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Abstract

Knowledge discovery from large-scale, hetero-
geneous textual corpora presents a significant
challenge. Document clustering offers a prac-
tical solution by organizing unstructured texts
into coherent groups based on content and the-
matic similarity. However, clustering does not
inherently ensure thematic consistency. Here,
we propose a novel framework that constructs
a similarity graph over document embeddings
and applies iterative graph-based clustering al-
gorithms to partition the corpus into initial clus-
ters. To overcome the limitations of conven-
tional methods in producing semantically con-
sistent clusters, we incorporate iterative feed-
back from a large language model (LLM) to
guide the refinement process. The LLM is used
to assess cluster quality and adjust edge weights
within the graph, promoting better intra-cluster
cohesion and inter-cluster separation. The
LLM guidance is based on a set of success
Rate metrics that we developed to measure the
semantic coherence of clusters. Experimental
results on multiple benchmark datasets demon-
strate that the iterative process and additional
user-supplied a priori edges improve the sum-
maries’ consistency and fluency, highlighting
the importance of known connections among
the documents. The removal of very rare or
very frequent sentences has a mixed effect on
the quality scores. Our full code is available
here: https://github.com/D2CS-sub/D2CS

1 Introduction

Document clustering and summarization are funda-
mental tasks in natural language processing (NLP)
with numerous applications in information retrieval,
content organization, and knowledge discovery
(Aggarwal and Zhai, 2012; Wibawa et al., 2024).
As the volume of digital text continues to grow ex-
ponentially, efficient methods for organizing and
extracting meaningful insights from large docu-
ment collections have become increasingly impor-
tant (Beltagy et al., 2020; Langston and Ashford,

2024). However, text cohorts are often heteroge-
neous. As such, two parallel tasks should be per-
formed for content extraction: Text clustering and
multi-text summarization. The first task aims to
combine similar texts into clusters, and the second
aims to summarize all the texts within each clus-
ter. Traditional approaches to document cluster-
ing typically rely on conventional distance metrics
in high-dimensional vector spaces (Karypis et al.,
2000; Zhao et al., 2005), often struggling with the
semantic complexity of natural language.

For the summarization, abstraction (shortening
and condensing) and extractive (extracting the most
important sentences) number of methods were pro-
posed (Nenkova and McKeown, 2012). However,
these methods often fail to combine documents that
deal with different topics. Recent advancements in
neural embeddings (Reimers and Gurevych, 2019a;
Su et al., 2022; Melamud et al., 2016) and Large
Language Models (LLMs)(Brown et al., 2020; Tou-
vron et al., 2023; Raiaan et al., 2024) have opened
new possibilities for improving both clustering
quality and summary generation. Given the ca-
pacity of LLMS, a simple approach for the sum-
marization of heterogeneous cohorts is to first clus-
ter the document and then summarize each cluster.
However, clustering methods are not optimized for
thematic consistency. Here, we present Document-
to-Cluster Summary with LLMs (D2CS), a novel
algorithm that leverages the strengths of modern
embedding techniques, density-based filtering, en-
ergy distance metrics, and community detection
algorithms to create semantically coherent docu-
ment clusters. Our approach uniquely combines
clustering and the generative capabilities of LLMs
to produce coherent and fluent cluster summaries,
which are iteratively refined through a contrastive
evaluation framework. The primary contributions
of this work are: A) A comprehensive pipeline
integrating sentence-level embeddings with ker-
nel density estimation (KDE) for feature selection,
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energy distance for document similarity, and the
Leiden algorithm for community detection, B)A
novel iterative refinement mechanism leveraging
LLM-generated summaries and contrastive docu-
ment pair evaluations to improve cluster coherence,
and C) A multi-faceted evaluation framework that
assesses the quality of the clusters and the semantic
relevance of the generated summaries.

Algorithm 1 D2CS Pipeline
Input: Sentences set for each document T ,prior

edges E (optional)
Output: Clustered graph of texts G, summary

each cluster {Csum}
if E exist then

▷ Create a Graph using prior edges
G← prior_edges_graph(E)

else
▷ Create an Energy Distance matrix between
documents
Dij ←∆(Xi, Xj), ∀Ti ∈ T

▷ Create the base graph G
← create_knn_graph(D,k)

▷ Cluster and summarize iteratively
foreach iteration ≤ η do

C←cluster_graph(G)
foreach C ∈ C do

Csum ← summarize(C,∀Ti ∈ C)
SR←evaluate(C, G, T )
G←update_graph(SR,G)

Return Csum∀C ∈ C

2 Related Work

Document Clustering Document clustering has
evolved significantly over the decades, from tradi-
tional approaches using tf-idf and cosine similarity
(Salton and Buckley, 1988) to more sophisticated
methods incorporating neural representations (Xie
et al., 2016). Early clustering algorithms such as
k-means (Hartigan and Wong, 1979) and hierar-
chical clustering (Murtagh and Contreras, 2012)
have been foundational but often struggle with
high-dimensional text data. Topic models like La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003)
revolutionized document clustering by introduc-
ing probabilistic methods to uncover latent themes.
More recent approaches have leveraged neural em-
beddings, with Doc2Vec (Le and Mikolov, 2014)
and SBERT (Reimers and Gurevych, 2019a) en-
abling more semantically meaningful document
representations. The integration of transformers

(Vaswani et al., 2017) has further enhanced rep-
resentation learning for clustering tasks (Zhang
et al., 2021; Grootendorst, 2022). Recent work by
Liu and Liu (2021) and Ozyurt et al. (2022) has
introduced contrastive learning frameworks specifi-
cally designed for document clustering, while Al-
shaikh et al. (2020) demonstrated the effectiveness
of mixture-of-experts approaches for multilingual
document clustering.

Community detection algorithms have gained
prominence in document clustering, with meth-
ods like Louvain (Blondel et al., 2008) and Leiden
(Traag et al., 2019) showing superior performance
in identifying natural clusters. These approaches
model documents as graphs, where similarities de-
fine edge weights, and have demonstrated effective-
ness in capturing complex relationships (Newman
and Girvan, 2004; Fortunato, 2010). Recent ad-
vances by Shi et al. (2021) and He et al. (2021)
have significantly improved the scalability and in-
terpretability of community detection for large doc-
ument collections. Many measures were defined
for the quality of the clusters. However, to the best
of our knowledge, no clustering algorithm uses
the consistency of texts with their summary as a
measure.

Text Summarization As mentioned, text sum-
marization techniques fall broadly into extractive
and abstractive categories(Allahyari et al., 2017).
Extractive methods (Mihalcea and Tarau, 2004;
Erkan and Radev, 2004) select important sentences
from documents, while abstractive approaches (See
et al., 2017; Lewis et al., 2019) generate novel text
that captures the essence of the content.

A different yet related approach is topic detec-
tion, where each sentence/document is assigned a
domain, and then each domain is summarized by
itself by combining either documents belonging to
the same domain, or all sentences from multiple
documents belonging to the same domain(Radev
et al., 2004; Wan and Yang, 2008). Notable re-
cent contributions include Xiao et al. (2021), who
developed a pretraining approach specifically for
multi-document summarization.

The advent of LLMs has transformed summa-
rization capabilities (Brown et al., 2020; Achiam
et al., 2023), with few-shot and zero-shot ap-
proaches demonstrating remarkable efficacy. Re-
cent work by Suzgun and Kalai (2024) has shown
that guided prompting strategies can substantially
improve LLM-based summarization quality, while



Tang et al. (2023) have explored the use of LLMs
as judges for evaluating summarization outputs.
However, to the best of our knowledge, there is no
feedback approach to improve the clustering based
on the summary evaluation.

Distance Metrics and Feature Selection The
choice of distance metrics significantly impacts
clustering performance. Beyond traditional mea-
sures like Euclidean and cosine distance, more so-
phisticated approaches such as Earth Mover’s dis-
tance (Rubner et al., 2000) and energy distance
(Székely and Rizzo, 2013) have shown promise for
comparing distributions of embeddings. Recent in-
novations include the optimal transport-based met-
rics proposed by Huynh and Phung (2021), which
have demonstrated superior performance in com-
paring embedding distributions and contrastive dis-
tance learning approaches. We have used an energy
distance, which we found to produce the most con-
sistent clusters.

Evaluation of Document Clusters and Sum-
maries Evaluating document clustering remains
challenging, with both internal measures like sil-
houette coefficients (Rousseeuw, 1987) and exter-
nal measures like normalized mutual information
(Strehl and Ghosh, 2002) providing complementary
perspectives. For summarization, automatic met-
rics such as ROUGE (Lin, 2004) and BERTScore
(Zhang et al., 2019) quantify lexical and semantic
overlap, respectively. More recent evaluation met-
rics such as QAEval (Deutsch et al., 2021) and
SummaC (Laban et al., 2022) have focused on
factual consistency and faithfulness of summaries.
The integration of human evaluation (Daume III,
2006) and LLM-based assessment (Zhu et al., 2023;
Fu et al., 2023) has gained traction for evaluating
both clusters and summaries.

Contrastive evaluation methods (Wang et al.,
2021) have emerged as a promising approach for
refining both clustering and summarization results.
Recent work(Bahak et al., 2023) has shown that
LLM-based evaluations can achieve high correla-
tion with human judgments across multiple summa-
rization dimensions. Additionally, Luo et al. (2023)
and Kocmi and Federmann (2023) have demon-
strated that LLMs can effectively serve as judges
for evaluating and ranking summaries through pair-
wise comparisons.

3 Novelty of D2CS

D2CS introduces several novel contributions to the
fields of document clustering and summarization:

Integration of Energy Distance with Density-
Based Filtering While energy distance(Székely
and Rizzo, 2013) has been applied in various do-
mains, its combination with KDE-based filtering
for document similarity is unprecedented. Previ-
ous approaches Lee et al. (2004) have explored en-
ergy distance for clustering but did not address the
challenges of high-dimensional embedding spaces
or incorporate density-based filtering mechanisms.
Our approach efficiently handles the curse of di-
mensionality by applying KDE to filter out embed-
ding vectors that are either too common or too rare,
focusing computational resources on the most in-
formative features. This improves the text quality
scores in most cases, but may harm if many docu-
ments are extremely rare and hence are completely
filtered out by the KDE filter.

Unlike traditional approaches that compute doc-
ument similarity based on aggregate embeddings
(Reimers and Gurevych, 2019a), our method pre-
serves the distribution of sentence-level embed-
dings within each document. This preserves impor-
tant structural information about semantic variance
within documents.

LLM-Guided Iterative Cluster Refinement
The iterative refinement mechanism in D2CS repre-
sents a departure from conventional one-pass clus-
tering approaches (Aggarwal and Zhai, 2012). By
leveraging LLM-generated summaries as cluster
descriptors and using contrastive document pair
evaluations to update edge weights, we establish a
feedback loop that progressively improves cluster
coherence. Previous work (Angelidis et al., 2021)
explored LLMs for summarization of predefined
clusters, but did not use these summaries to itera-
tively refine the clusters themselves. Our approach
is conceptually related to human-in-the-loop clus-
tering (Cohn et al., 2003) but replaces human feed-
back with automated LLM assessments, enabling
scalability while maintaining quality.

Multi-objective Evaluation Framework The
D2CS evaluation framework uniquely combines
technical cluster quality metrics with semantic as-
sessments of summary-document alignment. While
prior work has evaluated clusters (Rousseeuw,
1987) and summaries (Lin, 2004) separately, our



holistic approach considers both aspects simulta-
neously. Most notably, our use of contrastive eval-
uation between in-cluster and out-of-cluster docu-
ments relative to the summary breaks new ground
in assessing cluster coherence. This methodology
builds upon ideas from contrastive learning (Chen
et al., 2020) and applies them to the evaluation of
document clusters, providing a more nuanced per-
spective than traditional internal validation metrics.

4 Methods

D2CS leverages an energy distance metric applied
to document representations to construct a graph.
The weights of the graph’s edges are iteratively
refined using supervision from a large language
model (LLM), with the goal of enhancing cluster
coherence and forming homogeneous subgroups of
semantically similar documents.

4.1 Graph Generation

To examine our method, we multiple datasets of
texts: A) a subset from newsgroups dataset1, B)
content graphs from wikipedia generated using
a crawler2, allowing us to analyze the results on
graphs of different sizes and degree distribution.,
C) a subset from reuters dataset3, D) Posts that
scraped from a given Whatsapp group, focused on
middle east political issues 4. The data or links to
the data are accessible on the project Github.

4.2 Document representation via sentence
embedding

First, we use a pretrained transformer to compute
a representation vector for each sentence in each
document X(u)

i ∈ Rd, where u denotes a single
sentence in the given document i sentence set Ti

(u ∈ Ti), and d is the dimensionality of the embed-
ding vector.

In some cases, we encountered very long doc-
uments, where the large volume of text made it
challenging to generate meaningful representations
for all sentences. To address this issue, we applied
a prompt-based approach using Cohere’s LLM to
generate a concise summary for each long docu-
ment.

1https://huggingface.co/datasets/SetFit/20_
newsgroups

2https://github.com/D2CS-sub/wiki-crawler
3https://www.kaggle.com/datasets/nltkdata/

reuters
4https://github.com/D2CS-sub/D2CS/blob/main/

posts_1k.csv

We used a density-based method (KDE) in order
to estimate how common each sentence in the cor-
pus is with a Gaussian kernel density estimation
with a radius of 0.075, and filtered out the embed-
dings within the highest and lowest 7.5% densities.

4.3 Document Graph

Given set of n documents, we construct a distance
matrix D ∈ Rn×n that represents the pairwise en-
ergy distances between documents i and j, where:
Dij = ∆(Xi, Xj) =

2 ∗ 1
|Ti|·|Tj |

∑
u∈Ti

∑
h∈Tj
||X(u)

i −X
(h)
j ||

− 1
|Ti|2

∑
u∈Ti

∑
h∈Ti
||X(u)

i −X
(h)
i ||

− 1
|Tj |2

∑
u∈Tj

∑
h∈Tj
||X(u)

j −X
(h)
j ||, where || · ||

is the Euclidean distance function.
Using the distance matrix D, we construct a

graph G, where vertex Vi represents document i.
Edges in G are formed between Vi and its k nearest
neighbors (the degree can be above k since we
include any edge in a KNN), as determined by
D. To ensure efficacy, we build the graph using a
BallTree data structure(Omohundro, 1989).

Each edge between eij is assigned an initial
weight wij = 1. In subsequent steps, we employ
the LLM to iteratively update wij to improve the
clustering. If the user has additional information
on the relation between documents or keywords
connecting documents, an additional type of edge
is added that is not affected by the summary quality.
In the current analysis, we used edges representing
common authorship of the text.

4.4 Quality measures

We used five quality measures (Some existing,
some novel) for the quality of the clustering, con-
sistency of the abstract, and the text quality and
fluency. Each metric tests either a quality of text
measure or our novel "clustering success rate":

1. Quality of text measures test how close a
generated summary is to a human-made one,
given the source documents sentences Ti: A)
Relevancy the quality of passed information,
B) Coherence the grammar, order and struc-
ture, C) Consistency the factual correctness,
and D) Fluency the textual flow and readabil-
ity.These measures were argued to be more ac-
curate than the more classical ROUGE meth-
ods (Fabbri et al., 2021).

2. Clustering success rate SR, based on each

https://sbert.net/
https://docs.cohere.com/
https://huggingface.co/datasets/SetFit/20_newsgroups
https://huggingface.co/datasets/SetFit/20_newsgroups
https://github.com/D2CS-sub/wiki-crawler
https://www.kaggle.com/datasets/nltkdata/reuters
https://www.kaggle.com/datasets/nltkdata/reuters
https://github.com/D2CS-sub/D2CS/blob/main/posts_1k.csv
https://github.com/D2CS-sub/D2CS/blob/main/posts_1k.csv


Figure 1: The D2CS pipeline consists of multiple components: iterative clustering, summarizing, and summary
refinement. Each sentence in each document is embedded to produce a set of embeddings (SE). The distance
between pairs of texts is computed as the energy distance between their embeddings X

(u)
i . A KNN graph is

produced from the distance, and A Leiden algorithm is used to cluster the graph, and each cluster is summarized by
itself. The consistency of the texts with the summary of the cluster is used in an iterative process to improve the
clustering. The final results are exported to different evaluation scores for either the graph, the summary texts and
the coherence between the clusters’ documents and their summary.

document SRi in our graph, defined as:

SR =
1

n

n∑
i=1

SRi =
1

n

n∑
i=1

I(Ai≥Bi), (1)

where Ai denotes the score assigned by the
LLM to indicate how well the text of ver-
tex i fits its assigned cluster summary Csum

(Vi ∈ C), and Bi is the score assigned by
the LLM to indicate how well text of a ran-
domly selected vertex j fits the same cluster
C (Vj ̸∈ C, j ̸= i). Both were estimated by
a query to the Cohere LLM A.5. The scores
Ai, Bi are given to each document, and indi-
cate the validity of the connection between
the vertex i and its cluster’s summary.

Two additional sanity measures are used on the
graph and the clusters to ensure that texts are di-
vided among multiple large clusters, and that the
clusters’ silhouette is high enough.

4.5 Iterative LLM Guided Graph Clustering
To iteratively improve vertex clustering, we use
two LLMs as guides. We apply 4 steps iteratively,

until the quality score stop improving.

1. Apply Leiden clustering algorithm (Traag
et al., 2019) to the graph to produce clusters.

2. Concatenate the text associated with the doc-
uments in each cluster C and generate a clus-
ter summary Csum. The summarization step
consists of two LLM-assisted processes: A)
The summary process, where the texts them-
selves are sent along with a specially crafted
prompt intoA.2 Cohere, and a drafted sum-
mary is received. B) The refinement process,
where the summary is sent along with another
prompt into Llama, and a refined summary is
received. The refined summary is crucial for
our pipeline since the first step outputs a text
with too broad sentences (e.g. "In this text",
"It was shown" etc.).

3. Using the generated summaries, compute the
clustering success rate (SRi) for each vertex.

4. Update the graph by increasing the weights
of edges connecting vertices from the same

https://huggingface.co/meta-llama/Llama-3.1-405B


cluster if both texts are consistent with the
cluster’s summary by a factor λ, otherwise
decrease the weights of edges the same factor
λ (Algorithm 2)

5. After the clustering is done, improve the sum-
maries individually by sending each summary
along with its respective cluster’s vertices into
another summary iteration.

Algorithm 2 Update Document Graph Weights
Input: Graph G = (V,E), vertex scores Ai, Bi

for each Vi

Output: Updated edge weights wij where (i, j) ∈
E

foreach C ∈ G do
foreach (i, j) ∈ EC do

if (Ai > Bi) and (Aj > Bj) then
wij ← wij ∗ (1 + λ)

else
wij ← wij ∗ (1− λ)

EC are the edges from E that within cluster C
(note that (Vi, Vj) ∈ E, Vi ∈ C and Vj ̸∈ C) and λ
is a scaling factor that determines the magnitude of
the increase or decrease in the edge weights. The
scores Ai, Bi were given by the Cohere LLM as a
judge as mentioned in 2.

5 Results

Evaluation of D2CS on multiple datasets
D2CS clusters documents and then summarizes
each cluster. Specifically, D2CS first projects each
sentence to an embedding space and defines each
text/abstract as a bag of projected sentences (the
order is ignored). Then, it creates a graph based
on the energy distance between bags and clusters
the bags using the Leiden algorithm (Traag et al.,
2019). Each cluster is then summarized using an
LLM (different LLMs can be chosen). To test that
D2CS can produce a coherent summary, we an-
alyzed multiple datasets (as you can see in the
appendix Table 2) and tested the performance of
D2CS on different sets of abstracts. The evaluation
can be performed at multiple levels. The most im-
portant measure is the consistency of the clustering.
To address that, we used a different LLM and tested
whether a cluster summary is more associated with
the cluster’s abstracts, or random abstracts outside
it A.2.

Beyond that 4 measures on the quality of the ab-
stract were proposed in section 4.4. We first tested
8 sets of 100 abstracts each with different keywords
(Table 2), and multiple wikipedia tarballs, where
we downloaded from each wiki page the first para-
graph (See Github for tarball generator). One can
see that even this simple vanilla flavor produces
very high RS scores, but some of the textual scores
are limited (Top sets of bars in Figure 2A and 2B).
To test D2CS on more complex datasets, we also
analyzed Downloads from News posts (Colors Red
and Green in the same plots) that contain more
fragmented and heterogeneous text, with similar
results. The clusters of D2CS are available in an
HTML interface to visualize the clusters, where
the edges color represents whether the SR score
of this text is high or low (See appendix 5 and the
github5 for the texts used here and the summary of
each cluster and a visualization of the clusters).

Iterative clustering improves the scores The
vanilla flavor above reaches a high (but not al-
ways perfect) RS score, and intermediate scores in
the fluency and consistency of text scores. These
scores can be iteratively improved by strengthen-
ing the edges between texts that are consistent with
their common summary and reducing the weights
of non-consistent edges. Similarly, the summary
can be enhanced by adding refinement queries to
improve the text quality. We tested the effect of
such queries, and they indeed improve the scores on
average(unless they are already close to 1 - Figure
2C). We stopped the iterations when the clusters
stopped changing. The iterative process creates
a clique of highly consistent documents, and the
clustering typically converges after 2 iterations. In-
teresintgly, in some cases, D2CS can detect "junk"
texts (e.g., advertisements, placeholder strings, etc.)
and clusters them together, purifying the rest of the
summaries.

When available external information improves
performance Given that the goal of the summa-
rization is to produce clusters consistent with the
summary, we tested whether additional information
associated with the text content can improve the
consistency and the quality of the summaries. We
tested two types of edges. In the abstracts, we used
prior information such as shared keywords, authors,
publishing institution etc., and in the Wikipedia
pages, we used the edges between the Wikipedia

5https://github.com/D2CS-sub/D2CS
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texts. The first type of edges is directly associated
with shared content, while the Wikipedia edges are
associative. As expected, the context-based edges
in the V 100 graphs significantly improved the per-
formance on all scores, while the Wikipedia edges
reduced the summaries’ scores (Figure 2D).

Filtering rare and frequent sequences is a mixed
bag We next tested the effect of density-based
filtering. Filtering was applied by computing the
non-parametric density, estimated via a KDE algo-
rithm for each sentence. We assumed that sentences
in very dense regions are generic, while sentences
in very rare regions are too specific. As such, both
were removed for the energy distance calculation,
but not for the summarization. Specifically, we
removed the top and bottom 7.5 % of sentences.
The density-based filtering significantly improved
the performance over the small dataset (blue bar
p<0.05), but reduced the accuracy for one of the
large datasets (Reuters -green bars). The difference
emerges since the larger datasets already had per-
fect values of RS even without the filtering. As
such, we propose filtering as an improvement, only
for small sets of texts.

Run time D2CS contains multiple steps: The em-
bedding of each sentence, followed by the distance
estimates, clustering, and summarization. While
the second and possibly the third stage are propor-
tional to the square of the number of texts or the
total number of edges, the last step (the summa-
rization) is linear, but much more computationally
extensive than the first steps. As such, in the cur-
rent applicability ranges (which depend on the total
number of tokens allowed by the summarization
LLM), the total cost is linear in the number of
documents (Appendix Figure 3). Beyond tens of
thousands of documents, we expect the cost to be
quadratic.

D2CS was additionally tested and evaluated on
large-scale datasets (the full Reuters and News-
groups), and its achieved purity score was com-
pared with Hierarchical clustering. D2CS achieved
significantly better purity on NG20, and slightly
worse performance on Reuters.

Stability D2CS uses 2 LLMs in its pipeline,
hence different combinations were evaluated. We
tested all 16 combinations of 2 LLMs from the op-
tions: GPT, Claude, Cohere, Llama. The results
indicate a high cluster consistency among different
combinations, with some combinations achieving

the exact same clusters.
Additionally, different update factor values (λ in

2) were tested. On average, the best scores occur
at λ = 0.5.

Finally, different KDE cutoffs were tested, in or-
der to remove as many sentence embeddings from
the distance computations while not losing entire
texts.

6 Discussion

We have here presented an LLM-guided graph re-
finement framework that addresses key challenges
in document clustering by enhancing semantic co-
herence through iterative feedback. D2CS com-
bines computational efficiency with the semantic
understanding capabilities of LLMs (Kenton and
Toutanova, 2019). The combination of clustering
and summarizing requires appropriate success rate
metrics. We used state-of-the-art metrics and added
a clustering coherence metric to ensure, on the one
hand, good summarization and, on the other hand,
coherence between the summary and the clustering.

While the approach is based on text analysis, we
found that user-defined connections significantly
guide the clustering process in domain-specific ap-
plications. Fully automated methods often strug-
gle to incorporate domain expertise(Chang et al.,
2021). This semi-supervised approach aligns with
recent work(Wang et al., 2023) showing that min-
imal human guidance enhances language model
performance on complex tasks.

Removing very frequent sentences and very rare
sentences improved cluster quality in some types
of problems, but not in all. A possible reason for
that may be that for specialized corpora, rare sen-
tences contain crucial domain-specific terminology
(Reimers and Gurevych, 2019b).

To summarize, D2CS represents a significant ad-
vancement in knowledge discovery from heteroge-
neous textual corpora. The iterative refinement pro-
cess, guided by LLM feedback and augmented with
user-supplied knowledge, effectively overcomes
limitations of conventional clustering methods and
reaches an approximately 100 % coherence in most
datasets. Beyond D2CS, we propose a compos-
ite evaluation approach that ensures all aspects of
document clustering and summarizing are ensured.

6.1 Limitations

The current approach has multiple limitations.
First, clustering quality depends partly on biases



Figure 2: Upper plots, performance of vanilla flavor on all datasets and all quality measures for all datasets (left)
and datasets grouped by type (right), where we grouped all wiki datasets, and all small abstract datasets. Second
row - effect of adding iterative process (difference from vanilla) and then of adding prior knowledge. Last row - left
plot - effect of filtering rare and frequent sentences. right plot - performance on dataset, with no clear effect of any
of the additional steps beyond the vanilla flavor.



Figure 3: The top sub-figure shows the purity score
comparison between D2CS’s and hierarchical clustering
methods on the Newsgroups dataset. D2CS achieved
a much higher score (0.44) than the hierarchical (0.06).
The middle sub-plot shows the average max Jaccard
index (AMJI) between the combinations of LLMs in
Apple dataset. The average similarity between two com-
binations of LLMS is 0.81 (range 0.5-1). The bottom
plot shows the metric scores for different values of the
update factor (λ) for the 3D printing dataset.

Figure 4: The portion of non-empty texts post KDE
sentence removal as a function of the cutoffs (top and
bottom) in 3D printing dataset.

present in the LLM, which may propagate to clus-
tering results (Bender et al., 2021). Additionally,
the results differ in the components required among
domains. We propose a modular approach to adapt
to specialized domains with terminology not well-
represented in the LLM’s training data. Applica-
tion to very large corpora (tens of thousands of
texts) remains challenging due to computational re-
quirements and context limitations of LLM queries.
The main limitation is the length of the text to be
summarized. This can be addressed by increasing
the granularity of clusters or limiting the maximal
cluster size. Finally, we have compared different
components of the algorithms. However, there are
no standard benchmarks for the combined clus-
tering and summarization. Thus, no benchmark
comparison was performed. Instead, we propose
our current dataset as a benchmark. The datasets
are available on the project GitHub.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Charu C Aggarwal and ChengXiang Zhai. 2012. A
survey of text clustering algorithms. Mining text
data, pages 77–128.

Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi,
Saeid Safaei, Elizabeth D Trippe, Juan B Gutier-
rez, and Krys Kochut. 2017. Text summariza-
tion techniques: a brief survey. arXiv preprint
arXiv:1707.02268.

Rana Alshaikh, Zied Bouraoui, Shelan Jeawak, and
Steven Schockaert. 2020. A mixture-of-experts
model for learning multi-facet entity embeddings.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 5124–5135.

Stefanos Angelidis, Reinald Kim Amplayo, Yoshihiko
Suhara, Xiaolan Wang, and Mirella Lapata. 2021.
Extractive opinion summarization in quantized trans-
former spaces. Transactions of the Association for
Computational Linguistics, 9:277–293.

Hossein Bahak, Farzaneh Taheri, Zahra Zojaji, and
Arefeh Kazemi. 2023. Evaluating chatgpt as a ques-
tion answering system: A comprehensive analysis
and comparison with existing models. arXiv preprint
arXiv:2312.07592.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.



Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency,
pages 610–623.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022.

Vincent D Blondel, Jean-Loup Guillaume, Renaud
Lambiotte, and Etienne Lefebvre. 2008. Fast un-
folding of communities in large networks. Jour-
nal of statistical mechanics: theory and experiment,
2008(10):P10008.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877–1901.

David Chang, Eric Lin, Cynthia Brandt, and Richard An-
drew Taylor. 2021. Incorporating domain knowledge
into language models by using graph convolutional
networks for assessing semantic textual similarity:
model development and performance comparison.
JMIR medical informatics, 9(11):e23101.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PmLR.

David Cohn, Rich Caruana, and Andrew McCallum.
2003. Semi-supervised clustering with user feedback.
Technical report, Cornell University.

Hal Daume III. 2006. A practical bayesian framework
for backpropagation networks. volume 7, pages 448–
472. MIT Press.

Daniel Deutsch, Tanya Ro, and Alon Banerjee. 2021.
Towards question-answering as an automatic metric
for evaluating the content quality of a summary. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, pages 1496–1511.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text sum-
marization. Journal of artificial intelligence research,
22:457–479.

Alexander R Fabbri, Wojciech Kryściński, Bryan Mc-
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A Appendix

A.1 Notations
Legend of all the notions we used in this paper
and the description of each one of them describe in
Table 1.



A.2 Example prompt for summarization
"Instructions: You have received the texts to sum-
marize, separated by ’<New Text>’ between each
consecutive pair of texts. You will summarize the
texts according to the following rules: 1- You must
not directly reference any of the texts. 2- Your
summary must be between 5-10 sentences long. 3-
Your summary must mention key ideas and con-
cepts that repeat in the texts. 4- You must not
invent any information. The summary must con-
tain only information directly deduced from the
texts. 5- Your summary must be coherent, fluent
in language, and relevant in content to the texts. 6-
In your summary, only refer to the texts you get as
input, do not make things up in the summary. 7-
Try your best that the summary will be the most
relevant, coherent, consistent and as fluent as can
be. 8- Do not use characters that are outside the
standard ASCII range.

Texts: [INPUT TEXTS HERE]"

A.3 Example prompt for refinement
"Instructions:

You will receive an input that contains a sum-
mary. Your task is: - Remove any references to
the original source (e.g., phrases like "in the arti-
cle," "this text," or "the provided review") or any
wording that refers back to the original document.
- After removing these references, rewrite the sum-
mary as a single paragraph without line breaks.
Maintain the original content without adding any
new words or altering the meaning.

Important Rules: - Do not introduce any addi-
tional words to the summary. - Ensure the summary
remains concise and free of references to the origi-
nal text. - You will not say anything else. - Do not
use characters that are outside the standard ASCII
range.

Summary input: [INPUT SUMMARY
HERE]"



A.4 Example prompt for individual
summarization

"In this task you are required to summarize the
given text. " "Your summary must be between 5-
10 sentences long. " "Your summary must be as
coherent as possible, and must not use phrases"
"like ’in this text’.Your summary must not include
sentences and information " "that is outside the
text. may use sentences from the text without citing
them."

A.5 Example prompt for SR computation
"Answer using only a number between 1 to 100:
" "How consistent is the following summary with
the abstract?" "Summary: [INPUT SUMMARY
HERE]" "Abstract: [INPUT TEXT HERE]"
"Even if the summary is not consistent with the
abstract, please provide a score between " "0 to
100, and only the score," " and only the score, with-
out any ’.’ or ’,’ etc."



A.6 Example of outlier texts

In the "Chemistry" (wikipedia dataset) we encoun-
tered 5 outlier groups, each with 1 vertex (vertex
name & text):

1. Group 1:
poundal: The poundal (symbol: pdl) is a
unit of force, introduced in 1877, that is
part of the Absolute English system of units,
which itself is a coherent subsystem of the
foot–pound–second system.

2. Group 2:
Periodic function: A periodic function, also
called a periodic waveform (or simply peri-
odic wave), is a function that repeats its values
at regular intervals or periods. The repeatable
part of the function or waveform is called a
cycle. For example, the trigonometric func-
tions, which repeat at intervals of 2π radians,
are periodic functions.

3. Group 3: STS-51-J: STS-51-J was NASA’s
21st Space Shuttle mission and the maiden
flight of Space Shuttle Atlantis. It launched
from Kennedy Space Center, Florida, on Oc-
tober 3, 1985, carrying a payload for the U. S.
Department of Defense (DoD), and landed at
Edwards Air Force Base, California, on Oc-
tober 7, 1985. Crew = Backup crew == Crew
seat assignments = Mission summary STS-51-
J launched on October 3, 1985, at 15:15:30
UTC (11:15:30 a. m. EDT), from Launch Pad
39A at the Kennedy Space Center.

4. Group 4:
nuclear fission: Nuclear fusion is a reaction
in which two or more atomic nuclei combine
to form a larger nuclei, nuclei/neutron by-
products. The difference in mass between
the reactants and products is manifested as ei-
ther the release or absorption of energy. This
difference in mass arises as a result of the dif-
ference in nuclear binding energy between the
atomic nuclei before and after the fusion reac-
tion. Nuclear fusion is the process that powers
all active stars, via many reaction pathways.

5. Group 5:
crystal structure: In crystallography, crys-
tal structure is a description of ordered ar-
rangement of atoms, ions, or molecules in a
crystalline material. Ordered structures occur

from intrinsic nature of constituent particles
to form symmetric patterns that repeat along
the principal directions of three-dimensional
space in matter. The smallest group of parti-
cles in material that constitutes this repeating
pattern is the unit cell of the structure.



Figure 5: HTML Interface of D2CS results. Each yellow
star is an interactive summary, while each blue circle is
an interactive abstract from the associated cluster. The
edges connecting a vertex i to its summary are blue if
SRi = 1, otherwise red.

A.7 Appendix visualization

Figure 6: AMJI scores for Car wikipedia dataset.

Figure 7: AMJI scores for Turtle wikipedia dataset.

Figure 8: Purity scores for D2CS and hierarchical clus-
tering on the full Reuters dataset.



B Data table

B.1 Run time figure

Figure 9: Run time is linear in the number of texts.
While the distance requires a comparison between all
pairs of text, the summarization is by far the most com-
putationally extensive cost, and is linear in the text
length.

Table 1: Legend of notions.

Notion description
n Number of documents in the given corpus

i Document index

Ti Sentence set of in document i

u Index of single sentence in document i

d the dimension of sentence embedding vector

X
(u)
i Embedding vector for sentence u from docu-

ment i (X(u)
i ∈ Rd)

D Pairwise distance matrix between documents
(D ∈ Rn×n)

k The number of nearest neighbors of each docu-
ment

V Vertices in the graph. each vertex represent a
single document (|V | = n)

E The edges between documents vertices. The
edges based on nearset neighbors. (Vi, Vj) ∈ E
if document i and document j connected

G The document undirected Graph (G = (V,E))

η The Number of iteration for guided clustering
process

wij The weight of the edge between Vi and Vj

λ Scaling factor for update edge weight wij (λ ∈
[0, 1])

C Set of cluster composed from vertices in G

C Cluster of vertices in G (C ∈ C)

EC The edges between vertices in the same cluster
C. ((Vi, Vj) ∈ Ec if: (Vi, Vj) ∈ E, Vi ∈ C,
Vj ∈ C)

Csum A summary for all documents in cluster C

Ai The score given by LLM that Vi belong to the
cluster summary Csum (Vi ∈ C)

Bi The score given by LLM that Vj belong to the
cluster summary Csum (Vj ̸∈ C, Vj ̸= Vi, Vi ∈
C)

SRi Success Rate of Vi to belong to cluser C.
boolean parameter. SRi = 1 if Ai ≥ Bi. Else,
SRi = 0

SR Average for all SRi scores for each Vi(Vi ∈ G)



Table 2: Dataset Statistics: The first column is the dataset name, followed by the Number of vertices in the graph,
the number of non-empty texts, the total number of words and of sentences, whether there is user supplied data, and
the source. Note that some texts are empty, but are still used for the clustering if there is external data about the text.

Dataset N_vertices N_Texts N_Words N_Sentences Prior_Edges Source
reuters_1k 1000 1000 134047 10290 False Footnote 3
newsgroups_1k 1000 978 174495 15866 False Footnote 1
posts_1k 1000 991 27362 2474 False Footnote 4
terrorism_wiki 1000 903 60159 4041 True Footnote 2
book_wiki 1000 913 60118 3947 True Footnote 2
greece_wiki 1000 911 57960 3755 True Footnote 2
chemistry_wiki 1000 902 59846 4103 True Footnote 2
education_wiki 1000 913 58670 3986 True Footnote 2
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