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Abstract
Quantifying the effects of textual interventions
in social systems, such as reducing anger in
social media posts to see its impact on en-
gagement, is challenging. Real-world inter-
ventions are often infeasible, necessitating re-
liance on observational data. Traditional causal
inference methods, typically designed for bi-
nary or discrete treatments, are inadequate for
handling the complex, high-dimensional tex-
tual data. This paper addresses these chal-
lenges by proposing CAUSALDANN, a novel
approach to estimate causal effects using text
transformations facilitated by large language
models (LLMs). Unlike existing methods, our
approach accommodates arbitrary textual in-
terventions and leverages text-level classifiers
with domain adaptation ability to produce ro-
bust effect estimates against domain shifts,
even when only the control group is observed.
This flexibility in handling various text inter-
ventions is a key advancement in causal estima-
tion for textual data, offering opportunities to
better understand human behaviors and develop
effective interventions within social systems.

1 Introduction

Causal inference is essential for studying social
phenomena from observational data, as it distin-
guishes true effects from spurious correlations (Ok-
tay et al., 2010). Unlike predictive models, causal
inference explores counterfactual scenarios, offer-
ing deeper insights into individual and social be-
haviors (Adhikari and Zheleva, 2023; Russo et al.,
2024) and informing effective interventions (Pan
et al., 2016; Kleven et al., 2024). Given that much
of online data is textual, estimating the causal
effects of language presents an important chal-
lenge (Russo et al., 2023; Egami et al., 2022; Weld
et al., 2022; Gligorić et al., 2019). Without causal
inference, studies risk hidden biases and mislead-
ing conclusions (Leeb et al., 2025). Given the

*These authors contributed equally to this work.

Figure 1: The causal diagram of the problem setup.
We aim to estimate the effect from the treatment T to
the outcome Y, accounting for confounding and/or non-
confounding covariates. The dashed arrows represent
latent relationships.

complexity of human behavior and society, robust
causal methods are crucial for producing reliable,
actionable insights.

However, causal inference on utterances of lan-
guage presents unique challenges both for identifi-
cation and estimation (Chen and Chu, 2023; Feder
et al., 2022). Consider the question of whether
angrier social media posts receive more attention
(Figure 1). The key challenge is that the treatment
variable “anger,” is latently embedded in text, never
directly observed and must be inferred, which fur-
ther complicates causal-effect estimation (Pryzant
et al., 2021). Any biases in anger estimation can
distort the causal estimate. This is the fundamen-
tal challenge of identifying the causal effect of a
treatment that is itself a latent attribute of text. An-
other challenge is that identifying and adjusting
for confounders is particularly difficult in observa-
tional studies, making results susceptible to various
biases from hidden confounding.

We propose CAUSALDANN, a framework that
crafts a hypothetical intervention on the observed
text, which can be implemented as a text transfor-
mation using a large language model (LLM), and
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estimates the effect by predicting the outcomes for
both observed and transformed data. This approach
enables causal inference via language even when
an intervention group is missing, overcoming a key
limitation of conventional methods.

To the best of our knowledge, we are the first to
address the estimation of causal effects from direct
interventions on text. Our first contribution is for-
mulating the intervention space as text transforma-
tions. Such interventions can be implemented by
prompting an LLM, like to rephrase text to express
more anger while preserving all other properties.
The treatment variable in our potential-outcomes
framework (Rubin, 1974) is considered to be a
whole text, allowing for causal analysis even in
the absence of an intervention group. It also re-
duces the need for identifying and adjusting for
confounders already embedded in text.

Our second contribution is a method to predict
unobserved outcomes of text interventions. After
transformation, we have both non-intervened (ob-
served) and intervened text, but outcomes for the
latter remain unobserved. Predicting the outcomes
for unseen data is challenging due to domain shift
between the observed training data and the unob-
served intervened data (Ryu et al., 2022; Ma et al.,
2025). To tackle this, we propose CAUSALDANN,
which adapts domain adaptation neural network
(DANN) (Ganin and Lempitsky, 2015) as the out-
come predictor. Experiments show that DANN
leads to less bias in causal estimation than alterna-
tives like inverse propensity weighting (IPW) and
doubly robust method (DR).

We evaluate CAUSALDANN on three semi-
synthetic datasets constructed using LLM simu-
lations, and find that it outperforms baselines for
estimating causal effects of direct text interventions.
In our evaluation, we analyze potential sources of
bias, but recognize the larger need to evaluate and
mitigate bias in LLM-generated text in future ap-
plications, which can impact whether the chosen
LLM transformations truly isolate the causal vari-
able while preserving all else. Future works may
assess whether this framework generalizes to real-
world settings beyond the semi-synthetic datasets.1

2 Related Works

Causal Inference with Text The field of causal
inference in machine learning is rapidly advanc-

1Our code can be found at https://github.com/
fionasguo/CausalDANN.

ing, as does its intersection with language model-
ing. Prior works on causal effect estimation with
text (Sridhar and Blei, 2022) does not usually con-
sider the text as the treatment variable. Rather,
text embeddings are used as covariate informa-
tion (Veitch et al., 2020), or some discrete coding
of the text is used as the treatment (Pryzant et al.,
2021; Egami et al., 2022; Cheng et al., 2022; Zhou
and He, 2023; Jiang et al., 2024). As far as we
know, we are the first to introduce a method for es-
timating the effects of direct interventions on text.

Efforts to mitigate spurious correlations in text
classifiers (Veitch et al., 2021; Bansal and Sharma,
2023) mirrors some of the techniques used for
causal effect estimation, as their statistical implica-
tions resemble confounding. Generally, spurious
correlations are of concern for model generaliza-
tion (Feder et al., 2023), and causal effect estima-
tion can be seen as a special case of generalization
to the interventional domain.

LLMs for Causal Inference LLMs offer poten-
tial for advancing causal inference with text (Kıcı-
man et al., 2023; Zhang et al., 2023; Ashwani et al.,
2024; Jin et al., 2023). However, spurious corre-
lations in large text corpora often obscure causal
relationships (Zečević et al., 2023). This weakness
may stem from a fundamental limitation of LLM
training—causal inference requires extrapolating
to novel conditions, such as interventions (Peters
et al., 2017; Imbens and Rubin, 2015). Querying
an LLM about text interventions places it in a low-
probability regime of its training data, where recent
work suggests LLM reasoning struggles (Udan-
darao et al., 2024).

To integrate LLMs into causal inference with-
out relying on their limited causal reasoning, new
estimation methodologies are needed. Double
machine learning (DML) focuses on controlling
overfitting bias via sample splitting and orthogo-
nalization (Chernozhukov et al., 2018), and has
been applied on texts and LLMs (Veljanovski and
Wood-Doughty, 2024; Ma et al., 2025). Another
promising direction is counterfactual data genera-
tion (Hamilton and Piper, 2022; Mishra et al., 2024;
Bhattacharjee et al., 2024; Li et al., 2023). In our
work, we leverage LLMs in two ways: (1) impos-
ing interventions on text (e.g., modifying sentiment
in text) without requiring causal reasoning, and (2)
generating counterfactual outcomes to construct
evaluation datasets.
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Domain Adaptation Pre-training followed by
fine-tuning on specific tasks has become a stan-
dard paradigm in language modeling (Devlin et al.,
2018; Brown et al., 2020; Dubey et al., 2024).
However, fine-tuning often leads to performance
degradation on unseen data due to domain shift
between training and test data (Ma et al., 2019;
Ryu et al., 2022; Bet,ianu et al., 2024). To mitigate
this, domain adaptation techniques have been de-
veloped, including sample reweighting (Li et al.,
2016), structural correspondence learning (Blitzer
et al., 2006), joint distribution matching (Long
et al., 2013), and mixture of experts (Guo et al.,
2018). A notable approach is Domain Adversarial
Neural Network (DANN)(Ganin and Lempitsky,
2015), which integrates a domain classifier as an
adversary to encourage domain-invariant features,
improving adaptation. This method has been ef-
fective in NLP tasks such as stance and morality
detection (Allaway et al., 2021; Guo et al., 2023).

Domain adaptation helps address the covariate
shift in causal estimation, by aligning the distri-
butions of treated and control groups (Abdullahi,
2021). Some classic causal methods to adjust for
confounders, such as inverse propensity weighting
(IPW) (Hirano and Imbens, 2001) and doubly ro-
bust (DR) (Funk et al., 2011) methods, can also be
viewed as a form of domain adaptation by align-
ing the distributions, and have been used to deal
with incomplete data (Seaman and Vansteelandt,
2018). However, both IPW and DR specifically
consider discrete (e.g. binary) treatments that are
observed separately from the text, but have not yet
been developed for the identification setting where
the interventions acting directly on a piece of text.
In addition, advanced deep learning-based adapta-
tion remains underexplored in causal estimation.
In our work, we evaluate IPW, DR and DANN for
predicting potential outcomes.

3 Methods

We tackle the challenge of causal estimation for
textual data where the treatment variable (e.g., emo-
tion) is unobserved, and constructing the treated or
control group is difficult. We propose CAUSAL-
DANN (Figure 2), a framework that (1) applies
a transformation on observed text to construct the
intervened group, (2) predicts potential outcomes
using a domain-adaptation model trained on non-
intervened data, and (3) estimates causal effects
from the predicted outcomes.

3.1 Identification
We formalize our inference problem on text with
potential outcomes (Imbens and Rubin, 2015; Ru-
bin, 1974). For text W and outcome Y , we con-
struct causal estimands through an intervention on
the text defined by a transformation W 7→ g(W )
(e.g., rephrasing text to express more anger while
preserving all other aspects). This intervention im-
plicitly defines the treatment and results in two
groups: the observed and the intervened. The
causal estimand now becomes the difference in
predicted outcomes between W and g(W ). Struc-
turally, this setup mirrors the binary treatment
framework, ensuring that three key causal iden-
tification assumptions still hold:

SUTVA (Stable Unit Treatment Value Assump-
tion): a unit’s potential outcomes are only a func-
tion of its own text and not that of any other units.

Overlap: For each original text W , the trans-
formed text g(W ) lies within the support of the
representation space covered by the observational
data. We assume that text W encodes both the treat-
ment implicitly defined through the intervention,
and latent covariates C (e.g., grammar). When con-
ceptualizing text in a high-dimensional representa-
tion space, the treatments and the latent covariates
can be thought to correspond to some of these di-
mensions. A transformation g(·) then moves the
text along specific dimensions. Overlap requires
that g(W ) does not lie in a separate region from
the observed data W . This enables generalization,
especially through domain adaptation.

Ignorability: Conditional on the observed text
W and external covariates X , the treatment as-
signment is independent of potential outcomes.
Here we distinguish between the two types of
covariates—X includes observed covariates exter-
nal to the text (e.g., social platform where text is
posted), whereas C represents latent covariates of
interest that are recovered from the text (e.g., gram-
mar). See Fig. 1. In our estimation, we always con-
dition on text, which contains the latent covariates
C. This reduces the need of externally identify-
ing and controlling for C. Both C and X can be
confounding or non-confounding.

These assumptions enable the identification of
potential outcomes by conditioning on the treat-
ment text w, which can be observed or transformed.

E[Y (w) | X = x] = E[Y | W = w,X = x] (1)

We can thus compute the average treatment ef-
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Figure 2: We first apply an LLM transformation or sampling to the observed text and outcome (non-intervened
group) to generate text data for the intervened group. The outcomes for the transformed data remain unobserved.
To predict the outcomes, we use (a) the BERT-based baseline predictor or (b) the proposed CAUSALDANN with
domain adaptation. We then predict outcomes for both groups and compute the causal effects.

fect (ATE) and the conditional average treatment
effect (CATE) as

ATE = E[Y (g(w))]− E[Y (w)] (2)
CATE = E[Y (g(w))|X]− E[Y (w)|X] (3)

3.2 Interventions on Text using an LLM

We introduce different kinds of transformations
W 7→ g(W ) on observed text W to generate data
in the intervened group.

1. LLM-based transformation: An LLM is
prompted to rephrase text to intensify or atten-
uate an attribute such as anger or sentiment,
while preserving all other properties. This
enables targeted interventions and supports
estimation of specific treatment effects (Sec-
tion 4.4).

2. Structured sampling: In datasets with struc-
tured formats (e.g., product reviews with rat-
ings or Reddit posts with comments), we con-
struct control/intervened groups by selecting
alternative observed examples—e.g., 5-star vs.
1-star reviews (Section 4.2), or top-ranked vs.
randomly selected comments on the same post
(Section 4.3).

It may be questioned whether an intervention de-
fined through an LLM with a certain prompt really
disentangles and modifies one aspect of language
while preserving the others. LLMs’ capabilities in
counterfactual generation are well-known (Brown
et al., 2020; Dubey et al., 2024; Mishra et al., 2024;
Li et al., 2023); however, they are not free of all

social bias. We conduct manual inspections and
analyze potential biases in our data and did not ob-
serve any significant bias (see Appendix B). Future
applications of our framework should validate the
fidelity of specific LLM-defined transformations
using techniques such as improved prompting (Li
et al., 2023), human-in-the-loop annotations, and
improved alignment. Our work studies how to esti-
mate the effect of a given intervention.

3.3 Counterfactual Generation with LLMs

Even after applying transformation techniques to
construct the intervened group, outcomes remain
unobserved, and ground truth causal effects are un-
available. Thus, generating synthetic data is crucial
for evaluation. LLMs, with their extensive training
and reinforcement learning from human feedback
(RLHF), can simulate outcomes for unobserved
data, such as modeling social norms (Brown et al.,
2020; Dubey et al., 2024). In Sections 4.3 and 4.4,
we use LLMs to simulate social judgments on posts
from Reddit’s /r/AmITheAsshole. Although using
LLMs for counterfactual generation in evaluation
data may introduce biases, we did not find any in
our case studies (see analyses and mitigation strate-
gies in Appendix B).

3.4 Outcome Prediction

Since the outcomes of the generated (intervened)
data are never observed, we need a prediction
model to estimate the outcomes for all the data
in order to estimate the causal effects. CAUSAL-
DANN improves robustness to the domain shift
between observational and intervened text by us-
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ing domain adversarial training to learn domain-
invariant features, enabling more accurate predic-
tion on transformed texts.

3.4.1 BERT
BERT based models (Devlin et al., 2018) are
among the best approaches for adjusting for textual
confounding (Feder et al., 2021; Veljanovski and
Wood-Doughty, 2024; Keith et al., 2020). Thus, we
use it as our baseline outcome predictor. We train
a vanilla BERT model using only non-intervened
text, where outcomes are observed and serve as
labels for supervised learning. To mitigate the bias
from BERT predictions being propagated into ef-
fect estimation, we predict the outcomes for both
control and treated with the same BERT mode, en-
suring a fairer comparison when estimating effects
as a relative difference between the two groups.

We build the outcome predictor by appending
a linear classification layer to the BERT embed-
ding model (see Appendix D). To obtain the pre-
dicted outcome for all data, we randomly split the
data into five folds. Each time we train the out-
come predictor with four-fifths of the data, which
is further split into training and validation sets by
80%-20% ratio. Finally, we predict on the remain-
ing one-fifth data to obtain their predicted out-
comes. Given the i-th text Wi and its observed
covariate Xi, the outcome can be predicted as
Yi = E[Y |W,X] ≈ µBERT (Wi, Xi) from the
BERT-based classification model. The ATE can be
estimated as

ATE = E[Y (g(W ))]− E[Y (W )]

≈ 1

N

N∑

i=1

µBERT(g(Wi), Xi)− µBERT(Wi, Xi) (4)

where N is the total number of data points and
g(·) is the text transformation function. The CATE
can be computed by using equations 1 and 3

CATE = E[Y (g(W ))|X]− E[Y (W )|X]

= E[E[Y |W = g(W ), X]|X]− E[Y (W )|X] (5)

We can use BERT to estimate the inner expec-
tation E[Y |W = g(W ), X] ≈ µBERT (g(W ), X)
in the first term, and the outer expectation marginal-
izes out the W. The second term can be similarly
computed with µBERT (W,X).

In CATE, the confounding external covariates
X needs to be conditioned on, but the latent co-
variates C is not explicitly necessary for causal

identification, since we always condition on text.
In conventional settings (e.g. T is anger), adjusting
for latent language properties C (e.g. grammar)
is difficult, but our framework reduces this need.
Nevertheless, non-confounding features can also
be used to analyze heterogeneous treatment effects.
For example, while topic (C) is controlled in LLM
transformation and not a confounder, we can still
examine effects across different topics.

CATE ≈ 1

Nc,x

Nc,x∑

i:Ci=c,Xi=x

µBERT (g(Wi), Xi)

− µBERT (Wi, Xi) ∀c ∈ C, x ∈ X (6)

3.4.2 CAUSALDANN
Fine-tuned BERT often suffers performance drops
on unseen data (Ma et al., 2019; Ryu et al., 2022).
Since our outcome predictor must perform well on
both non-intervened data with observed outcomes
and transformed data with unobserved outcomes
(section 3.2), we adopt Domain Adversarial Neural
Network (DANN) instead of vanilla BERT. Guo
et al. (2023) demonstrated DANN’s strong perfor-
mance in domain adaptation for textual data.

DANN mitigates data shift by mapping text em-
beddings from both labeled source and unseen
target domains onto a shared space. CAUSAL-
DANN consists of three modules (Figure 2b): (1) a
BERT encoder for textual representation, (2) an out-
come predictor—a linear classifier same as in the
vanilla BERT outcome predictor, and (3) a domain
predictor—another linear classifier but with cross-
entropy loss trained adversarially to be maximized,
ensuring domain-invariant embeddings. This is
achieved by connecting the domain classifier to the
other parts of the model with a gradient reversal
layer. The loss term is:

L = Loutcome − λD · Ldomain (7)

where λD is a loss-balancing hyperparameter (see
training details in Appendix D).

In our setup, the source domain is non-
intervened (observed) data, while the target do-
main is intervened (unobserved) data. We train the
model in a semi-supervised way, providing both
the labeled non-intervened training data and the un-
labeled intervened data in each batch, balanced in
size. Both pass through the BERT encoder to learn
textual representations. Next, the non-intervened
data go through both the outcome and domain pre-
dictors, while intervened data, lacking outcome
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labels, only pass through the domain classifier.
This adversarial setup pushes the encoder to learn
domain-invariant embeddings, aligning intervened
data closer to the non-intervened labeled data (see
Appendix D). After obtaining predicted outcome
by CAUSALDANN, the ATE and CATE can be
caculated in the same way as in Section 3.4.1.

4 Experiments

We use real-world data from Amazon prod-
uct reviews (Ni et al., 2019) and Reddit
r/AmITheAsshole discussions of social dilemmas 2

for model evaluation in three case studies.

4.1 Baselines and Setups

We compare three baselines (1) BERT, (2) inverse
propensity weighting (IPW) and (3) doubly robust
estimator (DR) against the proposed (3) CAUSAL-
DANN. We also evaluate (4) CAUSALDANN+DR
to assess whether DR further improves domain
adaptation. See details of baseline implementations
in Appendix D. Additionally, we compare with (5)
TextCause (Pryzant et al., 2021), a causal estima-
tion method that, like ours, adjusts for confounding
using BERT embeddings. However, TextCause as-
sumes observations exist in both control and treat-
ment groups, and fails when the treatment variable
is unobserved or when one group lacks data. Nev-
ertheless, The TextCause performance tells us how
good the effect estimation can get to even with
more training data from both control and treated
groups.

We evaluate performance using two metrics: (1)
∆ATE, the absolute difference between predicted
and ground truth ATE, and (2) mean squared er-
ror (MSE) of the CATE vector across all covariate
dimensions. For both, lower values indicate bet-
ter performance. Each experiment is repeated five
times to report the average and standard deviation.

4.2 Amazon Reviews

4.2.1 Data and Experiment Set-up
We first evaluate our method on a semi-synthetic
dataset based on Amazon reviews (Ni et al., 2019),
a benchmark also used in (Pryzant et al., 2021).
This dataset consists of 5.6K reviews on products
in the categories of mp3, CD, or Vinyl. Reviews
for products worth more than $100 or fewer than 5
words are excluded.

2https://github.com/iterative/aita_dataset

Following (Pryzant et al., 2021), we estimate
the effect of positive sentiment in reviews on sales,
hypothesizing that positive reviews increase click
and purchase likelihood, though product type may
confound this effect. See causal graph in Figure 3.
Since sentiment is embedded in text and not explic-
itly observed, defining the treatment variable in a
conventional causal setting is challenging.

Based on our framework, we define a transfor-
mation function g(·) that intervenes on the posi-
tive sentiment of the reviews without manipulating
other attributes like grammar. In this experiment,
we do not use an LLM, but instead we sample
the positive and non-positive reviews from the ob-
served data itself, labeling reviews as positive if
they have 5 stars and non-positive if they have 1 or
2 stars. The intervention is T = 1positive. This set-
ting (1) evaluates our framework without potential
biases from LLM-generated text, and (2) mirrors a
traditional causal estimation setup, enabling a fair
comparison with TextCause.

The observed covariate X is a binary indicator
for whether the associated review is a CD or not.
The outcome Y , a binary variable for whether a
product received a click or not, is simulated based
on the textual intervention T = 1positive and the
covariate X as following:

Y ∼ Bernoulli(σ(βX(π − β0) + βTT + ε)) (8)

where σ(·) is the sigmoid function, π = P (T |X) is
the propensity, βX controlling confound strength is
set to 4.0, βT controlling treatment strength is set to
0.8, β0 controlling propensity is set to 0.8. All these
hyperparameters are set as the same as a harder-to-
estimate scenario in (Pryzant et al., 2021).

We then follow our framework and train the out-
come and propensity predictors. We assume that
we do not observe the outcomes in the intervened
(positive) group. Therefore, we only use the non-
intervened reviews and their labels Y (T = 0) to
train the outcome predictors. For the propensity
predictor in the IPW method, we use T as the train-
ing labels and both intervened (T = 1) and non-
intervened (T = 0) groups.

Identification The outcome generation process
(Equation 8) ensures the SUTVA, overlap and ig-
norability assumptions.

4.2.2 Results
Table 1 shows that CAUSALDANN gives us the
ATE and CATE estimation closest to the ground
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truth, outperforming other baselines including
BERT, IPW, DR and also CAUSALDANN+DR.
The fact that CAUSALDANN achieves lower error
than the vanilla BERT baseline tells us the effec-
tiveness of domain adaptation by DANN. In addi-
tion, the results show that IPW has significantly
worse performance, suggesting issues with propen-
sity score estimation. We notice that the propen-
sity predictor easily classifies reviews as positive
or negative, yielding probability outputs near 0 or
1, even after temperature scaling. This extreme
weighting leads to the numerical ill behavior in
IPW. DR also utilize the propensity score. For
the same reason, DR also has worse performance
than CAUSALDANN, although its bias is much
less significant than IPW due to DR’s doubly de-
biasing approach. Last, TextCause sets an upper
bound on performance by leveraging more observa-
tions in the intervened group. It is no surprise that
TextCause performs better. However, CAUSAL-
DANN achieves a ∆ATE close to TextCause and
matches its MSE for CATE, demonstrating that its
estimations are less biased.

∆ATE (↓) MSE of CATE (↓)
TextCause 0.05± 0.02 0.01± 0.01

BERT 0.12± 0.05 0.02± 0.01

IPW 27.29± 6.22 1135.02± 416.02

DR 0.58± 0.42 1.26± 1.27

CAUSALDANN 0.09± 0.04 0.01± 0.01

CAUSALDANN+DR 1.37± 0.40 2.99± 1.30

Table 1: Causal estimation errors in Amazon Reviews.

4.3 Reddit AITA Comments

4.3.1 Data and Experiment Set-up
Next we evaluate our methods on the Reddit
r/AmITheAsshole (AITA) data, where users share
social dilemmas and receive judgements on who is
at fault. This data has been used as a benchmark
for causal estimation (Marmarelis et al., 2024).

In AITA, the verdict is shaped by upvotes on
comments, with the most upvoted comment re-
maining at the top, increasing its visibility. A key
research question is whether exposure to the top
comment affects individual judgment, due to influ-
ences of mainstream opinions. Conducting such
an experiment in real life is challenging, but our
framework enables an approximation to this causal
question utilizing LLM-generated synthetic evalua-
tion data. See causal graph in Figure 4.

In this experiment, we do not use LLM trans-

formation as an intervention, but sample both in-
tervened and control units from real-world data.
We select the top-ranked comment on each Reddit
post as the intervened unit and randomly sample an-
other comment (excluding the top-ranked one) on
the same post as the control unit. The intervention
is thus the binary variable T = 1top comment.

To create a semi-synthetic evaluation dataset, we
perform LLM counterfactual generation by prompt-
ing GPT-4 3 to act as a moral judge on these
real-world posts and generate verdicts (Marmarelis
et al., 2024). This simplifies the problem from
estimating effects on real-life human behavior to
analyzing impact in an LLM-simulated scenario.
See Appendix E for prompting procedure. Table 5
shows example generations, which exhibit good
quality. The outcome Y is simulated by prompting
an LLM to provide moral verdicts for (a) a story
with its top-ranked comment and (b) the same story
with a randomly selected comment. We formulate
outcome Y to be binary, with Y = 1 when GPT
assigns fault and Y = 0 otherwise (we categorize
YTA (you are the asshole) and ESH (Everyone
sucks here) into Y = 1, and NTH (not the ass-
hole) and NAH (no asshole here) into Y = 0). For
each post, we generate both outcomes Y (T = 1)
and Y (T = 0) to compute synthetic ground truth
treatment effects. We examine potential LLM gen-
eration biases in Appendix B.

Following the approach in Section 3, we train
the outcome predictor and the propensity predic-
tor. Both predictors use concatenated post and
comment text, adjusting for latent confounders
in texts. The outcome predictor is trained using
only non-intervened data with observed ground
truth Y (T = 0) labels, while the propensity pre-
dictor uses T = 1top comment labels from both
groups. Additionally, we compute CATE con-
ditioned on post topics, which we extract using
BERTopic (Grootendorst, 2022). See Appendix F.

Identification We use LLM counterfactual gen-
eration to simulate pseudo ground truth outcomes
for model evaluation purpose. In other words, we
estimate the average difference in the GPT judge’s
(instead of real humans’) outputs given an obser-
vational top comment versus a randomly picked
comment in its place. This outcome simulation
process ensures ignorability, as only the comment
changes while all other aspects (e.g., the post) re-
main the same. We assume overlap is also sat-

3https://openai.com/index/gpt-4/
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isfied. Our covariates are latent in the post and
comment text. Each pair of intervened and control
units have the same post. We assume comments
are also similar in style, because both top and ran-
dom comments originate from the same discussion
thread. Thus, as explained in Section 3, observa-
tional and intervened texts should occupy the same
high-dimensional space except along the "treatment
dimension". Simulating each verdict in an indepen-
dent process partially ensures SUTVA, and we ac-
knowledge that the simulated outcomes could still
be correlated across different units because they
are generated by the same LLM model, which is a
limitation of how this testbed is constructed. We
hope to add more alternative evaluations in future
works.

4.3.2 Results

∆ATE (↓) MSE of CATE (↓)
TextCause 0.04± 0.01 0.01± 0.00

BERT 0.01± 0.01 0.01± 0.01

IPW 3.43± 1.02 14.08± 9.03

DR 0.07± 0.03 0.04± 0.01

CAUSALDANN 0.01± 0.01 0.00± 0.00

CAUSALDANN+DR 0.21± 0.06 0.08± 0.03

Table 2: Causal estimation errors in AITA comments.

Table 2 shows that CAUSALDANN performs
exceptionally well on this dataset. It has similar
performance to BERT because top and random
comments are often similar in perspective and writ-
ing style, leading to minimal data shift between
non-intervened and intervened data. As a result,
BERT also performs well here. The similarity be-
tween the top and random comments also leads to
inaccurate propensity score estimation. Therefore,
IPW and DR-based methods perform worse due to
low accuracy in the propensity prediction (F1-score
is 0.52± 0.01). Finally, although TextCause can-
not handle unobserved outcomes in the intervened
group, we run it by providing LLM-generated coun-
terfactuals. We find CAUSALDANN slightly out-
performs TextCause using more information.

4.4 Anger in AITA Posts

4.4.1 Data and Experiment Set-up
In the same AITA dataset, we investigate whether
the anger level in posts affects people’s verdicts.
Posts with higher anger or aggression may lead to
a higher likelihood of being deemed the author’s
fault. See Figure 5 for causal graph. Anger is a

latent attribute in texts. Under a conventional setup,
we would need to use a proxy treatment variable
which could be susceptible to more bias (Pryzant
et al., 2021). In our framework, we define an in-
tervention T = 1anger, where we use Claude 3.5
Sonnet 4 to transforms each post to increase its
anger level while preserving style, semantics, and
perspective. To mitigate bias from LLM transfor-
mations, we also rephrase the original post keeping
the same anger level. Manual inspection confirms
the quality of the transformations (details in Ap-
pendix E).

Similar to section 4.3, we create a semi-synthetic
evaluation data by counterfactual generation of out-
comes. Y is generated by prompting an LLM for
verdicts on (a) an LLM-anger-transformed AITA
story and (b) an LLM-rephrased version of the
original story. We are estimating the effect of
the intervention formulated as this LLM-anger-
transformation, conditioned on text containing la-
tent text-related covariates and the implicit treat-
ment. More analysis on potential bias from LLM-
generations, data shift and overlap from LLM-
transformation can be found in Appendix.

Similar to previous experiments, we only use
the non-intervened (rephrased) posts and their cor-
responding Claude-generated verdicts to train the
outcome predictor. To train the propensity predic-
tor, we use all data and T = 1anger as the label.
The input to both predictors are the post texts. In
addition, we also have the covariates C to be the
binary vector of the top 30 frequent topics obtained
from BERTopic for computing CATE. The train-
ing procedure is similar to previous experiments
(Appendix D).

Identification Similar to the previous experi-
ment, all confounding latent covariates are con-
trolled, and ignorability and overlap assumptions
are satisfied. Running each verdict simulation inde-
pendently partially ensures SUTVA, though simu-
lated outcomes may still correlate since they come
from the same LLM. We plan to explore additional
evaluation methods in future work.

4.4.2 Results
From Table 3, we see that CAUSALDANN outper-
forms other methods and matching the performance
of TextCause (using more training data from the

4We use Claude 3.5 Sonnet (https://www.anthropic.
com/news/claude-3-5-sonnet), as GPT is more conserva-
tive and does not significantly alter the anger level.
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intervened group). Methods using DANN archi-
tecture are better than methods based on vanilla
BERT, again showing the effectiveness of domain
adaptation in predicting potential outcomes. Ap-
plying IPW again signifincantly lowers the perfor-
mance because of the numerical ill behavior when
the propensity scores were close to either 0 or 1.
CAUSALDANN also outperforms DR again in this
data. All these results indicate that propensity esti-
mation, IPW and DR can be less robust.

∆ATE (↓) MSE of CATE (↓)
TextCause 0.05± 0.01 0.02± 0.01

BERT 0.09± 0.07 0.03± 0.02

IPW 154.61± 16.24 25744.42± 5467.05

DR 0.10± 0.05 0.31± 0.36

CAUSALDANN 0.05± 0.03 0.01± 0.01

CAUSALDANN+DR 0.07± 0.04 0.15± 0.18

Table 3: Causal estimation errors in AITA-anger data.

5 Conclusions

In this work, we target the problem of causal esti-
mation for textual data especially when the treat-
ment variable is not directly observed. We propose
CAUSALDANN, a framework for estimating the
causal effect of tailored interventions on text. Us-
ing domain-adaptive text classifiers, our approach
produces robust effect estimates while handling
domain shifts. We demonstrate CAUSALDANN’s
strong performance across three experiments.

Limitations First, LLM-generated data is prone
to biases and limited diversity (Appendix B). We
mitigate these issues through manual inspection of
the generations, and by applying LLM rephrasing
to the non-intervened group alongside the transfor-
mation of intervened group. This ensures a fair
comparison when estimating effects as a relative
difference between the two groups. If the trans-
formation intervention does contain biases from
LLMs, then this bias would propagate to effect es-
timation. Our evaluation on three different datasets
shows that our method achieves lower biases in
causal estimation than the baselines. Bias mit-
igation in counterfactual generation is an active
research area, including strategies like enhanced
prompting and human-in-the-loop annotation (Li
et al., 2023; Bhattacharjee et al., 2024). However,
this topic is beyond the scope of our paper.

Second, our experiments evaluate the proposed
framework using LLM-generated semi-synthetic
data, meaning the estimated effects reflect simu-

lated LLM textual transformations not real human
social behaviors. However, applying this approach
to causal estimation on real data requires the as-
sumption that LLMs can reliably infer unobserved
data points through text transformation based on ob-
served human behavior—an assumption that may
not always hold. For instance, although we con-
trol for linguistic properties such as semantics and
grammar through prompting, modifying anger lev-
els via LLM transformation may also unintention-
ally alter toxicity. Future applications of our frame-
work should also carefully validate this assumption.
We also plan to explore fine-tuning LLMs with
observed data, enabling them to learn specific per-
sonas and more closely align their behavior with
human social systems. Alternative testing methods
can also be designed in the future. For example,
in AITA-comments experiment, we can change the
prompt so that GPT is given the same comment
twice but told once that it was a top-ranked com-
ment and once that it was a low-ranked comment.

Third, the consistency assumption requires that
there are no two ‘flavors’ or versions of treat-
ment (Rehkopf et al., 2016). However, we de-
fine the treatment T as a transformation operation
T = W → g(W ), which is different from the
conventional binary treatment. We therefore inter-
pret potential outcomes as defined relative to the
sampling/transformation procedure. The experi-
ments with LLM-constructed semi-synthetic data
can violate the strict consistency assumption in con-
ventional setup. For example, in the AITA-anger
experiment, there may be different “flavors” of the
anger treatment as there are sources of randomness
in the LLM sampling procedure. We propose to
conduct more rigorous estimation in future works,
such as studying multiple random generations for
one input text. In LLM-based rewrites, we also mit-
igate the randomness in generation via controlled
prompting and rephrasing baselines.

Last, there can be potential unobserved con-
founders that are not accounted for in our experi-
ments. While we adjust for confounding by con-
ditioning on textual representations and estimated
propensity scores, there may still be latent factors
influencing both the treatment and outcome that
our models fail to capture. For example, in the
AITA dataset, implicit biases in user interactions
in the Reddit threads could affect verdicts in ways
not reflected in the observed text. Addressing un-
observed confounding remains a fundamental chal-
lenge in causal inference from observational data,
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and future work could explore the proper sensitivity
analysis to bound the uncertainty.

Ethics Statement In this research, we utilized
Large Language Models (LLMs) to generate data
for analysis. We acknowledge the ethical considera-
tions associated with the use of LLMs, particularly
concerning potential biases, data validity, and the
broader implications of AI-generated content. The
raw Reddit AITA and Amazon reviews data we
use contain information like names or uniquely
identifies individuals, and contain offensive con-
tent. All the user names are anonymized to ID
strings. Additionally, we only present the aggre-
gated average effects, without revealing any in-
dividual information. To maintain transparency,
we have detailed the methodology used for data
generation and the steps taken to address ethical
concerns in this paper. We encourage readers to
consider these factors when interpreting our find-
ings. Furthermore, our causal estimation frame-
work, while effective in controlled semi-synthetic
settings, may not generalize perfectly to real-world
scenarios. In real data applications, unobserved
confounders and biased treatment effect estima-
tions could lead to misleading conclusions. Users
of our method should be cautious when applying
it to real-world interventions, particularly in high-
stakes domains such as policy-making, healthcare,
or legal decision-making, ensuring appropriate val-
idation and sensitivity analyses.

Finally, this manuscript was drafted by the au-
thors with the assistance of ChatGPT to refine the
language and improve readability. All content was
reviewed and verified for accuracy.
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A Causal Graphs and Identification in
Three Experiments

Amazon Reviews We estimate the effect of pos-
itive sentiment in reviews on sales, hypothesizing
that positive reviews increase click and purchase
likelihood, though product type may confound this
effect. In this causal question, we assume the treat-
ment (positive or negative rating) T = 1positive

affects the review text. T affects the outcome of
whether the product gets a click. We also assume
the confounding covariate of product type X af-
fects both the treatment and the outcome. There
might be some latent non-confounding covariates
such as grammar that affects the review text and
the outcome Y too. However all these latent C are
already taken into account in the BERT embedding
during modeling process. The outcome generation
procedure based on equation 8 makes sure that all
three identification assumptions, SUTVA, overlap
and ignorability are satisfied.

Figure 3: The assumed causal graph for the Amazon
Reviews Experiment.

Reddit AITA Comments We estimate whether
exposure to the top/random comment affect GPT’s
moral judgment, as we are using simulated GPT

verdicts as the synthetic ground truth counterfac-
tuals for model evaluation in this experiment. The
treatment T (top or random comment) affects the
outcome, GPT’s verdict. We do not consider the
treatment affects the text W , which is the post it-
self. We see post topic as a latent confounding
covariate. Both topic and other non-confounding
latent covariates are adjusted in the BERT embed-
dings already. For research interest, we still use
BERTopic to categorize the topic of each post and
measure the heterogeneous effects.

We use LLM counterfactual generation to simu-
late pseudo ground truth outcomes for model eval-
uation purpose. In other words, we estimate the
average difference in the GPT judge’s (instead of
real humans’) outputs given an observational top
comment versus a randomly picked comment in
its place. This outcome simulation process ensures
ignorability, as only the comment changes while all
other aspects (e.g., the post) remain the same. We
assume overlap is also satisfied. Our covariates are
latent in the post and comment text. Each pair of in-
tervened and control units have the same post. We
assume comments are also similar in style, because
both top and random comments originate from the
same discussion thread. Thus, as explained in Sec-
tion 3, observational and intervened texts should
occupy the same high-dimensional space except
along the "treatment dimension". Simulating each
verdict in an independent process partially ensures
SUTVA, and we acknowledge that the simulated
outcomes could still be correlated across different
units because they are generated by the same LLM
model, which is a limitation of how this testbed
is constructed. We hope to add more alternative
evaluations in future works.

An additional note on SUTVA is that in general
our framework (Section 3) does not assume identifi-
ability from LLM generation itself. Instead, we ar-
ticulate conditions (ignorability, overlap, SUTVA)
under which causal estimation is valid when treat-
ing interventions as hypothetical transformations
g(W ). Identifiability in our framework derives
from standard causal assumptions applied to in-
terventions on text, not from assuming that an
LLM can produce the true counterfactual. The
use of LLMs in experiments is only to create semi-
synthetic evaluation data, not to grant identifiability
by fiat.

Reddit AITA Anger We estimate how transform-
ing a Reddit post to an angrier version by LLM can
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Figure 4: The assumed causal graph for the Reddit AITA
Comment Experiment.

affect GPT’s moral verdict. The treatment, the
LLM anger-transformation operation, affects the
text W , and T also affects the outcome Y. Simi-
lar to the AITA Comments experiment, both topic
and other non-confounding latent covariates are
adjusted in the BERT embeddings already. For re-
search interest, we still use BERTopic to categorize
topic of each post and measure the heterogeneous
effects. All discussions about SUTVA, overlap and
ignorability assumptions are the same as in Reddit
AITA Comments experiment.

Figure 5: The assumed causal graph for the Reddit AITA
Anger Experiment.

B Mitigation of LLM-related Biases

LLM-generated text can be biased due to imperfec-
tions in training data, affecting both (1) counterfac-
tual generation for synthetic test data and (2) text
interventions via LLM transformations.

For the first point, we assume LLMs have
learned social norms and common sense from ex-
tensive online data. To assess potential biases, we
analyze the distribution of LLM-generated AITA
verdicts across self-reported gender and age groups,
detected via regex from real posts (e.g., "I (30F)...").

We observe differences in verdict distributions by
age and gender (Figure 6), such as younger authors
being labeled "ESH" more often and older authors
receiving "NAH" more frequently. However, this
may be a reflection of real-world human behav-
iors where people with different ages tend to talk
about different types of stories, rather than reflect-
ing LLM bias. To further test for bias, we rerun the
same prompt on identical stories while randomly al-
tering age or flipping gender. The verdict remains
unchanged 91% of the time with a random age
and 93% with a flipped gender, suggesting mini-
mal bias in LLM-generated verdicts. In addition,
we had two independent and well-trained expert
annotators manually check 50 randomly selected
generations to ensure the quality. See Appendix E
for prompting procedure and Table 7 for example
GPT generations. Last, using GPT-generated ver-
dicts for both treated and control data also mitigates
the biases propagating into our causal estimation.

Disclaimer: we binarize gender labels here for
simplicity, but we acknowledge that gender is not
binary, and this simplification does not fully cap-
ture the diversity of gender identities.

Figure 6: GPT generated AITA verdicts in different (a)
age and (b) gender groups. We use regex to capture
these.

With respect to the biases in interventions on
text using LLM text transformation, we also manu-
ally review 50 randomly selected generations and
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Figure 7: Distribution of Anger in control and inter-
vened data. T0 is observed texts and T1 is LLM-
transformed texts with respect to anger.

do not observe bias present. See Appendix E
for prompting procedure and Table 5 for exam-
ple GPT generations, which exhibit good quality.
To further mitigate this bias, other than performing
the text transformation defined as the intervention
(e.g., increasing anger), we also rephrase the orig-
inal textual data using an LLM. In this way, both
non-intervened and intervened groups are LLM-
generated. The estimated effect is a relative dif-
ference between the two groups. With text and
outcomes in both groups being LLM-generated,
the biases should cancel out to a large extent.

C Data shift and Overlap in AITA

We provide additional results analyzing overlap
and data shift in intervened and non-intervened
groups. We assess the anger levels in Reddit
AITA stories for both control and treated data us-
ing SpanEmo (Alhuzali and Ananiadou, 2021), a
BERT-based emotion classifier trained on the Se-
mEval social media dataset, which has been vali-
dated in prior work (Burghardt et al., 2024). The
figure below shows that original Reddit data (blue)
exhibits greater variance in anger, while LLM-
transformed data (yellow) predominantly contains
texts with high anger probability—expected since
the LLM was prompted to intensify anger. The
observed data shift is consistent with the obser-
vation that CausalDANN with domain adaptation
has better performance. In addition, there is still
an overlap between the two distributions, allowing
the model to adapt from the original to the unseen
domain.

D Model Training and Hyperparameters

BERT baseline We build the outcome predic-
tor by appending linear classification layer to the
BERT embedding model, with cross-entropy loss
and sigmoid normalization for the binary clas-
sification task. We add a dropout layer with a
rate of 0.3. Adam optimizer with an initial learn-
ing rate of 5e-5 is used, along with a scheduler
lr = lrinit/((1+α ·p)β), where p = current epoch

total epoch
and α = 10 and β = 0.25, following (Guo et al.,
2023). To obtain the predicted outcome for all data,
we randomly split the data into five folds. Each
time we train the outcome predictor with four-fifths
of the data, which is further split into training and
validation sets by 80%-20% ratio. We train for 20
epochs and stop early when the model achieves
the best validation F1 score. The batch size is 64.
Finally, we predict on the remaining one-fifth data
to obtain their predicted outcomes.

We use BERT model on hugging-
face (https://huggingface.co/docs/
transformers/en/model_doc/bert) which
is open sourced and permitted for research. The
parameter size is about 110 millions.

CAUSALDANN Same to BERT baseline, we per-
form training and prediction by randomly splitting
the data into five folds. We train with 20 epochs
in total. However, during the first three epochs the
model is trained without the domain adversarial
module activated, the model to better learn the out-
come labels first. The batch size is 32. The Adam
optimizer, the learning rate and the scheduler are
the same as those for the BERT baseline.

Equation 7 describes the loss to be minimized
for DANN training. Following (Guo et al., 2023),
we balance the loss terms between the outcome pre-
dicting module and the domain predicting module
by controlling λD indirectly by

λD = 2/(1 + e−γ·p)− 1 (9)

where p = current epoch−epochs w/o adv.
total epochs , and γ is

now the hyperparameter. We performed a grid
search for γ in [0.1, 1, 10] and decide to set γ = 1.

We build our model on top of https://github.
com/NaJaeMin92/pytorch-DANN and https://
github.com/fionasguo/DAMF which are both
open sourced and permitted for research. The pa-
rameter size is about 110 millions.

Inverse Propensity Weighting (IPW) Baseline
The second baseline is Inverse Propensity Weight-
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ing (IPW), a popular causal estimation method.
IPW accounts for confounders by adjusting an es-
timate with the inverse of the propensity score
π(W,X) = P (T = 1 | W,X). However, in our
scenario, direct IPW is infeasible since intervened
outcomes are unobserved.

Nevertheless, IPW can also be seen as a sample
reweighting technique, a commonly used domain
adaptation technique (Li et al., 2016) that aligns
the distributions of the observed non-intervened
data and the unobserved intervened data. In our
case, we define the interventions using an LLM or
structured sampling (Section 3.2), and we can take
advantage of the overlap assumption between the
control and the intervened groups in the textual rep-
resentation space. Thus, π(W,X) is the probability
of a piece of text being classified as interventional
(as opposed to observational). This is equivalent to
training a propensity model directly on observed
binary treatments, to produce density ratios of in-
terventional over observational. When propensity
scores are accurately estimated, IPW helps debias
outcome predictions. We can apply IPW as a base-
line on top of predictions from vanilla BERT or
CAUSALDANN.

We estimate the propensity score π(W,X) us-
ing a separate BERT model, structured as in Sec-
tion 3.4.1. We train this propensity predictor on
both intervened and non-intervened texts, using
T = 1transformed as labels. To obtain the propen-
sity score as a probability, we calibrate it with tem-
perature scaling (Guo et al., 2017) on a validation
set that also includes intervened and non-intervened
data.

Once the propensity scores are obtained, we com-
pute the ATE as

ATE =
1

N

N∑

i=1

( π(Wi, Xi)

1− π(Wi, Xi)
− 1

)
Y (10)

The CATE can be computed as

CATE =
1

Nc,x

N1,c,x∑

Ci=c,Xi=x

( π(Wi, Xi)

1− π(Wi, Xi)
− 1

)
Y (11)

The model archetecture, the training procedure
and hyperparameters are the same as those for
BERT baseline. The parameter size is about 110
millions.

Doubly Robust (DR) Baseline The third base-
line is the doubly robust estimator (Funk et al.,

2011). DR combines two modeling approaches,
the propensity score model and an outcome model,
to estimate treatment effects. This ensures that
the final estimation remains consistent if either the
propensity score model or the outcome model is
correctly specified. Further, the estimator’s bias de-
cays with the expected product of the two models’
errors, leading to double rate robustness. In our
experiments, the ATE and CATE are computed as:

ATE =
1

N

N∑

i=1

[( π(Wi, Xi)

1 − π(Wi, Xi)
− 1

)
(Y − µBERT (Wi, Xi))

+
(
µBERT (g(Wi), Xi) − µBERT (Wi, Xi)

)]
(12)

CATE =
1

Nc,x

N1,c,x∑

Ci=c,Xi=x

[( π(Wi, Xi)

1 − π(Wi, Xi)
− 1

)

· (Y − µBERT (Wi, Xi))

+
(
µBERT (g(Wi), Xi) − µBERT (Wi, Xi)

)]
(13)

in which we use both propensity estimator
π(Wi, Xi) similar as in the IPW method and the
outcome predictor µBERT (Wi, Xi) to ensure dou-
bly robustness.

Computing resource Each experiment was con-
ducted on an RTX A6000 GPU with 48GB memory.
On average, training and testing took 9.5 hours for
BERT baselines and 11.2 hours for DANN models.
The extended training time is due to the need for
outcome and propensity prediction, each requiring
five-fold cross-validation.

E Prompting LLMs

E.1 AITA-comments Data
For the experiment AITA-comments in Section 4.3,
we use the prompt in Table 4 to ask GPT-4 to pro-
vide a verdict based on a given AITA post and a top
or a random comment. We remove the responses
that GPT refuses to answer, possibly in cases where
topics are sensitive.

The following Table 5 shows some example
posts with their top and random comments, and
the GPT generated verdicts. For some posts (e.g.
row 1) the top and random comments are very simi-
lar in perspectives, and the GPT-generated verdicts
also are the same when different comments are
given. Interestingly, the top and random comments
in the second example have different perspectives.
Nevertheless, GPT still gives the same verdict, pos-
sibly because the random comment was very short.
The last example show how GPT changes verdict
when the top and random comments are different
in perspectives.
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system_prompt = """\
You are a moral arbiter hired by r/AmITheAsshole.\
When presented with a story, you respond objectively with your verdict.\
As is customary in that subreddit, you always begin your response with one of [NTA, YTA, ESH, NAH].

"""

def query_judge(story, comment):
response = openai.ChatCompletion.create(
model = model, temperature=1, max_tokens=2,
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"The author said--\n{story}"},
{"role": "user", "content": f"The community said--\n{comment}"},
{"role": "user", "content": "What do you say? Is the verdict NTA, YTA, ESH, or NAH? No
explanations."}
])

return response

Table 4: Code to prompt GPT-4 to generate verdicts based on a given AITA post and a comment.

E.2 AITA-anger Data

For the experiment AITA-anger in Section 4.4, we
use the prompt in Table 6 to ask Claude-3.5-Sonet
to (1) transform text to a version with higher anger,
but keeping the semantic and all other linguis-
tic properties the same; (2) rephrase text without
changing the anger level (the purpose is to rephrase
the non-intervened group too so that both groups
are LLM-generated and bias from LLM generation
can be mitigated), or (3) provide a verdict.

We remove the responses that Claude refuses to
answer, possibly in cases where topics are sensitive.
The following Table 7 shows some examples of the
rephrased and anger-transformed posts, as well as
the Claude generated verdicts. We see that Claude
has transformed the text into very aggressive and
angry version. Warning: Table 5 contains offensive
language.

F BERTopic

To detect the top frequent topics in the AITA
dataset, we use BERTopic. We first preprocess
all posts to remove url links and stop words in En-
glish. We run BERTopic with UMAP dimension
reduction and HDBSCAN clustering algorithms,
and we use hyperparamters top_n_words = 10,
n_gram_range = (1, 1), min_topic_size = 10
and nr_topic = 10. Table 8 shows the top 30
topics detected and their post counts.

BERTopic assigns a single topic to each text. We
focus on the top 30 topics, represented as a binary
vector C for each post. The CATE is a vector of
length equal to the number of topics, with each

element representing the treatment effect averaged
across data within that topic. In the IPW method
we compute CATE similarly.

G Impact of Text-Length Filtering on
AITA Results

To reduce computational complexity, we select
posts with fewer than 140 words. Our AITA semi-
synthetic dataset contains approximately 12k sam-
ples after filtering out stories under 140 tokens.
This is sufficient for training and testing. To en-
sure story length is not a major confounder, we
conducted additional experiments on 10k randomly
selected samples without length filtering. As shown
in the table, CausalDANN still outperforms other
baselines, confirming our conclusions.
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Post and Comments Verdict
Post: So I recently graduated high school and I’m attending a program lasting all of July that helps ease students
into college life. My roomate met a girl there whom she really likes, and he told me and his other friends that he
intends to ask her out to be his girlfriend. Keep in mind they just met. However, this girl told me that she does not
reciprocate these feelings. I’m afraid to disclose this to my roommate, and I’m extremely confused if I’m the asshole
in this situation.
Top Comment: I don’t think you are an asshole for not telling him. It sounds like something he needs to hear from
this girl. You can tell him if you feel it is the right thing to do. He may get angry with you and accuse you of having
feeling for her. It can hurt not to have feeling reciprocated and sometimes

NAH

Random Comment: You’re not an asshole. Don’t get involved. This is between your roommate and this girl, and it
would be inappropriate and unwise to get between the two.

NAH

Post: My parents are diabetic, morbidly obese, and addicted to food. I’m the same, minus the diabetes. I’ve been
trying for a while to eat healthily and lose weight. So have they, but yet every time they go to the store, they bring
home junk food. I understand that it’s hard for them, but it’s also hard to stay on track with my healthier lifestyle
when there’s junk food all around me. Plus, they’re getting older, so it is crucial for them to get healthy now. A few
weeks ago, they brought home 4 bags of donuts, and I emptied each pack into the trash. Am I an asshole for this?
**Edit:** I love all the responses. Got one "no", one "maybe", and one "yes". I agree with all of you. **Edit 2:**
You guys are right–I’m the asshole.
Top Comment: Yep. You’re the asshole. If you want to make the commitment to work hard on improving your
health and your diet, then that is your job. If those who live with you want to support you by changing their lifestyle,
too, that would be fabulous. But, it’s not for you to dictate to them, or to throw away their property.

YTA

Random Comment: What? No man. YTA
Post: In a nutshell I was at a hardcore punk show. I got a beer between bands. I was drinking it up front waiting for
the next band to start. They did and a ferocious pit opened up near me. So I got knocked around and so did my beer.
I spilled over multiple people around me and they got beer over their clothes and hair. After I talked about this to
some people who clearly don’t go to punk shows they seemed to think I was rude, but frankly every person near the
center of the crowd at such a show knows they’ll possibly get beer spilled on them. It’s happened to me multiple
times. So AITA?
Top Comment: YTA. I go to local punk shows regularly and have worked a lot with booking agents and in music
journalism. When the band takes the stage and the pit goes nuts you back to the side with the beer or put it down
somewhere else. Spilling beer all over everyone is not normal, at least not in any of the

YTA

Random Comment: Never been to a show like this. If it’s not common to take a drink where you know you’re
going to get tossed around, YTA. If it’s basically expected to have a drink, then not the asshole. People can be
annoyed they get beer spilled on them, but they know people have drinks and it can happen. Then they shouldn’t

NAH

Table 5: Example generations of verdicts by GPT-4 given AITA posts along with top or random comments.
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def get_response(post, task):

if task == 'anger_transformation':
system_prompt = f"\
Here is a Reddit post: {post}. Rephrase it while maintaining the semantics, writing style,
structures and paragraphs, but express much more anger. The output length should be 10 words

more or less than the original post. Please only output the rephrased texts:
"

elif task == 'rephrasing':
system_prompt = f"\
Here is a Reddit post: {post} Rephrase it while maintaining the semantics, writing style,
structures and paragraphs. The output length should be 10 words more or less than the
original post. Please only output the rephrased texts:

"
elif task == 'give_verdict':

system_prompt = f"\
Given a Reddit post from r/AmItheAsshole, classify it into one of the following four
categories: \
YTA (You're the asshole): The submitter is deemed to be in the wrong; \
NTA (Not the asshole): The other party is considered to be wrong; \
ESH (Everyone sucks here): Both parties are wrong; \
NAH (No asshole): Both parties acted appropriately, but the situation just sucks. \

Your task is to analyze the post and determine which category it belongs to based on the
narrative provided by the submitter. Consider the actions, intentions, and attitudes of all
involved parties to make an accurate classification. Only output one of these labels: YTA,

NTA, ESH, or NAH. No explanation is needed. Limit your response to 3 characters:
"

else:
assert

message = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
temperature=1,
messages=[
{

"role": "user",
"content": [
{
"type": "text",
"text": system_prompt

}]}]
)
return message.content[0].text

Table 6: Code to prompt Claude to transform a post to higher anger level but keeping other linguistic properties the
same, or to rephrase a post, or to provide a verdict based on a given post.
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Posts Verdict
Original: So I recently graduated high school and I’m attending a program lasting all of July that helps ease students
into college life. My roomate met a girl there whom she really likes, and he told me and his other friends that he
intends to ask her out to be his girlfriend. Keep in mind they just met. However, this girl told me that she does not
reciprocate these feelings. I’m afraid to disclose this to my roommate, and I’m extremely confused if I’m the asshole
in this situation.
Rephrased: Having recently completed high school, I’m participating in a July program designed to smoothly
transition students into college life. My roommate encountered a girl there whom he’s deeply attracted to, and
he confided in me and our other friends his intention to ask her to be his romantic partner, despite their recent
acquaintance. However, this young woman revealed to me that she doesn’t share his amorous sentiments. I’m
hesitant to divulge this information to my roommate, leaving me utterly perplexed about whether I’m the one in the
wrong in this predicament.

NTA

Anger-Transformed: I just finished that goddamn high school hell, and now I’m stuck in this idiotic college prep
program for the entire fucking July. My moronic roommate met some chick there and instantly developed a pathetic
crush on her, telling me and our other dumbass friends that he plans to ask her out as his girlfriend. Can you believe
this imbecile’s audacity? They barely know each other! But here’s the real kicker: that girl confided in me that she
doesn’t share his delusional feelings at all. I’m torn between ripping the truth out of his thick skull or letting him
make a fool of himself. Either way, I’m caught in this infuriating mess, and I can’t decide if I’m the raging asshole
here or not.

ESH

Original: My parents are diabetic, morbidly obese, and addicted to food. I’m the same, minus the diabetes. I’ve
been trying for a while to eat healthily and lose weight. So have they, but yet every time they go to the store, they
bring home junk food. I understand that it’s hard for them, but it’s also hard to stay on track with my healthier
lifestyle when there’s junk food all around me. Plus, they’re getting older, so it is crucial for them to get healthy now.
A few weeks ago, they brought home 4 bags of donuts, and I emptied each pack into the trash. Am I an asshole for
this? **Edit:** I love all the responses. Got one "no", one "maybe", and one "yes". I agree with all of you. **Edit
2:** You guys are right–I’m the asshole.
Rephrased: My parents suffer from diabetes, extreme obesity, and food addiction. Like them, I’m obese but without
diabetes. I’ve been striving to eat healthily and shed pounds for some time. They’ve also attempted this, yet they
consistently bring unhealthy snacks home from the grocery store. While I understand their struggle, it’s challenging
to maintain my healthier lifestyle amidst the temptation of junk food. Moreover, as they age, it becomes crucial
for them to prioritize their well-being. A few weeks ago, they purchased four bags of donuts, and I discarded the
contents of each bag. Was I wrong for doing so? **Edit:** I appreciate all the responses – one "no," one "maybe,"
and one "yes." I concur with you all. **Edit 2:** You’re correct – I was the one in the wrong.

ESH

Anger-Transformed: My goddamn parents are fucking diabetic, disgustingly morbidly obese, and pathetically
addicted to food like a bunch of pigs. I’m the same, minus the shitty diabetes. I’ve been trying for a fucking eternity
to eat healthily and lose weight, but those assholes keep sabotaging me. So have they, but yet every damn time they
go to the store, they bring home junk food like the brainless morons they are. I understand that it’s hard for those
idiots, but it’s also hard to stay on track with my healthier lifestyle when there’s junk food all around me thanks
to their stupidity. Plus, they’re getting older, so it is crucial for them to get healthy now before they croak. A few
weeks ago, those dumbasses brought home 4 bags of donuts, and I angrily emptied each pack into the trash like
the responsible adult I am. Am I an asshole for this? **Edit:** I love all the responses, you fucking geniuses. Got
one "no", one "maybe", and one "yes". I agree with all of you, you brilliant bastards. **Edit 2:** You guys are
right–I’m the asshole, and I fucking hate myself for it.

ESH

Table 7: Example generations of rephrased and anger-transformed posts by Claude, and the verdicts also generated
by Claude.
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Topic Count
wedding_birthday_party_family 204
gift_gifts_christmas_birthday 120
job_work_boss_for 112
teacher_class_school_he 106
racist_white_black_english 104
tip_tipping_food_delivery 98
ordered_order_pizza_the 89
friend_him_ex_he 80
lane_traffic_road_driving 66
church_religion_religious_atheist 65
dog_dogs_puppy_him 64
rent_pay_split_bills 63
her_she_girl_me 62
child_daughter_have_baby 60
sex_she_porn_relationship 56
eat_food_cook_she 56
name_names_my_is 54
bathroom_toilet_shower_use 52
car_drive_gas_pay 50
cat_cats_allergic_my 49
she_go_plans_her 47
kids_wife_work_babysit 47
gay_lgbt_people_men 42
funeral_died_passed_family 42
he_pair_charger_selling 39
kid_was_the_fish 39
hair_shave_beard_cut 38
wear_wearing_bra_shirt 38
eat_food_eating_he 36
tattoo_art_tattoos_design 34

Table 8: Top 30 topics detected in AITA data by BERTopic.

Model AITA (filtered <140 tokens) AITA (unfiltered)
δATE MSE of CATE δATE MSE of CATE

BERT 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01
IPW 3.43± 1.02 14.08± 9.03 2.89± 0.95 11.46± 6.23
DR 0.07 ± 0.03 0.04 ± 0.01 0.06 ± 0.01 0.05 ± 0.01
CAUSALDANN 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.01
CAUSALDANN + DR 0.21 ± 0.06 0.08 ± 0.03 0.20 ± 0.07 0.09 ± 0.04

Table 9: Performance comparison on AITA data with and without story length filtering.
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