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Abstract

Automatic ICD coding, the task of assigning
disease and procedure codes to electronic med-
ical records, is crucial for clinical documenta-
tion and billing. While existing methods pri-
marily enhance model understanding of code
hierarchies and synonyms, they often over-
look the pervasive use of medical acronyms
in clinical notes, a key factor in ICD code in-
ference. To address this gap, we propose a
novel effective data augmentation technique
that leverages large language models to ex-
pand medical acronyms, allowing models to
be trained on their full form representations.
Moreover, we incorporate consistency training
to regularize predictions by enforcing agree-
ment between the original and augmented doc-
uments. Extensive experiments on the MIMIC-
IIT dataset demonstrate that our approach, ACE-
ICD establishes new state-of-the-art perfor-
mance across multiple settings, including com-
mon codes, rare codes, and full-code assign-
ments. Our code is publicly available '.

1 Introduction

Assigning standardized codes based on the Inter-
national Classification of Diseases (ICD?) known
as ICD Coding is essential for efficient medical
record management, accurate billing processes, and
streamlined insurance reimbursements (Park et al.,
2000; Sonabend et al., 2020). However, traditional
ICD coding relies on manual effort, making it time-
intensive and error-prone driving the development
of automated coding methods.

Accurate ICD code assignment, whether man-
ual or automated, requires a comprehensive un-
derstanding of clinical notes, which include de-
tailed information such as symptoms, diagnoses,
and test results. However, healthcare profession-
als often rely on acronyms and abbreviations to

"https://github.com/LangIntLab/ACE-ICD
Zwho.int/standards/classifications/
classification-of-diseases

Discharge Summary
... history of present illness: ortho hpi: 86m w/ severe

b/l oa , admitted to ortho for sequential bilateral | tka ...
icu hpi: 86 y/o m with pmhx of arthritis, bph &
osteoporosis s/p elective right | total knee replacement ...
past medical history: osteoporosis anemia (family h/o
g6pd deficiency) bph osteoarthritis cataracts ...
empiric vancomycin and ceftriaxone for possible uti
were initiated ...

Label KEPT ACE-ICD

599.0 urinary tract infection, site not X
specified

715.36 osteoarthrosis, localized, not X
specified whether primary or sec-
ondary, lower leg

81.54 | total knee replacement
285.9 anemia, unspecified

Table 1: Example predictions from the MIMIC-III-full
dataset (HADM_ID = 108519) using KEPT(Yang et al.,
2022) and our ACE-ICD models.

reduce documentation effort (Amosa et al., 2023).
This shorthand introduces significant ambiguity,
making it difficult for both human coders and lan-
guage models to interpret the clinical text correctly.
To better understand the impact of acronyms on
ICD code assignment, we analyze expert-annotated
evidence spans from the MDACE dataset (Cheng
et al., 2023), which is derived from MIMIC-III
(Johnson et al., 2016). Our analysis shows that
22% of the evidence spans either consist entirely
of acronyms and abbreviations or include at least
one such term, highlighting that acronyms often
carry useful information for assigning ICD codes.
Previous studies improved model understanding
of medical acronyms by leveraging their appear-
ance in code synonyms (Yuan et al., 2022; Yang
et al., 2022; Gomes et al., 2024). However, they
still fail to predict codes which contain acronyms
in their synonym description. Table 1 shows sev-
eral instances of this shortcoming in previous mod-
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Prompt

History of Present Illness: ORTHO HPI: 86 M w/ severe b/L OA,

admitted to ortho for sequential bilateral TKA ... ICU HPI: 86 y/o M

[ Mz]/SK ][ Mz]/SK ][ M/]/SK ) ( Original text

LM head outputs o

with PMHx of arthritis, BPH & osteoporosis s/p elective right total
knee replacement ¢/b post-op hypotension ... Past Medical History:
Osteoporosis Anemia (family #/0 G6PD deficiency) BPH

Osteoarthritis Cataracts ... Empiric vancomycin and ceftriaxone for

r Label
cons [yes, no, ... yes]

possible UTT were initiated ...

—
Llama / History of Present Illness: Orthopedic History of Present Illness:  \
3.170B 86-year-old male with severe bilateral Osteoarthritis, admitted to
Instruct orthopedic for sequential bilateral Total Knee Arthroplasty ...

Intensive Care Unit History of Present Illness: 86-year-old male

| LM head outputs

————————— - 6-Phosphate Dehydrogenase deficiency) Benign Prostatic
[ MASK ][ MASK ][ MASK ] E Acronym-expanded text Jv\ Hyperplasia Osteoarthritis Cataracts ... Empiric vancomycin and

Augmented prompt

with Past Medical History of arthritis, Benign Prostatic
Hyperplasia, and osteoporosis status post elective right total knee
replacement complicated by post-operative hypotension ... Past
Medical History: Osteoporosis Anemia (family history of Glucose-

T —

e

\\ceﬁriaxone for possible Urinary Tract Infection were initiated ... J

Figure 1: Our training pipeline incorporating acronym-expanded data augmentation and consistency training.

els. These failures underscore the need for new ap-
proaches to effectively address medical acronyms
to consequently improve the ICD coding system.

In this paper, we propose ACronym Expansion
for ICD coding (ACE-ICD) to investigate the im-
pact of expanding medical acronyms to full terms
on coding models. Our system harnesses the strong
capability of large language models in disambiguat-
ing clinical acronyms (Kugic et al., 2024; Liu et al.,
2024), as a data augmentation method that expands
acronyms using open-source LLM prompting. We
further apply KL divergence consistency regulariza-
tion to enforce alignment between predictions from
the original and augmented examples. Finally, we
conduct experiments on three standard ICD coding
tasks using the MIMIC-III dataset, demonstrating
that our approach outperforms previous state-of-
the-art methods across all tasks.

2 Methods

Previous methods frame the ICD coding task as
a multi-label classification problem, as a single
clinical note can contain multiple diagnosis or pro-
cedure codes. Given a clinical note ¢, the task is to
assign a binary label y; € {0, 1} for each ICD code
1 (where ¢ = 1,2, ..., N, and N, is the total num-
ber of ICD codes). A label of 1 denotes relevance,
while 0 indicates irrelevance.

We followed the prompt-based fine-tuning ap-
proach by (Yang et al., 2022) for the ICD coding
task, reformulating the multi-label classification
task as a cloze task (Schick and Schiitze, 2021;
Gao et al., 2021). Specifically, we construct a
prompt template by concatenating each ICD code
description c¢;, appending a [MASK] token after
each description, and adding the clinical note ¢.

The prompt P is given by: P = ¢; [MASK] ¢
[MASK] ... ey, [MASK] ¢. The model is trained
via a masked language modeling objective to pre-
dict “yes” or “no” in each [MASK] position, corre-
sponding to a label of 1 or 0, respectively. For tasks
where IV, is large (e.g., thousands of codes), this
approach is typically used as a reranker (Tsai et al.,
2021; Yang et al., 2022, 2023b; Kailas et al., 2023),
as including all code descriptions in the prompt is
infeasible.

2.1 Acronym-expansion as data augmentation

Motivated by capabilities of LLMs in clinical
acronym disambiguation (Liu et al., 2024; Kugic
et al., 2024), we use the open-source Llama 3
model (Dubey et al., 2024) to generate acronym-
expanded version of clinical notes, denoted as ¢,
from the original notes ¢. Due to the considerable
length of the MIMIC-III notes, we first split each
discharge summary based on the headers identified
through automatic section-based segmentation (Lu
et al., 2023). We then prompt the instruction-tuned
Llama 3 models to generate augmented sections,
which are concatenated into the final acronym-
expanded note, using the following prompt:

<|begin_of_text|>

<|start_header_id|> system <|end_header_id>

You are a helpful assistant. <|eot_id|>
<|start_header_id|> user <|end_header_id|>

Expand all acronyms to their full forms while
preserving all the details in the following paragraph,
do not mention the acronyms again. Paragraph:
<|eot_id|>

<|start_header_id|> assistant <|end_header_id|>
Here is the paragraph with all acronyms expanded to
their full forms:

\
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2.2 Consistency training

Inspired by (Shen et al., 2020; Wu et al., 2021),
we incorporate a consistency loss into the train-
ing objective to encourage the model to generate
similar predictions for the original clinical note ¢
and its acronym-expanded counterpart t,. We first
construct a second prompt template using the aug-
mented note ¢, and a synonym s; for each ICD code
description collected from UMLS from previous
studies (Yuan et al., 2022; Gomes et al., 2024): P,
= 51 [MASK] s2 [MASK] ... sy [MASK] ¢,. The
training objective can be written as the following:

1
L= (Lee(Py) + Lee(Pa,y))
+ Oéﬁcons(Pa PCH y)

where L. is cross-entropy loss for masked lan-
guage modeling, and L,,s enforces consistency
by minimizing the bidirectional KL-divergence:

Econs =

S (KLp(s|P)llp(y|P.)]
+ K L[p(y|P.)||p(y|P)])

3 Experiments

3.1 Acronym expansion evaluation

Dataset.  Several annotated datasets for med-
ical abbreviations and acronyms have been intro-
duced in prior work (Moon et al., 2012; Rajkomar
et al., 2022). To evaluate our zero-shot prompt-
ing approach on the MIMIC-III corpus, we utilize
the annotated dataset developed by Rajkomar et al.
(2022), which we consider most suitable for our
task. This dataset was constructed using a reverse-
substitution technique applied to MIMIC-III dis-
charge summaries, resulting in a large-scale, high-
quality resource for acronym expansion. As our ex-
periments are also based on MIMIC-I1I, this dataset
offers a consistent and reliable benchmark for eval-
uation.

Metrics. We perform zero-shot prompting
experiments using four instruction-tuned variants
of the Llama model. We first report detection pre-
cision and recall (Rajkomar et al., 2022), which
assess the model’s ability to identify abbreviations
in text, regardless of whether the corresponding
expansions are correct. We then compute total ac-
curacy, defined as the proportion of abbreviations
in the gold standard that are correctly expanded
to their full forms by the model. To assess the

quality of expansions, we consider two evaluation
settings. Strict accuracy requires an exact string
match between the model-generated expansion and
the gold-standard full form. However, as illustrated
in Table 3, certain expansions may differ lexically
yet convey the same meaning. To accommodate
such cases, we introduce lenient accuracy, which
computes a similarity score based on the normal-
ized inverse edit distance between the generated
and reference expansions. Specifically, we normal-
ize the edit distance by the length of the reference
and consider expansions with a similarity score of
at least 70% as correct. Although some semanti-
cally valid expansions may fall below this thresh-
old, we adopt the 70% cutoff to balance recall and
precision while avoiding acceptance of clearly in-
correct outputs.

Implementation Details. To extract abbre-
viations and their corresponding expansions from
model outputs, we employ the Python difflib li-
brary?, which aligns two sequences.

3.2 ICD coding evaluation

We evaluate our methods on three MIMIC-III tasks,
following (Mullenbach et al., 2018) for MIMIC-
II1-50 and MIMIC-III-full dataset splits and (Yang
et al., 2022) for constructing MIMIC-III-rare50,
which focuses on the top 50 codes with fewer than
10 occurrences (See Table 2).

Dataset Train Dev Test N¢
MIMIC-III-50 8066 1573 1729 50
MIMIC-III-full 47723 1631 3372 8922

MIMIC-III-rare50 249 20 142 50

Table 2: Statistics of the MIMIC-III ICD-9 datasets.

Metrics. We evaluate performance using
macro-AUC, micro-AUC, macro-F1, micro-F1,
and precision@k (k = 5 for MIMIC-III-50, k = 8
and 15 for MIMIC-III-full). We determine the opti-
mal threshold for micro-F1 on the development set
and report test metrics using the best-performing
checkpoint. To ensure robustness, we run each ex-
periment with five random seeds and report mean
results.

Implementation Details.  We initialize our
model with two pre-trained language models:

Shttps://docs.python.org/3/library/difflib.
html
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Acronym Expanded form by LLM Full form Inverse Edit distance
pod#15 post-operative day #15 post-operative day #15 100.0
intrabd intrabdominal intra-abdominal 86.67
p/w presented with presents with 84.61
dvt deep vein thrombosis deep venous thrombosis 81.82
co complained about complained of 69.23
angio angiography angiogram 66.67
dec dead deceased 50.0
x3 three three times 45.45
p-a. personal assistant physician assistant 68.42
pms previous medical symptoms. premenstrual syndrome 28.57
vma visual motor assessment vanillylmandelic acid 0.0
opa office of personnel administration oropharyngeal airway -25.0

Table 3: Examples of expanded abbreviations, their correct full-forms and the value of the length-normalized inverse
edit distance. The threshold is considered 70%, thus the expanded terms with a lower threshold are considered

incorrect in our evaluation.

KEPTLongformer* and KEPT-PMM3>. Follow-
ing (Yang et al., 2022), we preprocess MIMIC
discharge summary by removing de-identification
tokens, replacing non-alphanumeric characters (ex-
cept punctuation) with whitespace, and truncating
at 8,192 tokens. If the length exceeded this limit, ir-
relevant sections were removed prior to truncation
to retain the most relevant sections. The MIMIC-
III full dataset contains 8,922 ICD codes, making it
infeasible to include all descriptions in one prompt.
We re-rank the top 300 candidates predicted by
MSMN (Yuan et al., 2022) and process 50 candi-
dates at a time, as described in (Yang et al., 2022;
Kailas et al., 2023).

To determine the consistency loss weight (),
we perform an ablation study on the MIMIC-III-
50 dataset by varying o € {0.02,0.05,0.1,0.2}.
a = (.05 yields the best performance across all
evaluation metrics (see Table 6). This value is ap-
plied to all other experiments, as tuning on the
larger MIMIC-III-full dataset is computationally
expensive. For the top-50 and rare-code datasets,
we randomly select 4 synonyms to construct the
augmented prompt FP,, following findings from
(Yuan et al., 2022; Gomes et al., 2024) that using
4 or 8 synonyms improves ICD coding model per-
formance. For MIMIC-III-full dataset, we use the
same code descriptions for both P and F,, as we
observed that incorporating synonyms increases
training time and slows convergence on this larger
dataset.

*https://huggingface.co/whaleloops/
keptlongformer

Shttps://huggingface.co/whaleloops/
KEPTlongformer-PMM3

All experiments are conducted on a single
NVIDIA H100 80GB GPU, with training time and
hyperparameters detailed in Appendix A.2. We
use the Llama-3.1-70B-Instruct model to perform
zero-shot acronym expansion for all ICD coding
experiments, except for the ablation study reported
in Table 7.

4 Results

4.1 Acronym expansion performance

Our experimental results indicate that the size of
the large language model (LLM) used for zero-shot
prompting has minimal impact on acronym detec-
tion. Detection precision ranges from 93.7% with
the smallest model to 96.6% with the largest, while
recall increases from 84.5% to 90.5%. In contrast,
model size has a substantial effect on acronym ex-
pansion accuracy, showing a notable performance
improvement of +42 percentage points, from 18.8%
with the 1B-parameter model to 60.8% with the
70B-parameter model (Table 7). Evaluating expan-
sions under the lenient accuracy criterion yields
additional gains of up to 4%.

Table 3 illustrates example outputs from
acronym expansion using the Llama-3.1-70B-
Instruct model, along with their corresponding in-
verse edit distance scores used for lenient accuracy
evaluation. As shown in the second section of the
table, several expansions remain marked as incor-
rect even under the lenient 70% similarity thresh-
old, demonstrating our effort to avoid misclassify-
ing incorrect expansions as correct (for example,
the first example in the third section). As such, le-
nient accuracy should be viewed as a conservative,
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lower-bound estimate of the model’s true acronym
expansion performance.

4.2 ICD coding performance

Results show that ACE-ICD outperforms previous
state-of-the-art methods across all three MIMIC-
III datasets (Table 4 and 5), regardless of whether
KEPTLongformer or KEPT-PMM3 is used for ini-
tialization. From now on, we refer to ACE-ICD
(PMM3) as ACE-ICD. To assess statistical signif-
icance, we conduct 1,000 rounds of permutation
testing comparing the predictions of ACE-ICD and
the KEPT baseline. The resulting p-values are all
below 0.05 across evaluation metrics and datasets,
indicating that our proposed approach yields sta-
tistically significant improvements in ICD coding
performance.

On the MIMIC-III-50 task (Table 4), ACE-ICD
achieves a macro AUC of 94.4 (+0.6), micro AUC
of 95.9 (+0.5), macro F1 of 71.6 (+1.2), and mi-
cro F1 of 75.0 (+1.0) and precision@5 of 70.0
(+1.1), with values in parentheses indicate im-
provements over the previous best results. For the
MIMIC-III-full task (Table 4), ACE-ICD outper-
forms prior methods on most metrics except macro
F1, achieving a macro F1 of 13.2 (-0.8), micro F1
of 62.7 (+2.0), precision@8 of 79.4 (+1.0), and
precision@15 of 63.9 (+0.2). We manage to im-
prove the macro F1 score to 14.3 (+0.3), by apply-
ing code-specific threshold optimization (see Ap-
pendix A.1). Under the MIMIC-III-rare50 setting
(Table 5), ACE-ICD achieves a macro AUC of 91.1
(+2.2), micro AUC of 91.9 (+2.0), macro F1 of 54.0
(+13.7), and micro F1 of 55.8 (+13.2) when fine-
tuned from the MIMIC-III-50 checkpoint. Notably,
ACE-ICD fine-tuned from KEPT-PMM3 outper-
forms prior methods initialized from the MIMIC-
III-50 checkpoint.

5 Discussion

Effectiveness of our proposed training frame-
work. We evaluate the impact of acronym aug-
mentation and consistency training in ACE-ICD
through an ablation study by adding each compo-
nent separately and assessing performance on the
MIMIC-III-50 dataset (Table 6). For data augmen-
tation only, we include the augmented data into the
original dataset, doubling the training set size while
halving the number of training epochs. For consis-
tency training only, we apply R-Drop (Wu et al.,
2021) directly to the original data. Both approaches

improve performance over the reproduced KEPT
baseline, with consistency training yields better
gains. We attribute this to the fact that zero-shot
acronym expansion may introduce translation er-
rors, adding noise to the training data. In contrast,
R-Drop acts as dropout augmentation and has been
shown to enhance ICD coding performance by pre-
venting overfitting (Yuan et al., 2022; Luo et al.,
2024). However, the performance further improves
when both strategies are applied together.

Impact of acronym expansion quality in im-
proving ICD coding performance.  To eval-
uate how the quality of the acronym expansion
process affects ICD coding performance, we con-
duct an ablation study using Llama 3 models of
varying sizes and compare them to a baseline with-
out acronym expansion, as shown in Table 7. We
observe that poor expansion quality can hurt perfor-
mance: the 1B model, with less than 20% accuracy,
degrades coding results. Moderate-size models (3B
and 8B), achieving 30-50% accuracy, yield only
minor gains. In contrast, the 70B model, with over
60% exact match accuracy, provides the most sig-
nificant performance gains. By observing a few
incorrectly expanded acronyms illustrated in Ta-
ble 3, we hypothesize that expansion errors may
have minimal impact if the expanded acronyms are
unrelated to any ICD code.

Effect of acronym expansion as data augmen-
tation on different ICD codes. Figure 2 illus-
trates the F1-score improvement for each ICD code,
comparing our ACE-ICD model to the baseline
KEPT model in the MIMIC-III-50 settings. The
results show that ACE-ICD outperforms the base-
line on 39 out of 50 codes, with only marginal
decreases observed for the remaining ones. Our
method effectively improves the performance of
lower-performing codes, including 99.04 (22.8 —
29.9), 285.9 (24.5 — 35.9), 38.91 (28.0 — 43.6),
37.23 (35.2 —+ 51.4), and V15.82 (12.7 — 33.4).
A Pearson correlation of —0.25 (p = 0.08) between
absolute F1 improvement and the number of train-
ing examples per code suggests that rarer codes
tend to benefit more from our method, although the
evidence is not statistically significant.

Moreover, although our approach is designed to
improve model robustness to the use of acronyms in
clinical texts, the impact of acronym expansion on
ICD coding performance varies depending on the
presence of code-relevant evidence in abbreviated
or expanded form across different codes. If several
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MIMIC-III-50 MIMIC-III-full

Methods AUC F1 Pre F1 Pre

Macro Micro Macro Micro P@5 | Macro Micro P@8 P@15
MSMN(Yuan et al., 2022) 92.8 94.7 68.3 725 680 | 103 584 752 599
PLM-ICD(Huang et al., 2022) - - - - - 10.4 598 77.1 613
DiscNet+RE(Zhang et al., 2022) - - - - - 14.0 58.8 76.5 61.1
KEPT (KL)(Yang et al., 2022) } 92.6 94.8 68.9 729 673 11.8 599 771 615
CoRelation (Luo et al., 2024) 93.3 95.1 69.3 73.1 68.3 10.2 59.1 762 60.7
MSAM(Gomes et al., 2024) 93.7 954 70.4 74.0 689 - - - -
Extra human annotations
NoteContrast(Kailas et al., 2023) ¥ | 93.8 954 69.2 73.6 68.6 11.9 60.7 77.8 622
MRR (Wang et al., 2024a) 92.7 94.7 68.7 73.2  68.5 11.4 603 775 623
AKIL (Wang et al., 2024b) 92.8 95.0 69.2 73.4 683 11.2 60.5 784 63.7
Ours
KEPT (KL) = 93.1 94.9 68.5 7277 676 | 113 603 775 61.6
KEPT (PMM3) 7 93.6 95.2 69.6 735 683 12.9 615 784 627
ACE-ICD (KL) 93.9 95.6 70.9 745 69.2 | 11.7 61.8 786 63.0
ACE-ICD (PMM3) + 94.4 95.9 71.6 75.0 700 | 13.2 62.7 794 639
GPT4-based
LLM-codex (Yang et al., 2023a) 92.9 94.8 67.4 71.5 - - - - -
Multi-Agents (Li et al., 2024) - - 74.8 58.9 - - - - -

Table 4: Results on MIMIC-III-50 and MIMIC-III-full datasets, using KEPTLongformer (KL) and KEPT-PMM3
(PMM3). Our reproduced KEPT results (marked with *) closely align with those reported by (Yang et al., 2022).
Methods marked with t indicate approaches that re-rank the top 300 predictions from MSMN (Yuan et al., 2022)

under the MIMIC-III-full setting.

Methods Trained AUC F1 Model Macro F1 Micro F1 P@5
from |Macro Micro Macro Micro KEPT (baseline) 69.6 73.5 68.3
MSMN 754 774 153 16.6 + data augmentation only 70.0 73.8 68.6
KEPT (KL) 794 80.7 246 233 + consistency training only 71.2 74.7 69.6
NoteContrast pre-trained| 85.7 86.7 39.0 41.8 ACE-ICD (+ both) 71.6 75.0 70.0
ACE-ICD (KL) 86.8 89.1 379 377 a=02 71.0 74.6 69.4
ACE-ICD (PMM3) 92.2 909 49.1 51.1 a=0.1 71.6 75.0 69.7
MSMN 59.0 589 35 5.5 a=0.05 71.6 75.0 70.0
KEPT (KL) MIMIC | 823 83.7 29.0 314 a=0.02 71.4 74.7 69.4
NoteContrast I11-50 88.9 89.9 403 426
ACE-ICD (KL) [checkpoint| 90.0 90.9 453 48.1 Table 6: Ablation study on MIMIC-III-50.
ACE-ICD (PMM3) 91.1 919 54.0 55.8
GPT4-based
LLM-codex 825 832 279 302 ferring code 599.0 is the acronym "uti", as other
Multi-Agents - - 715 376 mentions of "urine" in the text are not relevant.

Table 5: Results on the MIMIC-III-rare50 dataset.

full-form expressions are already present in the
text, acronym expansion may not be necessary for
accurate code prediction (e.g., “tka” and “total knee
replacement” as evidence for code 81.54 in the
example from Table 1).

A case study is shown in Table 1. Our ACE-
ICD demonstrate a better understanding of medi-
cal acronyms, correctly predicting codes such as
599.0 and 715.36. In this discharge summary
(HADM_ID=108519), the only evidence for in-

Similarly, code 715.36 can be inferred from "oa"
or its synonym "osteoarthritis". Despite the KEPT
model being pre-trained to incorporate knowledge
from UMLS terms, it still fails to correctly predict
these codes, highlighting the effectiveness of our
approach in handling medical acronym:s.
Comparison with recent methods. Our
method outperforms previous state-of-the-art mod-
els across all three MIMIC-III datasets, including
those using additional human annotations or auxil-
iary clinical knowledge (Kailas et al., 2023; Wang
et al., 2024a,b). Notably, our approach signifi-
cantly improves over the KEPT baseline using a
smaller model, KEPTLongformer (149M parame-
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Figure 2: F1 improvement per code in MIMIC-III-50 dataset (sorted by number of training examples in descending

order).

Acronym Expansion Performance ICD coding Performance
Expansion models Detection Accuracy AUC F1 Pre
Precision Recall Strict Lenient || Macro Micro Macro Micro P@5
Llama-3.2-1B-Instruct 93.7 84.5 188 19.7 94.0 95.6 70.5 739 69.2
Llama-3.2-3B-Instruct 95.3 84.3  31.0 33.1 94.2 95.7 714 747  69.6
Llama-3.1-8B-Instruct 96.6 869  46.3 49.5 94.1 95.7 71.5 74.8  69.6
Llama-3.1-70B-Instruct 96.6 90.5 60.8 64.7 94.4 95.9 71.6 75.0 70.0
Without acronym expansion (consistency training only) 94.2 95.7 71.2 747 69.6

Table 7: Performance of instruction-tuned Llama model variants on acronym expansion and ICD coding. Expansion
accuracy is evaluated on the reverse-substituted dataset from Rajkomar et al. (2022), and ICD coding results are

reported on MIMIC-III-50.

ters), and even outperforms MSAM(Gomes et al.,
2024), built on the larger GatorTron model (345M
parameters), under the common code setting.

Even though, GPT-4-based approaches show
promising results in ICD coding (Yang et al.,
2023a; Li et al., 2024), they still underperform
compared to fine-tuned encoder-based models, par-
ticularly in terms of micro-F1. The multi-agent
framework proposed by Li et al. (2024) achieves a
higher macro-F1, which suggests better handling of
rare codes due to GPT-4’s extensive medical knowl-
edge, but it exhibits lower micro-F1, reflecting chal-
lenges in accurately predicting frequent codes.(See
tables 4 and 5). Additionally, these methods require
repeatedly sending clinical notes to third-party ser-
vices to access proprietary LLMs, raising concerns
around privacy, cost, and scalability. In contrast,
our method delivers strong performance on both
frequent and rare codes through a lightweight, tar-
geted data augmentation strategy that uses open-

source LLMs locally in a one-time preprocessing
step, preserving privacy and efficiency.

6 Related works

6.1 Automatic ICD coding

Automatic ICD coding is a multi-label classifica-
tion task that assigns diagnosis and procedure codes
to clinical notes (Perotte et al., 2014; Nguyen et al.,
2023a). Early approaches use CNNs (Mullenbach
et al., 2018; Xie et al., 2019), LSTMs (Vu et al.,
2020; Nguyen et al., 2023b), and Transformers
(Huang et al., 2022) to encode clinical notes, while
incorporating label attention mechanisms to cap-
ture relationships between the notes and ICD codes.
Recent studies further improve code representa-
tion by integrating multiple code synonyms (Yuan
et al., 2022; Gomes et al., 2024) or code relation
graph learning (Luo et al., 2024). Contrastive learn-
ing has also been applied to improve model capa-
bilities, either between medical entities in UMLS
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(Yang et al., 2022) or between clinical notes and
ICD codes (Kailas et al., 2023). Several studies en-
hance ICD coding performance by leveraging the
discourse structure of clinical notes, such as using
section type embeddings (Zhang et al., 2022) or
contrastive pre-training between sections (Lu et al.,
2023).

While most methods rely solely on the provided
clinical notes and code descriptions, some studies
focuses on enhancing ICD coding performance us-
ing extra human annotations or data augmentation.
Kailas et al. (2023) pre-train a model on temporal
sequences of diagnostic codes using proprietary
data from a large patient cohort, where clinical
notes are paired with ICD-10 codes, to provide a
strong initialization for finetuning coding model.
Wang et al. (2024a,b) incorporate auxiliary informa-
tion such as diagnosis-related group (DRG) codes,
current procedural terminology (CPT) codes, and
prescribed medications to improve performance.
Lu et al. (2023) introduce masked section training
with small ratio as a data augmentation strategy,
following contrastive pre-training between note’s
sections to boost model performance. Falis et al.
(2022) propose ontology-guided synonym augmen-
tation and sibling-code replacement to generate
silver training examples. However, their method
requires a pretrained named entity recognition and
linking system to identify code-relevant text spans.

LLMs have demonstrated remarkable capabili-
ties across various general-domain tasks and have
recently been explored for ICD coding (Boyle et al.,
2023; Soroush et al., 2024). Yang et al. (2023a) in-
troduced LLM-Codex, which generates ICD codes
and evidence with GPT-4, followed by LSTM-
based verification. Li et al. (2024) use GPT-4 to
convert discharge summaries into Subjective, Ob-
jective, Assessment, and Plan (SOAP) format, al-
lowing multiple agents to perform ICD coding via
predefined workflows. While promising, these ap-
proaches still lag behind fully fine-tuned non-LLM
models on MIMIC-III common and rare datasets.

To the best of our knowledge, no prior work
has explored augmenting data with acronym expan-
sions and incorporating them via consistency train-
ing to enhance ICD coding performance. Moreover
unlike previous approaches, our approach does not
rely on additional annotations or specialized pre-
training. Instead, given the evidence of the zero-
shot capabilities of general-purpose LLMs to ex-
pand medical acronyms, our approach provides a

simple yet effective data augmentation strategy to
improve ICD coding performance.

6.2 Clinical acronyms disambiguation

Accurately disambiguating clinical acronyms and
abbreviations enhances automated clinical note
processing which include medical information re-
trieval and analysis. Several studies focus on train-
ing deep learning models with large amounts of
annotated data, including word-embeddings (Jaber
and Martinez, 2021; Wu et al., 2015), convolutional
neural networks (CNNSs) (Skreta et al., 2021), fine-
tuning transformer-based models such as BloBERT
(Li et al., 2024) and BlueBERT (Hosseini et al.,
2024), and fine-tuned encoder-decoder architec-
tures like TS5 (Rajkomar et al., 2022). To address
the scarcity of annotated data and the data-hungry
nature of deep learning models, prior work has
explored various data augmentation strategies, in-
cluding reverse substitution (Rajkomar et al., 2022;
Liu et al., 2024; Skreta et al., 2021), UMLS-based
similar concept retrieval (Skreta et al., 2021), in-
tegration of clinical note metadata (Kugic et al.,
2024), and the use of generative clinical models
(Hosseini et al., 2024). The potential of LLMs
in medical context understanding, coupled with
their reduced reliance on large annotated datasets,
has driven research toward zero-shot and few-shot
acronym disambiguation in clinical text requiring
less training cost and effort. Kugic et al. (2024),
Liu et al. (2024) and Hosseini et al. (2024) eval-
uate various LLMs on the CASI dataset (Moon
et al., 2012), showing that LLM-based prompting
achieves performance comparable to supervised
models, even in zero-shot settings.

7 Conclusion

In this paper, we introduce ACE-ICD, a system
that advances ICD coding performance by utilizing
acronym expansion as an innovative data augmen-
tation technique. Furthermore, we incorporate con-
sistency training, a regularization strategy that en-
forces alignment between original and augmented
documents to enhance model predictions. Our ap-
proach also outperforms studies which rely on ex-
ternal annotations or proprietary resources. Our
extensive experiments reveal that the combination
of LLM-based acronym expansion and consistency
training elevates ICD coding accuracy, outperform-
ing existing methods and establishing new state-of-
the-art benchmarks across various settings.
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Limitations

Our data augmentation approach relies on zero-
shot prompting to disambiguate medical acronyms
in clinical notes, making its effectiveness depen-
dent on the performance of the selected LLMs. We
chose Llama 3.1 70B as it was the best-performing
open-source model available at the time of our ex-
periments and aligned with our computational re-
sources. More advanced LLMs or prompting tech-
niques could potentially reduce translation errors
and generate higher-quality augmented data.

Our work uses KEPT as the base method, but we
argue that acronym expansion as a data augmen-
tation technique, combined with consistency train-
ing, can benefit other existing ICD coding systems.
Additional experiments are needed to thoroughly
assess the effectiveness of our proposed strategy
across various models.

8 Ethics Statement

This work uses the publicly available MIMIC-III
clinical dataset, which contains de-identified pa-
tient information in compliance with HIPAA stan-
dards. Access to the dataset requires completion
of a data use agreement and training in responsible
research conduct. Acronym expansion was per-
formed using open-source LLMs on a secure local
cluster, and no patient data were transmitted to any
third-party services. Our method is intended to
support clinical NLP research and is not designed
for direct clinical deployment without expert over-
sight. We do not anticipate any ethical concerns
associated with this study.
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A Appendix
A.1 Threshold Optimization

All results presented in the main paper are obtained
using a single threshold for all ICD codes, opti-
mized for the micro F1. An alternative approach
is to determine a specific threshold for each ICD
code. This method effectively lowers the threshold
for ICD codes with less training data compared
to a single-threshold approach, leading to an im-
provement in the macro F1 and surpassing (Zhang
et al., 2022) on the MIMIC-III-full dataset. How-
ever, this strategy tends to overfit the development
set, increasing the performance gap between the
development and test sets.

A.2 More implementation details

Pretrained models. We initialize our model
with two pretrained variants provided by (Yang
et al., 2022). KEPTLongformer is based on Clin-
ical Longformer (Li et al., 2023), while KEPT-
PMM3 builds upon RoBERTa-base-PM-M3-Voc-
distill (Lewis et al., 2020), a distilled variant of
RoBERTa-large pre-trained on PubMed, PMC, and
MIMIC-III corpus. These models adapt the Long-
former sparse attention mechanism (Beltagy et al.,
2020) to handle longer sequences and incorporate
medical knowledge through contrastive learning.

Training Details. Table 9 summarizes the
training hyperparameters for the three MIMIC-II1
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datasets. Training ACE-ICD (PMM3) for 8 epochs
on a single NVIDIA H100 GPU takes approxi-
mately 25 minutes for MIMIC-III-rare, 7 hours for
MIMIC-III-50, and 5 days for MIMIC-III-full.

Inference. Evaluating 1,573 examples
from the development set of MIMIC-III-50 takes
approximately 1 minute and 36 seconds on a sin-
gle H100 GPU, achieving a throughput of around
16 examples per second. For MIMIC-III-full, the
model requires six runs to re-rank 300 candidates,
resulting in a throughput of 2.67 examples per sec-
ond.
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Configuration

MIMIC-III-50

MIMIC-III-rare50

MIMIC-III-full

global attention on
global attention stride
synonyms in prompt
max length

num epochs

batch size

gradient accumulation steps
learning rate

learning rate scheduler
max grad norm

warm up ratio
AdamW epsilon
AdamW betas

weight decay

code descriptions + masks
1
yes
8192
8
1
1
1.5e-5
cosine
1
0
le-6
(0.9, 0.999)
0.01

code descriptions + masks
1
yes
8192
8
1
1
1.5e-5
cosine
1
0
le-6
(0.9, 0.999)
0.01

1662

code descriptions + masks
3
no
8192
4
1
6
1.5e-5
cosine
1
0.1
le-7
(0.9, 0.999)
le-4

Table 9: Training hyperparameters used in our experiments for the three ICD coding tasks on the MIMIC-III dataset.



