnitude, relative im-
portance, and inter-entity relationships. A hier-
archical encoder incorporates two auxiliary tasks:
(1) Number ranking captures column-wise mag-
nitude; (2) Importance ranking models row-wise
importance of numerical values. These tasks are
learned through self-attention and fused via a gat-
ing mechanism. Additionally, a graph-based rea-
soning module models relationships between en-
tities and enables reasoning over inter-entity rela-
tionships. These components enhance the model’s
ability to generate factually accurate and numeri-
cally grounded summaries.

5.2.2 Number to Word Mapping

OpAtt (Nie et al., 2018) addresses the issue of map-
ping numbers to words using a quantization layer
that groups scalar values into a small number of

learnable bins. A linear layer maps numbers into
logits, then a softmax layer converts the logits into a
probability distribution over bins, each with its own
embedding. The final embedding is a weighted sum
of all embeddings. This method enables the model
to generalize across similar values and produce
magnitude-aware words during text generation.

5.2.3 Pre-executing Operations

These methods pre-execute numerical operations
and feed the results to the model to enhance its
numerical reasoning. This reduces the burden of
calculation and turns numeric operations that neu-
ral LMs struggle with into plain sequence tokens
or features that models can copy or attend to.

OpAtt (Nie et al., 2018) pre-executes operations
such as minus for score gaps and argmax for identi-
fying the top scorer. The operations and results are
encoded beside records and fed into the decoder.
The decoder uses dual attention over operations and
records, with a gating mechanism to decide when
to prioritize operations or records. Additionally,
the copy mechanism ensures outputs can originate
from table cells, improving faithfulness.

Suadaa et al. (2021) pre-computes max, min,
and diff for the target rows, stores them in a ded-
icated operation table (Ipp), and trains a copy-
augmented model that uses placeholders, such
as <header max>. At inference, a ranking-and-
memory procedure replaces each placeholder with
a value drawn from Tpp or the original data ta-
ble, ensuring every numeric value in the output is
faithfully copied rather than hallucinated.

PLOG (Liu et al., 2022) computes column-wise
sum, avg, and per-cell rank values and inserts
them into the flattened table structure, allowing the
model to access them naturally during generation.

These methods demonstrate that pre-execution,
alongside attention, gating, or copying, substan-
tially improve models’ numerical reasoning.

5.2.4 Chain-of-Thought Distillation

DistilTBR (Yang et al, 2024) transfers
numerical-reasoning skills from an LLM to
smaller PLMs by first having the teacher model
produce step-by-step reasoning traces for each
table. These traces, appended to the table, serve
as supervised signals when fine-tuning the student
model, guiding it to look at the right rows/columns
and apply the correct arithmetic operations. This
distillation yields a compact generator that mimics
the teacher’s logical reasoning without altering the
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underlying architecture.

5.2.5 Pre-training with Synthetic Corpus

REASTAP (Zhao et al., 2022) injects diverse rea-
soning skills into a seq2seq model via synthetic
QA pairs during pre-training, without relying on
table-specific architectures. Conditioned on a seri-
alized table and question, the model learns to align
columns, filter rows, and execute numerical opera-
tions purely through its parameters.

5.3 Data Scarcity

Several recent methods aim to reduce the reliance
on large amounts of annotated data by generating
supervision from unlabeled or synthetic sources.

One approach is to create synthetic corpora of-
fline, allowing models to pre-train before being
fine-tuned on limited gold data. For example,
PLOG uses handcrafted logic-form templates filled
with table values. Instances are kept only if the
generated logic-form evaluates to True, producing
a large, automatically verified dataset. Similarly,
REASTAP (Zhao et al., 2022) creates synthetic
question-answer pairs using a template-based ex-
ample generator (Yoran et al., 2022) for various
reasoning skills over tables. This synthetic genera-
tion allows the model to learn effectively without
relying heavily on human-annotated data.

A second line of work focuses on self-training
via pseudo-labeling, where models expand a small
seed set using unlabeled data. LOGEN (Deng et al.,
2023) begins with a tiny annotated set and trains
two GPT-2 models: one to map tables and logic
forms to text; one in reverse. The reverse model
generates logic forms for new (table, text) pairs,
and mutual checks retain consistent examples that
are used to retrain the models in a bootstrap loop.

Finally, on-the-fly weak supervision eliminates
the need for any gold logic forms. LoFT synthe-
sizes multiple logic-form candidates per table at
training and inference time. An NLI-based verifier
filters out any that aren’t supported by the table, al-
lowing the model to learn from verified candidates
without manual annotation.

5.4 Diversity

LoFT and DEVTC (Perlitz et al., 2022) both im-
prove diversity by enumerating alternate reasoning
structures. At inference, LoFT creates multiple
candidate logic forms per table from 45 templates
across eight operation categories, while DEVTC
samples from various logic types. Because each

logic form or type focuses on a different operation
or table region, the models generate a broad set of
distinct, valid statements.

5.5 User Preference

QTSUMM (Zhao et al., 2023c) extends LT2T by
tailoring generated summaries to user preferences.
To achieve this, they fine-tune models on their Q7-
SUMM dataset of query—summary pairs. During
training, the model is conditioned on user queries
alongside the table, guiding generation and produc-
ing summaries that directly address user-specific
information needs. Additionally, ReFactor (Sec-
tion 5.1.2) generates query-relevant facts, which are
concatenated to the input of the models or used as
prompts in LLM during fine-tuning and inference.
These facts provide explicit reasoning evidence,
further guiding the model to address user queries
in the summary with high analytical fidelity.

5.6 Evaluation Methodology

This section reviews automatic metrics for evaluat-
ing logical fidelity and explainability.
Parsing-Based Evaluation: This metric evaluates
logical fidelity by converting each generated sen-
tence into an executable logic form and running it
against the source table. The generated text is con-
verted to the candidate logic forms using a weakly
supervised semantic parser (Liang et al., 2009) via
breadth-first search. The candidates are ranked
based on consistency with the original sentence.
The top-ranked logic form is selected and executed
on the table. The generated statement is considered
logically faithful if the result is True. Semantic
Parsing Accuracy (SP-Acc) (Chen et al., 2020a) is
the proportion of sentences whose top logical form
evaluates to True. Its reliability depends on the
parser quality; misparsing or language ambiguity
can lead to false outcomes.

Natural Language Inference (NLI)-Based Eval-
uation: This metric verifies whether a given state-
ment is true, false, or neutral based on the table.
The key point is to utilize an NLI model trained to
predict the logical relationship to measure the en-
tailment score between the table and the generated
text. The ratio of entailed is computed and used to
approximate the model’s fidelity. NLI-Acc (Chen
et al., 2020a), TAPEX-Acc, and TAPAS-Acc (Liu
et al., 2022) are examples of this evaluation metric.
Reference-Free, LLM-based Evaluation: Chain-
of-Thought (CoT)-Acc (Zhao et al., 2023d) uses a
2-shot chain-of-thought prompt with GPT-3.5/4 to
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Method Backbone Family SP-AccT NLI-Acc 1
Field-Infusing (Chen et al., 2020a) Transformer - 38.9 57.3
GPT-TabGen (med) (Chen et al., 2020a) GPT-2 - 45.5 73.3
GPT2-C2F (med) (Chen et al., 2020a) GPT-2 Template-Guided 453 76.4
DCVED (Chen et al., 2021) GPT-2 Causal Inference 439 76.9
DEVTC (Perlitz et al., 2022) GPT-2 Logic Form 45.6 77.0
PLOG (Liu et al., 2022) BART-Large Logic Form 50.5 88.9
LoFT (Zhao et al., 2023b) BART-Large Logic Form 57.7 86.9
REASTAP (Zhao et al., 2022) BART-Large Pretraining Synthetic 54.8 89.2
SORTIE (Zhao et al., 2023a) BART-Large Table Programming 57.8 89.3
RKT (Liu et al., 2024) BART-Large Knowledge Transfer 59.6 88.1
RKF (Bai et al., 2025) BART-Large = Knowledge Transfer 61.0 88.8

Table 2: Comparison of LT2T Models on Logical Fidelity Metrics. Shows the best results reported in the original

papers.

label each generated sentence as entailed or refuted
with respect to the table, then reports accuracy. It
yields the best human correlation among automated
faithfulness metrics on LogicNLG.

6 Comparing Methods

We compare representative methods across three
key dimensions: performance, efficiency, and in-
terpretability/controllability. Since our focus is on
logical reasoning, we evaluate performance primar-
ily using logical fidelity metrics in Table 2.
Pre-trained vs Traditional Backbones: Overall,
pre-trained backbone models consistently outper-
form traditional encoder—decoder architectures.
For example, even TabGen, which is only fine-
tuned on LogicNLG, surpasses field-infused Trans-
former models in logical fidelity metrics.
Template-Guided Implicit Reasoning: GPT-C2F,
which utilizes coarse-to-fine generation, yields
higher NLI-Acc and Adv-Acc than GPT-TabGen
at both small and medium scales.
Logic-Form/Logic-Type Control: Human evalua-
tions (Chen et al., 2020b) reveal a dramatic gain
in factual correctness when logical forms are used,
jumping from 20% without LFs to over 82% with
LFs. DEVTC improves on prior GPT-2 baselines
by conditioning generation on predicted logic types.
While it gains slightly in logical metrics, its main
strength lies in diversity: by switching logic types
during generation, it achieves a factuality—diversity
trade-off that surpasses the GPT-TabGen sampling
frontier without requiring stochastic decoding, us-
ing greedy decoding alone. LoFT builds on this
by conditioning on full executable logic forms and
applying a verifier to filter outputs. This enables
LoFT to achieve the best overall balance between
faithfulness and diversity in this family. The trade-

off, however, is increased implementation complex-
ity: DEVTC requires a logic-type classifier, while
LoFT involves a full pipeline with logic-form pars-
ing, synthesis, and verification. These methods
offer improved controllability and more transpar-
ent reasoning processes.

Implicit Skill Injection (Pretraining): PLOG and
REASTAP inject logical reasoning through pre-
training; PLOG leverages logical forms (LFs),
while REASTAP uses 4 million synthetic ques-
tion—answer pairs. Both significantly improve log-
ical fidelity metrics. These approaches keep in-
ference simple at the expense of pretraining cost;
for instance, REASTAP’s pretraining required 34
hours on an 8 NVIDIA A5000 24GB cluster. They
improve faithfulness through pretraining signals,
but the final generation remains purely neural, so
the internal reasoning steps aren’t explicitly ex-
posed.

Table Programming: SORTIE reports the strongest
NLI-Acc among compared methods. It outper-
forms PLOG and REASTAP without any large-
scale reasoning pretraining—training for roughly
5 hours on 8x3090 Ti GPUs—while offering high
interpretability via explicit, executable reasoning
traces. The trade-off is a higher implementation
burden.

Knowledge Transfer: RKT and RKF report the
strongest logical-fidelity metrics among peers.
Both are highly interpretable and controllable via
explicit rules.

Not all models are evaluated on these metrics;
we discuss other models that use other logical met-
rics in Appendix D.
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7 Discussion

This survey found two dominant LT2T paradigms:
(1) Explicit trace construction: logic-forms, pro-
grams, or neuro-symbolic plans that decouple rea-
soning from surface realization and give strong
fidelity guarantees. (2) Implicit skill injection:
pretraining or distillation schemes that embed nu-
merical or logical competence inside neural param-
eters with minimal task-specific engineering.
Explicit methods appear better when one needs:
(a) auditability/controllability; (b) verifiable, step-
wise reasoning; or (c) operator-level control. How-
ever, we suggest implicit methods when (a) simple,
fast inference at scale is required; (b) there is lack
of annotations or tooling for logic forms; or (c) one
needs broad skill coverage from synthetic data.

8 Future Directions

We suggest four primary avenues for advancing
LT2T research, considering current limitations and
existing challenges.

Improving Reasoning Capabilities: Existing ap-
proaches are limited to a few operations, such
as sum, min, or max (Appendix C), and struggle
with more advanced analytical needs, such as trend
detection or multi-hop comparisons. Research
should address this limitation through three main
thrusts: (1) Support more complex logical skills for
advanced analytics,including change rates, graph
traversal, and temporal patterns. (2) Develop flexi-
ble logical supervision frameworks that help mod-
els acquire these skills without explicit structured
logical forms. Lightweight, weakly supervised, or
self-training methods may allow models to infer
logical structures from training data without requir-
ing gold-standard logic annotations. (3) Include
dynamic logical inference, where the model con-
structs and executes operator chains during infer-
ence to ensure faithful intermediate results before
verbalization. Approaches may range from sym-
bolic search with learned value functions to prompt-
ing LL.Ms to produce executable code. Together,
these directions will enable broader coverage of an-
alytical reasoning skills, stronger factual accuracy,
and adaptability to evolving data schemas.
Evaluation Metrics: We need metrics that are
both logic-aware and explainable. While met-
rics like COT-Acc offer step-by-step reasoning to
judge entailment, they are costly, non-deterministic,
and limited to proprietary APIs. We need open,
lightweight, logic-aware metrics that break outputs

into table-grounded claims and mark each as en-
tailed, contradicted, missing, or hallucinated.
Scalability: Future LT2T systems must adapt
to evolving computational resources and table
schemas. New schemas often demand novel logical
skills, such as rate-of-change analysis or multi-row
trend detection, which current models struggle to
acquire without retraining. Exploring continual or
incremental learning frameworks that allow mod-
els to acquire new reasoning skills while retaining
prior knowledge appears promising. Moreover, the
high training and inference costs of LLMs, together
with their fixed context-window limits, make them
impractical for many real-world deployments. Re-
search should thus prioritize lightweight, modu-
lar, or distilled models that retain strong logical-
reasoning capabilities while reducing computa-
tional and memory requirements.

Applicability: Current models are designed for flat
tables, whereas real-world data often involves het-
erogeneous formats like event sequences, hierarchi-
cal tables with multi-level headers, or nested struc-
tures. Future LT2T systems should be able to pro-
cess complex structured data and reason over tem-
poral, hierarchical, or relational formats, as seen in
domains like medicine or finance. There is also a
need for multi- and cross-lingual LT2T generation,
where models maintain logical reasoning consis-
tency across languages. Logical operations such as
arithmetic, comparison, causal inference, and multi-
hop deduction must transfer cleanly across linguis-
tic boundaries. Expanding LT2T to low-resource
languages, global reporting, and multilingual sci-
entific domains will promote greater robustness,
generalization, and cross-domain utility.

9 Conclusions

Logical Table-to-Text (LT2T) has become a mi-
crocosm of reasoning-aware generation-structured
inputs, explicit operations, and verifiable outputs.
Explicit methods boost fidelity and interpretability,
while implicit ones scale better; hybrid models that
pair symbolic checks with distilled reasoning show
promise in balancing both.

Though focused on LT2T, these insights extend
to broader text generation: reasoning traces, logic-
aware supervision, and fidelity-based evaluation
are key for summarization, retrieval-augmented,
and multi-modal tasks. Future progress lies in
richer operator coverage, explainable metrics, and
lightweight continual-learning frameworks.
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Limitations

This survey focuses on LT2T as a lens for ex-
amining reasoning in natural language generation.
While this scope allows for a deep and actionable
taxonomy of methods, it excludes other important
forms of reasoning such as commonsense, causal,
and spatial. Furthermore, we primarily review
methods from the LT2T domain; techniques from
related tasks such as fact verification, question an-
swering, and code generation could offer additional
insights and warrant future exploration.
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Xiangru Tang, and Arman Cohan. 2023d. Investi-
gating table-to-text generation capabilities of large
language models in real-world information seeking
scenarios. In Proceedings of the Industry Track at
the 2023 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2023), pages
160-175, Singapore. Association for Computational
Linguistics.

A Models

We categorize the models commonly used in LT2T
works into three groups.

Traditional Encoder-Decoder Models: Early
works train encoder-decoders such as Gated Recur-
rent Neural Network (GRU) (Chung et al., 2014),
Long Short Term memory (LSTM) (Hochreiter
and Schmidhuber, 1997), or vanilla Transform-
ers (Vaswani et al., 2017) from scratch. These
models are usually augmented with structural add-
ons, such as copy mechanisms (Gu et al., 2016)
or pointer networks (See et al., 2017), gating (Liu
et al., 2018), or attention mechanisms (Luong et al.,
2015) to ensure numbers and entity names are re-
produced faithfully. Methods that use these models
are presented in Table 3.

Pre-trained Language Models (PLMs): Subse-
quent studies fine-tune generic PLMs, such as
BART (Lewis et al., 2020), T5 (Qader et al., 2018),
or GPT (Radford et al., 2018) on one or more LT2T
datasets. Because these models have strong lin-
guistic priors, only light task-specific tuning is re-
quired to outperform scratch baselines and tradi-
tional methods. Table 4 represents methods that
utilize PLMs in their architecture.

Large Language Models (LLMs): A growing line
of work leverages LLMs such as OPT (Zhang et al.,
2022) and GPT-3/4 (Brown et al., 2020; Bubeck
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Method Base Model Attention Gating Copy Training Method

OpAtt (Nie et al., 2018) GRU Yes Yes Yes Maximum Likelihood Estimation
CP-DU (Gong et al., 2020) LSTM/Transformer Yes Yes Yes Reinforcement Learning
Field-Gating (Chen et al., 2020a) LSTM/Transformer Yes Yes Yes Maximum Likelihood Estimation
Field-Infusing (Chen et al., 2020a) LSTM/Transformer Yes No Yes Maximum Likelihood Estimation
DCVED (Chen et al., 2021) Transformer Yes No No Causal Intervention

Table 3: Traditional encoder-decoders trained from scratch for LT2T.

Method Base Model Param. Size Training Method

BERT-TabGen (Chen et al., 2020a) BERT-small/large 140/340M MLE

GPT-TabGen (Chen et al., 2020a) GPT2-smalllmedium 117/345M MLE; Adv-Reg; RL

GPT-C2F (Chen et al., 2020a) GPT2-smalllmedium 117/345M MLE

Fine-tuned GPT2 (Chen et al., 2020b)  GPT2-small 117M FT

PLOG (Liu et al., 2022) BART-large 406M PT/FT
T5-basellarge 220/770M PT/FT

REASTAP (Zhao et al., 2022) BART-large 406M PT/FT

DEVTC (Perlitz et al., 2022) GPT2-small/medium 117/345M Supervised

LoFT (Zhao et al., 2023b) BART-large 406M Supervised

LOGEN (Deng et al., 2023) GPT2-small 117M Few-shot self-training

DistilTBR (Yang et al., 2024) Flan-T5-CoT-basellarge ~ 250/780M FT
T5-CoT-basellarge 220/770M

RKT (Liu et al., 2024) BART-large 406M FT

RKF (Bai et al., 2025) BART-large 406M FT

Table 4: Pre-trained language models fine-tuned for LT2T. MLE = Maximum Likelihood Estimation, RL =
Reinforcement Learning, PT = Pre-training, FT = Fine-tuning.

et al., 2023) without task-specific fine-tuning. In-
stead of updating weights, researchers steer mod-
els via in-context learning, including zero- or few-
shot exemplars (Brown et al., 2020), and Chain-
of-Thought (CoT) prompting (Wei et al., 2022) to
boost faithfulness.

Beyond prompting, LLMs act as teachers, syn-
thesizing CoT rationales to train smaller students
(DistilTBR) or to transfer reasoning knowledge
(RKT), and as automated annotators whose labels
supervise downstream classifiers (RKF). Table 5
summarizes these LLM-based strategies.

presented in Table 7 of that paper.

D Comparison of Methods-Cont.

We compare methods in Section 6 primarily using
SP-Acc and NLI-Acc, which are the most widely
adopted logical fidelity metrics across prior work.
However, not all studies report these measures. To
ensure completeness, we summarize in Table 7
the best results of models evaluated with TAPAS-
Acc and TAPEX-Acc, using the values reported in
their original papers. We further provide a com-
parative rating of all surveyed methods along five
axes—diversity, interpretability, controllability, im-
plementation burden, and cost—in Table 8. The
accompanying text details the rubric and justifies
each assignment.

COT Distillation/LLMs: LLM-T2T (Zhao et al.,
2023d) reports that GPT-family models outper-
form fine-tuned systems such as logic-form-based
methods, including LoFT and PLOG. It also finds

B Datasets and Evaluation Metrics

Table 6 shows the datasets and evaluation method-
ology used. Note that early studies evaluated their
methods on datasets that are not specifically de-
signed for LT2T, including RotoWire and MLB.

C Logic Types and Logic Functions

Most of the studies consider the same logic types
and functions defined in (Chen et al., 2020b). The
logic types include count, unique, comparative, su-
perlative, ordinal, aggregation, and majority. For
complete definitions and examples, please refer
to the Appendix of that paper. The functions are

that adding more shots or Chain-of-Thought (CoT)
prompting yields non-monotonic gains—more ex-
emplars or CoT do not necessarily help; GPT-4-
zero-shot performs better than GPT-4-1/2-COT.
Zhao et al. (2023c) attain state-of-the-art TAPAS-
Acc by augmenting LL.Ms with ReFactor. Finally,
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Method Base Model Param. Size Training Method
MURMUR (Saha et al., 2023) OPT 175B In-context learning
GPT-3.5 (Zhao et al., 2023d) GPT-3.5 175B In-context learning
GPT-4 (Zhao et al., 2023d) GPT-4 - In-context learning
RKT (Liu et al., 2024) LLAMA2 6.7B FT

DistilTBR (Yang et al., 2024)  GPT-3.5-turbo  175B COT Distillation
RKEF (Bai et al., 2025) GPT-40 - Distillation

Table 5: LLMs used via prompting for LT2T.

Method Dataset Surface Metric Logic Metric Human Eval.
OpAtt RotoWire BLEU RG -
CP-DUV RotoWire; MLB  BLEU RG/CS/CO -
Field-Gating LogicNLG PPL; BLEU-1,2,3 SP-Acc; NLI-Acc; Adv-Acc Yes
Field-Infusing LogicNLG PPL; BLEU-1,2,3 SP-Acc; NLI-Acc; Adv-Acc Yes
DCVED LogicNLG; BLEU SP-Acc; NLI-Acc -
Logic2Text
BERT-TabGen LogicNLG PPL; BLEU-1,2,3 SP-Acc; NLI-Acc; Adv-Acc No
GPT-TabGen LogicNLG PPL; BLEU-1,2,3 SP-Acc; NLI-Acc; Adv-Acc Yes
GPT-C2F LogicNLG BLEU-1,2,3 SP-Acc; NLI-Acc; Adv-Acc Yes
Fine-tuned GPT2 Logic2Text BLEU-4; ROUGE-1,2,L No Yes
PLOG (BART/TS) LogicNLG; BLEU-1,2,3 SP-Acc; NLI-Acc; Yes
CONTLOG TAPEX/TAPAS-Acc
REASTAP LogicNLG BLEU-1,2,3 SP-Acc; NLI-Acc No
DEVTC LogicNLG BLEU-1,2,3 SP-Acc; NLI-Acc Yes
LoFT LogicNLG BLEU-1,2,3 SP-Acc; NLI-Acc Yes
LOGEN Logic2Text BLEU; ROUGE-L No Yes
MURMUR LogicNLG BLEU; METEOR No Yes
DistilTBR SciGen METEOR; BERTScore; TAPAS/TAPEX-Acc No

BLEURT

Table 6: Datasets and evaluation metrics used in surveyed papers.

DistilTBR demonstrates that distilling CoT-style
supervision into smaller models like Flan-T5 and
TS5 can improve logical fidelity without relying

on very large LLMs. MURMUR shows via hu-

man evaluation 26% more logically consistent sum-
maries on LogicNLG vs direct prompting.
In the following, we explain how we rank each

column in Table 8.

Diversity

Low: The model repeatedly generates simi-
lar outputs that rely on the same logical
operation or remains confined to a fixed
table region.

Medium: The model produces varied state-
ments, but often focuses on similar re-

gions or operations unless explicitly

guided.

High: The model includes explicit mecha-
nisms to diversify content selection, such
as logic-type control, logic-form condi-
tioning, or prompt variation, enabling it
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to describe different logic types and table
regions.

Controllability

Low: There is little or no means to steer
logical operations; the model explores
a large, unconstrained search space.

Medium: Logic-type tokens, templates, or
other signals allow partial steering of
logic types but not specific operations
or arguments.

High: The method allows explicit control via
intermediate structures, including logic
forms, programs, or verified candidates
that deterministically guide generation.

Interpretability

Low: No explicit intermediate reasoning arti-
facts are available; the model operates as
a black box.

Medium: Lightweight signals such as logic-
type tags, CoT summaries, or templates



Method Backbone Family TAPAS-Acc T TAPEX-Acc 1

PLOG (Liu et al., 2022) T5-Large Logic Form 76.0 75.9
LoFT (Zhao et al., 2023b) BART-Large Logic Form - 61.8
LLM-T2T (Zhao et al., 2023d)  GPT-4-Zero-shot LLM 91.8 91.0
GPT-4-1-shot-direct 87.6 88.0
GPT-4-1-shot-COT 89.4 90.8
GPT-4-2-shot-direct 92.0 89.6
GPT-4-2-shot-COT 88.8 90.4
ReFactor (Zhao et al., 2023c) GPT4-zero-shot Template-Based SR 92.3 -
GPT3.5-1-shot 94.3 -
GPT4-2-shot 93.3 -
DistilBTR (Yang et al., 2024) FLan-T5-Base-COT  COT Distillation 78.72 82.75
T5-Large-COT 80.62 81.97

Table 7: Comparison of LT2T Models on other logical fidelity Metrics.

Method Diversity Controllability Interpretability Implementation Burden
GPT-C2F Med Med Med Med
Fine-tuned GPT-2 Med High High Med
DCVED Low Low Low Med
PLOG Med Med Low Med
REASTAP Med Med Low High
DEVTC High Med Med Med
LoFT High High High High
LOGEN Med Med Med-High Med
MURMUR High High High High
ReFactor Med Med Med Med
LLM-T2T Med Med Med Low
DistilBTR Low-Med Low Med Med
RKT Med High High Med-High
RKF Med High Med-High Med

Table 8: Comparing methods based on various criteria.

provide some interpretive cues but not
complete reasoning traces.

High: The model produces executable or
inspectable intermediates such as logic
forms or symbolic programs that make
the reasoning process transparent.

Implementation Burden

Low: Involves only prompt design or mini-
mal fine-tuning.

Medium: Requires one auxiliary component
(e.g., classifier, teacher model, or tem-
plate mechanism) within a standard train-
ing pipeline.

High: Entails multi-stage pipelines (e.g.,
parser/synthesizer, generator, and veri-
fier) or large-scale pretraining/data syn-
thesis, often with custom executors.
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