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Abstract

Counterfactual reasoning is crucial for robust
video understanding but remains underexplored
in existing multimodal benchmarks. In this pa-
per, we introduce COVER (COunterfactual
VidEo Reasoning), a multidimensional mul-
timodal benchmark that systematically evalu-
ates MLLM:s across the abstract-concrete and
perception-cognition dimensions. Beyond prior
multimodal benchmarks, COVER decomposes
complex queries into structured sub-questions,
enabling fine-grained reasoning analysis. Ex-
periments on commercial and open-source
models reveal a strong correlation between sub-
question accuracy and counterfactual reasoning
performance, highlighting the role of structured
inference in video understanding. Furthermore,
our results suggest a key insight: enhancing the
reasoning capability of models is essential for
improving the robustness of video understand-
ing. COVER establishes a new standard for as-
sessing MLLMs’ logical reasoning abilities in
dynamic environments. Our work is available
at https://github.com/gongyifan-hash/COVER-
Benchmark.

1 Introduction

In recent years, the rapid advancement of large
language models (LLMs) has spurred growing
interest in multimodal large language models
(MLLMs) (Hurst et al., 2024; Anthropic, 2024;
Chen et al., 2024; Zhang et al., 2024a, 2025; Wang
etal., 2024; Wu et al., 2024b). Various early bench-
marks have been proposed to assess multimodal
understanding ability of MLLMs, particularly in
static images (Fu et al., 2023; Hudson and Manning,
2019; Liu et al., 2024; Yu et al., 2024). More re-
cently, benchmarks involving complex images and
dynamic videos have emerged to evaluate MLLM’s
capabilities in temporal reasoning, spatio-temporal
recognition, and object detection (Fu et al., 2024;
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Li et al., 2024b, 2023). Despite these advances,
these benchmarks often overlook counterfactual
reasoning, which is a critical component for eval-
uating inference in complex and realistic environ-
ments. As a result, they fall short of providing a
comprehensive assessment of MLLMSs’ reasoning
capabilities.

Counterfactual reasoning, which posits hypothet-
ical alternatives to observed realities, is pivotal for
advanced video inference and is closely tied to out-
of-distribution generalization (Yang et al., 2023;
Bao et al., 2025). Previous work has attempted
to construct counterfactual queries for images and
videos (Li et al., 2024d,e,c; Patel et al., 2022; Wu
et al., 2023). Most existing multimodal counterfac-
tual benchmarks tend to focus on assessing subtask-
specific robustness of reasoning ability (Li et al.,
2024e; Wu et al., 2024c¢, 2023). However, they do
not assess the underlying factors that contribute
to the robustness of these reasoning capabilities.
Such benchmarks often lack a systematic progres-
sion from abstract to concrete dimensions and from
low-level perception to high-level cognition, lim-
iting their ability to comprehensively capture mul-
timodal reasoning processes in MLLMs. Further-
more, these benchmarks rarely investigate how ro-
bust video understanding interacts with stepwise
reasoning in dynamic environments, leaving a gap
in our assessment of advanced inference skills.

To bridge this gap, we propose COVER, a
counterfactual video reasoning benchmark driven
by a multidimensional abstraction level evalu-
ation mechanism. Unlike existing multimodal
counterfactual benchmarks, which often focus on
multitask-oriented questions, COVER systemati-
cally classifies tasks into four quadrants. We de-
fine specific tasks for each quadrant to evaluate
MLLMs’ diverse reasoning capabilities in complex
video scenarios. Beyond merely posing counterfac-
tual questions, COVER introduces a sub-question
reasoning mechanism derived from necessary con-
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Question Structure

ori Q: Is the young boy blowing air through a balloon,
then he releases the air in the video? o
(A) yes

sub Q1 : Which action happened first, if the sequence of
actions in the video is reversed?

(B) the young boy releases the air from a balloon

sub Q2 : Which action happened later, if the sequence of
actions in the video is reversed?

(C) the young boy blows air through a balloon

cf Q: Is the young boy blowing air through a balloon,
then he releases the air in the video, if the sequence of
actions in the video is reversed?

(B) no
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Figure 1: An example from the COVER benchmark. The ground-truth answers are highlighted in green. All
data—including original questions, counterfactual questions, sub-questions, and videos—have been manually
verified as part of COVER. The diagram in the upper right corner illustrates the division of each COVER task into

four quadrants.

ditions, enabling a deeper evaluation of perfor-
mance across MLLMs. This approach allows us
to establish a connection between the accuracy
of intermediate steps and the overall robustness
of counterfactual reasoning. As shown in Fig-
ure 1, when asked to determine whether a boy
completes a series of actions in a specified order,
COVER decomposes the problem into multiple
steps, each representing a necessary condition. For
instance, sub-question Q7 may inquire about which
action occurs first in the reversed video, while sub-
question Q2 targets the final action. This struc-
tured approach not only helps evaluate how a model
adapts to event-sequence changes but also reveals
its strengths and weaknesses in extracting and syn-
thesizing critical information under counterfactual
assumptions. By encompassing a broad range of
abstraction levels, COVER stands as the most com-
prehensive dataset of its kind, paving the way for
more rigorous and holistic evaluations of MLLMs’
dynamic and counterfactual reasoning capabilities.

Building on the COVER benchmark, we con-
ducted a series of systematic experiments using
both open-source and commercial closed-source
models of varying scales. Our results indicate a
strong positive correlation between the models’
sub-question accuracy and performance in coun-
terfactual reasoning and robust video understand-
ing. The findings underscore the tight linkage

between sophisticated inference capabilities and
high-level video comprehension. Furthermore,
we examine how automatically generated versus
human-guided sub-question decomposition (chain-
of-thought, CoT (Wei et al., 2022)) influences com-
plex reasoning and identifies the key factors impact-
ing inference accuracy in MLLMs. Through these
experiments, COVER offers valuable insights into
how structured reasoning can enhance the robust-
ness of video understanding by constructing a sub-
question—based counterfactual video QA bench-
mark across multiple levels of abstraction and thor-
oughly evaluating mainstream MLLMSs’ logical rea-
soning abilities.

2 Related Work

Multimodal Large Language Models and Their
Evaluation. Recent advances in MLLMs have
greatly improved their capacity to understand and
reason over diverse modalities, such as images,
text, and videos. To evaluate these models, bench-
marks targeting static image comprehension have
emerged, including MM-Vet (Yu et al., 2024),
MME (Fu et al., 2023), MMBench (Liu et al.,
2024), and GQA (Hudson and Manning, 2019).
These primarily assess visual recognition and spa-
tial reasoning. Extending beyond static content,
video-centric benchmarks like Video-MME (Fu
et al., 2024), MvBench (Li et al., 2024b), and



Benchmark ‘ Video Q&A Qs Source CF SQp PCD ACD
CoFCA (Wu et al., 2024a) X v H&A v v X X
CFMM (Li et al., 2024¢) X v H v X X X
Video-MME (Fu et al., 2024) v v H X X v X
CRIPP-VQA (Patel et al., 2022) v v H v X X X
VITATECS (Li et al., 2024c) v X H&A v X X X
COVER (ours) |V v H&A v v v v

Table 1: Comparison with existing benchmarks.

Video: whether the benchmark involves video data; Q&A:

whether it follows a question-and-answer format; Qs source: H indicates human annotation, A indicates automatic
annotation; CF: whether counterfactual questions are included; PCD: whether the benchmark is categorized by the
model’s perceptual and cognitive demands; ACD: whether tasks are divided based on object abstraction (abstract vs.

concrete).

SEED-Bench (Li et al., 2023) focus on temporal dy-
namics and contextual reasoning. Together, these
benchmarks reflect the growing demand for evalu-
ating multimodal understanding in both static and
dynamic environments.

Chain-of-Thought and Counterfactual Reason-
ing in MLLMs. Chain-of-Thought (CoT) reason-
ing (Wei et al., 2022) enhances logical inference
by breaking down complex tasks into intermedi-
ate steps. Multimodal adaptations (Zhang et al.,
2024b; Zheng et al., 2023) extend this strategy
across modalities, showing gains in structured rea-
soning. Counterfactual reasoning, which exam-
ines hypothetical changes and their consequences,
has also gained traction. Prior work explores this
in text (Wu et al., 2024c,a), visual QA (Li et al.,
2024e), and hybrid settings. ACQUIRED (Wu
et al., 2023) proposes a taxonomy of counterfac-
tual types, while AuroraCap (Chai et al., 2024) and
CoFCA (Wu et al., 2024a) assess models’ sub-task
decomposition and multi-step reasoning. These
approaches collectively underscore the importance
of structured, causal reasoning in complex multi-
modal tasks.

Multimodal Generalization and Video Counter-
factual Benchmarks. Although several bench-
marks target video-based counterfactual under-
standing—such as CRIPP-VQA for physical prop-
erties, VITATECS for captioning, and ACQUIRED
for scenario taxonomy (Li et al., 2024c; Patel et al.,
2022)—they remain narrow in scope. Most fail
to capture the breadth of reasoning demands in
real-world counterfactual scenarios.

To address this, COVER introduces a fine-grained
framework for evaluating counterfactual video rea-
soning via sub-question decomposition. It explic-
itly distinguishes between abstract vs. concrete ob-

ject attributes and perceptual vs. cognitive reason-
ing demands. As summarized in Table 1, COVER
broadens the evaluation spectrum, enabling a more
nuanced and comprehensive assessment of multi-
modal counterfactual reasoning than prior efforts.

3 The COVER Benchmark

. Actlon
\_Dca“of\\ | Pred’cflon
o\ I ° /
S & | "'0 / 4’9/ %
«© ] g) - e/
L Ve Tl ! g%,
Q\ﬁ S =~ ©» \
~ P SV e

P “ Procedure
\( Understanding

v’ o
= '» N 2
I_Im_lglm // . e 20 \\ cc:zl

= acti
i Action
Color | 103 COVER o 37 ‘I Recognition
1 -
\ > 2
LS A 1
- S
~ \ & A
\ gﬁ
’
N V. &
7 & .0
% @L\ »\ ~ ¢ Q@'oée
% // ~o ol 7N v S
® - - 7€ S 5
, W 7 -- (‘ . &

Material

Figure 2: Overview of the 13 tasks in COVER. Numbers
on the outer edge of the rose chart indicate the total num-
ber of question pairs for each task, while inner labels
denote the corresponding dimension: A&C (Abstract
Cognition), C&C (Concrete Cognition), A&P (Abstract
Perception), and C&P (Concrete Perception).

This section provides a comprehensive overview
of the construction of COVER. We introduce our
data partitioning framework designed to evaluate
MLLM reasoning ability across four complemen-
tary dimensions. Next, we describe the data cura-
tion process, which domain experts have rigorously
validated to ensure the high quality and reliability
of the benchmark.

Our benchmark includes approximately 2,800



videos, which are paired with around 12,000 to
13,000 individual QA instances. As stated in L-
Figure 6, the enhanced version of our dataset con-
sists of about 2.9k question pairs, with each pair
comprising at least three individual QA items: one
original question, one counterfactual question, and
at least one sub-question (often multiple).

3.1 Benchmark Definition

As illustrated in Figure 2, we categorize the 13
benchmark tasks into four quadrants based on
the abstract-concrete and perceptual-cognitive di-
mensions. Abstract-Perception: (1) Emotion:
Understanding and recognizing emotional states.
Concrete-Perception: (2) Counting: Quantity
recognition and calculation. (3) Color: Perceiv-
ing object colors. (4) Direction: Sensing motion
trends. (5) Size: Identifying object dimensions.
(6) Shape: Perceiving object shapes. (7) Material:
Recognizing object materials. (8) Location: De-
tecting object positions. Concrete-Cognition: (9)
Action Recognition: Identifying specific actions.
(10) Object Recognition: Recognizing specific ob-
jects. Abstract-Cognition: (11) Action Prediction:
Forecasting future actions. (12) Procedure Under-
standing: Comprehending sequential processes and
logic. (13) Social Relation: Understanding social
relationships.

Division of Abstract and Concrete Scenes. This
distinction reflects a functional differentiation
within cognitive representation systems. Neuro-
scientific studies (Katja Wiemer-Hastings and Xu,
2005) suggest that concrete concepts rely heavily
on multi-modal perceptual simulations (e.g., ob-
ject shape, material), while abstract concepts are
primarily represented through language-mediated
symbolic operations. Abstract tasks often require
integrating non-perceptual information, such as
contextual encoding for emotion recognition or
constructing temporal causal models for action pre-
diction.

Division of Perception and Cognition. Percep-
tion involves the initial reception of external stim-
uli through sensory organs, converting them into
neural signals that provide raw environmental data.
Cognition, built upon perception, refers to the fur-
ther processing of these signals, encompassing
higher-level mental functions such as memory, at-
tention, language comprehension, problem-solving,
and reasoning. This distinction underscores differ-
ent stages of information processing, with percep-
tion forming the foundation upon which cognitive

functions are built.

3.2 Data Construction

Distribution of Quadrants

756

733
208 726

600

Distribution of Tasks

726

Number of Questions

|
ol gl

] 114
¢ o o 2

o | WEEEE |

Obiect Recognition
tion

Figure 3: (a) Distribution of question pairs across the
four quadrants. (b) Distribution of question pairs across
the 13 tasks.

To construct COVER, we carefully selected a di-
verse range of open-source and research-available
video sources, including Sigurdsson et al. (2016);
Yi et al. (2020); Xie et al. (2024); Tan et al. (2020);
Shahroudy et al. (2016); Patrdaucean et al. (2023);
Zhang et al. (2023); Gao et al. (2017); Jang et al.
(2017); Wang et al. (2019); Krantz et al. (2020).
These sources encompass various real-world sce-
narios, ranging from daily activity recognition to
complex scene understanding. As shown in Ap-
pendix Figure 6, we collected 146 videos and de-
signed 150 aspect-specific QA pairs, each of which
underwent dual-team review for validation. To en-
sure balanced coverage across the four quadrants,
we expanded the seed data using GPT-generated
instances (720-760 per quadrant) to mitigate any
potential biases. The detailed statistical findings
are comprehensively presented in Figure 3. The
frame count of videos in COVER ranges from 16
to 1739, with an average of 294.34 frames. We fi-
nally constructed 2,923 high-quality counterfactual
question-answer pairs. Each question-answer pair
consists of an original question, which presents no
hypothetical context, and a counterfactual question,
which introduces situational assumptions and sub-



OT%qgce Cfacc SUbacc
GPT-40 70.26 4593  56.94
GPT-40-mini 67.32 5147 55.94
Claude-3.5-Sonnet  63.60 38.04  49.40
Gemini-1.5-Pro 74.82 49.64 63.76
Gemini-1.5-Flash 7390 4875 62.52
Gemini-2.0-Flash 7718 4690 6292
InternVL2.5-78B 76.74 5946 67.23
LlaVA-Video-72B 6435 56.04 6154
InternVL2.5-26B 7540 51.08  62.65
InternVL2.5-8B 7431  57.75 61.65
VideoLlama3-8B 73.04 5125 60.09
LlaVa-OV-7B 62.74 51.80 5642
LLaVA-Video-7B 60.52 5193 55.11
Qwen2-VL-7B 71.83 4690 58.40
VILA-U-7B 60.01 3842 4732
VILA1.5-7B 60.25 57.34 53.18

Table 2: General assessment results of COVER. ori .,
Cfaces and sub,.. denote the accuracies of the original,
counterfactual, and sub-questions, respectively.

questions that enable granular reasoning analysis.
Eight annotators further validated the dataset and
checked logical consistency to ensure the reason-
ing relied solely on the video content. Additionally,
three experts cross-validate the dataset (see Ap-
pendix Table 9) to confirm the structural balance.

4 [Experiments

In this section, we systematically evaluate MLLMs
of varying scales on the COVER benchmark to
foster transparent and reproducible research. Our
evaluation spans four key dimensions: cognition,
perception, abstraction, and concreteness. It en-
compasses diverse reasoning sub-tasks, including
counterfactual reasoning, direct inference, and sub-
question-guided reasoning. We compare both open-
source and proprietary models across different pa-
rameter scales to analyze their relative strengths
and limitations. We begin by detailing the experi-
mental setup.

4.1 Settings

To ensure a thorough evaluation, we selected a
diverse set of representative MLLMs, including
commercial closed-source models such as GPT-
40 (Hurst et al., 2024), Claude (Anthropic, 2024),
and Gemini (Reid et al., 2024), as well as leading
open-source models such as InternVL2.5 (Chen
et al., 2024), LLAVA-Video (Zhang et al., 2024a),
LLaVA-OV (Li et al., 2024a), Qwen2-VL (Wang
et al., 2024), VideoLLaMA3 (Zhang et al., 2025),
vila-u (Wu et al., 2024b), and VILA (Lin et al.,
2024). These models span a wide range of pa-

rameter scales and design paradigms, offering a
comprehensive view of the current landscape in
multimodal learning.

We evaluate model performance on video under-
standing using three metrics: orig.. (original ques-
tion accuracy), cfuc. (counterfactual question ac-
curacy), and sub,.. (sub-question accuracy), with
scores averaged over at least three runs. All models
are tested under identical conditions, using a con-
sistent frame extraction strategy that samples 16
frames per video segment. The impact of alterna-
tive sampling strategies is discussed in Chapter 5.

4.2 Main Results

As shown in Table 2, Gemini-2.0-Flash (07174
77.18%) and InternVL2.5-78B (orige. 76.74%)
rank as the top two models, demonstrating their
strong foundational video understanding. The
lower scores of VILA-U-7B (origq. 60.01%) and
LLaVA-Video-7B (origqe. 60.52%) highlight the
limitations of smaller models in processing long se-
quences. InternVL2.5-78B (cfycc 59.46%) shows
significant dominance in handling conditional rea-
soning and complex contexts. Notably, coun-
terfactual questions cause sharp accuracy drops
compared to the original questions: GPT-4o (-
24.33%) and Gemini-1.5-Pro (-25.18%), indicating
that most models struggle with counterfactual rea-
soning.

Most models exhibit higher subgc. than cfgec
(e.g., Claude-3.5-Sonnet 49.40% vs. 38.04%,
LLaVA-Video-72B 61.54% vs. 56.04%). This sug-
gests better stability in localized reasoning tasks
than in holistic tasks, where error accumulation
impacts performance. In the Appendix, we provide
detailed case demonstrations in Figure 8.

Closed-source Model Performance. As shown
in Table 3, Gemini 1.5 Pro demonstrates strong
dominance in both concrete cognition (07rigec
82.14%) and abstract perception tasks (origec
75.48%). Gemini 2.0 Flash excels in abstract per-
ception (oriqe. 75.90%) and concrete perception
tasks (origec 74.22%), showcasing strong capabili-
ties in handling high-complexity perceptual tasks.

Open-source Model Performance. As shown
in Table 3, InternVL2.5-78B leads in abstract cogni-
tion (oriqc. 72.88%) and concrete perception tasks
(¢face 58.25%), reflecting a deep understanding of
abstract concepts and complex logic. Lightweight
models like Qwen2-VL-7B perform well in con-
crete cognition (0r%4cc 82.14%) but face limitations
in abstract tasks (orige. 65.96% in A&C) due to



Models ‘ A&C (%) C&C (%) C&P (%) A&P (%)

| 0Fiaee  Cface  Subace OFigce Cface SUbace OTiace Cface SUbace OTiace Cface  SUbace
GPT-40 71.05 41.81 41.70 74.87 43.65 6836 6995 4262 50.52 6501 55.65 63.97
GPT-40-mini 62.29 5240 4297 7632 5437 6649 64.62 4085 4478 65.56 58.26 65.96
Claude-3.5-sonnet | 56.92 37.01 3555 70.11 4233 61.77 60.03 32.88 40.08 6694 39.81 56.81
Gemini 1.5 Pro 69.49 4449 5336 82.14 5198 7278 71.76 4393 56.81 7548 5799 69.54
Gemini 1.5 Flash 7048 4534 5223 8201 4934 7151 70.67 4202 5190 72.04 5826 71.36
Gemini 2.0 Flash 7429 4436 51.38 83.99 4775 72.84 7422 38.74 5826 7590 5771 66.84
InternVL2.5-78B 72.88 59.60 57.67 8095 63.62 75.62 7599 5825 63.65 76.86 56.20 70.07
LLaVA-Video-72B | 53.11 5494 53.14 6534 6045 67.03 67.94 5239 5349 70.66 56.20 70.01
InternVL2.5-26B 71.05 4774 5053 80.95 58.99 7217 7613 4720 60.12 73.14 50.00 65.61
InternVL2.5-8B 69.77 58.62 4996 8095 64.55 71.02 7394 5580 5466 72.18 51.79 68.19
VideoLLama3-8B 68.08 45.62 49.68 81.35 54.89 6836 7299 50.75 51.62 6928 5344 67.90
LLaVA-ov-7B 54.66 51.69 4749 6296 53.04 61.77 6453 49.66 4948 68.60 5275 64.73
LLaVA-Video-7B 50.14 5523 4452 61.64 50.53 60.50 63.57 5252 4997 6639 49.59 63.03
Qwen2-VL-7B 6596 49.15 4841 82.14 4339 67.03 71.21 4557 5052 6749 49.72 65.02
VILA-U-7B 58.19 39.83 3887 63.10 4193 5451 59.07 3793 3794 59.50 33.88 5534
VILA1.5-7B 54.80 5593 3929 6693 6230 63.52 5525 58.53 44.64 63.64 5234 6191

Table 3: Performance of MLLMs on COVER, based on our quadrant formulation (A&C, C&C, C&P, A&P),
measured by original, counterfactual, and sub-question accuracy.

M Without CoT | With CoT Guide-CoT
odel
Cfacc Cfacc Cfacc waithans

GPT-40-mini 51.47 58.62 57.93 68.07
InternVL2.5-78B 59.46 60.42 58.33 68.29
LlaVA-Video-72B 56.04 56.24 53.51 63.12
InternVL2.5-8B 57.75 57.06 52.41 57.75
VideoLlama3-8B 51.25 52.82 53.06 52.79
LLaVA-Video-7B 51.93 51.42 51.39 54.12
Qwen2-VL-7B 46.90 50.36 45.71 50.88

Table 4: Comparison between CoT and Guide-CoT performance across MLLMs on the COVER benchmark.

their smaller parameter size, revealing distinct ca-
pabilities across model types. Commercial models,
such as the Gemini series, maintain strong perfor-
mance in concrete cognition and abstract percep-
tion tasks but generally fall behind open-source
models in counterfactual reasoning. Most mod-
els struggle with counterfactual reasoning, with
only InternVL2.5-7BB and VILA1.5-7B showing
some task-specific advantages, highlighting the
need for targeted optimization in conditional hy-
pothesis modeling.

4.3 Sub-question Guideline

We propose Guide-CoT to study the influence of
different reasoning paths on model performance
through human-annotated sub-problems. We de-
sign comparative experiments between CoT and
Guide-CoT to analyze how automatically generated
sub-questions from CoT versus manually annotated
sub-questions affect model reasoning capabilities.

Comparing the Without CoT and CoT ap-
proaches based on Table 4, we find that the cf,..

of most models under CoT significantly exceeds
the Without CoT baseline, such as Qwen2-VL-7B
(+3.46%) and GPT-40-mini (+7.15%), which indi-
cates that CoT enhances reasoning processes, par-
ticularly in more complex tasks.

However, examining Guide-CoT results reveals
that manually designed sub-questions may not al-
ways lead to substantial improvement over auto-
matically generated ones, as seen with GPT-4o-
mini’s ¢fyec 0of 57.93% under Guide-CoT, slightly
lower than the 58.62% under CoT. This does not
imply the ineffectiveness of manual sub-questions
but suggests that model behaviors may not always
align with human-designed reasoning paths, po-
tentially due to task complexity or the nature of
the sub-questions themselves. We hypothesize that
manually provided sub-questions could introduce
extraneous patterns or "pseudo-features" that are
not directly relevant to the reasoning task, leading
to a subtle reduction in performance.

The cfithans column in Guide-CoT indicates
sub-questions that include standard answers. For



Frames | InternVL2.5-1B

InternVL2.5-2B

InternVL2.5-4B InternVL2.5-8B

| origce  Cface  Stbace  OTiace  Cface  SUbace  OTiace  Cface  SUbace  OTiace  Cface  Subace
2 66.16 35.61 55.27 65.31 4420 5499 7256 4831  60.88 7126 58.50  60.07
4 68.32 3472 5552 68.83 42.11 5884 7441 4649 61.79 7335 5847 60.96
8 68.94 35.10 55.11 68.22 4143  55.75 75.03 4560 61.79 74.14  57.06 61.60
16 69.76  35.89 55.19 70.07 40.68  55.49 75.61 4523  61.63 7431 57775  61.65
32 69.04 3650 55.04 70.13 39.69 55.48 75.54 45.09 6096  74.10 57.03 61.42
64 68.18 37.39  54.80 68.90 40.06 5544 7441 4656 60.70 7420 58.09 61.30

Table 5: Performance of MLLMs on COVER using different frame sampling strategies.

The frame se-

lection follows standard practices in video QA benchmarks, where the number of input frames is set to

min(video length, predefined sampling count).

InternVL2.5-78B, cfyithans reaches 68.29%, re-
flecting an 8.63% improvement over the no-CoT
baseline, in contrast to CoT’s modest gain of only
0.96% (from 59.46% to 60.42%). This suggests
that providing complete answers substantially en-
hances reasoning accuracy, particularly in complex
or multi-step tasks. Standard-answer sub-questions
enable the model to better integrate information
and verify intermediate reasoning steps, resulting
in improved consistency and overall performance.
Detailed case studies are presented in Appendix
Figure 9 to further illustrate these findings and ana-
lyze the interplay between reasoning paths and task
complexity.

The results from our experiments strongly sup-
port the notion that reasoning plays a pivotal role
in model robustness and generalization. Our study
extends these insights by demonstrating that mul-
timodal models, especially in the context of video
tasks, rely heavily on robust reasoning capabili-
ties for effective generalization. The significant
performance improvements observed with counter-
factual reasoning and sub-question decomposition
highlight that models’ ability to handle complex,
conditional, and dynamic contexts is crucial for
their robustness, a finding not fully explored in
prior research.

5 Analysis

In this chapter, we begin by analyzing the impact
of video frame sampling rates on MLLMs’ video
understanding and reasoning abilities. We then
proceed with an in-depth examination of MLLMs’
robustness and logical reasoning performance.

5.1 Ablation Study of Video Frames

As shown in Table 5, as the parameter size of
LLMs increases, there is a rising trend in oriqcc,
Cface, and subge.. For instance, with 16 frames,

the InternVL2.5-1B model achieves origcc, ¢faces
and subge. of 69.76%, 35.89%, and 55.19% re-
spectively. The InternVL2.5-2B scores 70.07%,
40.62%, and 55.49%, while the InternVL2.5-4B
reaches 75.61%, 45.23%, and 61.68%, indicating
that larger LLMs have enhanced capabilities in
handling complex problems. Under the same vi-
sion tower settings, oriq.. shows a clear upward
trend as the number of frames increases. For exam-
ple, the InternVL2.5-8B’s oriq. rises from 71.26%
at 2 frames to 74.20% at 64 frames. However,
cface tends to decrease with more frames. The
InternVL2.5-2B’s ¢f,.. drops from 44.20% at 2
frames to 40.06% at 64 frames. Models with
more parameters generally perform better in 074,
Cface, and subgec, highlighting the significant role
of LLMs in multimodal reasoning. Additionally,
increasing visual information (by raising the frame
count) can enhance ori,.., but excessive visual in-
formation, especially in complex or counterfactual
reasoning scenarios, may impair the model’s rea-
soning ability, leading to a decline in ¢ f,cc.

5.2 Robustness and Logical Reasoning in
MLLMs

The ability of MLLMs to answer original questions
serves as a key indicator of their overall under-
standing capabilities, while performance on sub-
questions reveals single-step reasoning proficiency.
A notable observation is the strong Pearson cor-
relation between ori,.. and sub,.. reaches 0.836,
indicating a strong connection between model un-
derstanding and reasoning capabilities. Further-
more, as shown in Figure 5, the correlation between
Subgee and ¢ foec 18 0.608. These moderately strong
correlations indicate that a model’s ability to com-
prehend original questions plays a fundamental role
in enabling effective step-by-step reasoning. Sim-
ilarly, the correlation between ori,.. and subgcc
suggests that models with a higher understanding
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Figure 4: Heatmaps of task performance for Gemini-1.5-pro and InternVL2.5-78B, using hollow circles to depict
task distributions across the four quadrants. The top three panels show results for Gemini-1.5-pro, and the bottom
three for InternVL2.5-78B. Left: Accuracy on original questions. Middle: Performance on counterfactual questions.
Right: Accuracy on sub-questions. A gradient color bar—from azure (low accuracy) to crimson (high accuracy)—is
placed along the right margin of each heatmap to indicate performance levels.

Model P(cfrightISUb'right) P(wa'rongISUbright) P(CfrightISUbwrong) P(warongISUbwrong)
gemini-1.5-pro 56.54 43.45 44.99 55.01
GPT-40-mini 59.49 40.51 47.65 52.35
InternVL2.5-78B 62.90 37.10 56.67 43.34
LlaVA-Video-72B 63.28 36.72 51.60 48.40

Table 6: Conditional probabilities of counterfactual accuracy given sub-question outcomes. P(cfrignt | subyign:) and
P(cfuwrong! Subrignt) denote the likelihood of answering the counterfactual question correctly or incorrectly when
the sub-question is correct; similarly, P(c fright | SUbwrong) and P(¢c furong | $ubwrong) apply when the sub-question

is incorrect.

capability tend to perform better when solving de-
composed sub-questions, reinforcing the notion
that comprehension and reasoning are interdepen-
dent. However, the moderate correlation between
Subgee and cfqe. suggests that counterfactual rea-
soning involves additional complexities, making it
a more challenging task than single-step reasoning.
As illustrated in Table 6, We observed
that across multiple models, the probability
P(cf_right|sub_right) was significantly higher
than P(cf_right|sub_wrong), clearly indicating
that the correctness of sub-questions is a strong
predictor of overall counterfactual performance.
Analysis of the heat maps in Figure 4 reveals dif-
ferent performance patterns in the quadrants, high-

lighting the interaction between comprehension,
step-by-step reasoning, and counterfactual infer-
ence. In abstract reasoning tasks such as social
inference and procedural understanding, the drop
from subgee 10 0714 i$ minimal, and the transition
to ¢f,cc remains stable. This suggests that models
can effectively leverage sub-question reasoning and
maintain performance even under counterfactual
assumptions. In contrast, the concrete perception
quadrant—involving tasks like object recognition
and motion understanding—shows a sharper de-
cline from subgee tO 0Tigee, and further to cfqcc.
This indicates that perception-heavy tasks pose
greater challenges, as models struggle to decom-
pose complex sensory input into reasoning steps
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required for counterfactual understanding.

Overall, our findings indicate that counterfac-
tual reasoning is inherently more challenging than
single-step reasoning, especially in perception-
intensive tasks where models must infer causal-
ity beyond pattern recognition. In contrast, the
relatively stable gap between subge. and ¢fgee in
abstract-cognitive tasks suggests that models can
better leverage conceptual knowledge. Enhancing
counterfactual reasoning in perception-heavy sce-
narios remains a key challenge, likely requiring
improved causal inference and reasoning mecha-
nisms.

5.3 The Effects of Model Scale

We conduct systematic analyses to characterize per-
formance gaps across original, counterfactual, and
sub-question accuracies. Our goal is to mitigate
these gaps by examining factors such as model
scale, training alignment, and reasoning strate-
gies. As shown in Table 7, with similar visual
backbones, increasing language model size signifi-
cantly reduces the performance gap—particularly
between sub-question and counterfactual accuracy.
Specifically, the absolute difference between oriycc
(70.07%) and cfyec (40.68%) is 29.39% for the 2B
model, increases slightly to 30.38% for the 4B

model, and then drops substantially to 16.56% for
the 8B model. Similarly, the gap between cf,c. and
subyc. grows from 14.81% (2B) to 16.40% (4B),
before narrowing sharply to 3.90% (8B).

Model OTigce  Cface  Subace
InternVL2.5-2B 70.07  40.68 55.49
InternVL2.5-4B  75.61 4523 61.63
InternVL2.5-8B 74.31 57.75 61.65

Table 7: Variations in three accuracy metrics across
different model sizes.

6 Conclusion

We introduce COVER, a comprehensive bench-
mark for counterfactual video reasoning that eval-
uates MLLMs across four dimensions: abstract-
concrete and perception-cognition. By decompos-
ing complex queries into structured sub-questions,
COVER enables fine-grained analysis and reveals
a strong correlation between sub-question accuracy
and overall reasoning performance. Our results
highlight the need for improved reasoning abilities
in dynamic video tasks, and position COVER as
a new standard for evaluating multimodal logical
reasoning.
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Limitations

COVER offers a novel benchmark for counterfac-
tual video reasoning, but some limitations exist.
First, while it focuses on video reasoning, its appli-
cability to other multimodal tasks, such as image
or text reasoning, remains unexplored. Second,
COVER relies on sub-question decomposition, and
automated methods may not always match human-
designed questions, especially in complex scenar-
i0s. Finally, while we demonstrate COVER’s ef-
fectiveness on various models, further validation
across different model architectures and real-world
tasks is needed to assess its generalizability.

Ethical Considerations

COVER is designed with ethical considerations
in mind, aiming to enhance counterfactual reason-
ing in video understanding while ensuring fairness,
transparency, and responsible Al development. We
acknowledge the ongoing challenges in bias miti-
gation, fairness, and environmental sustainability
and encourage the broader research community to
collaborate in addressing these concerns. By es-
tablishing COVER as an open and structured eval-
uation benchmark, we aim to promote robust and
ethical Al advancements in multimodal reasoning.

We ensured that the human annotators were com-
pensated with fair remuneration, which exceeded
the local minimum wage standards, reflecting the
value of their work. Furthermore, we took steps
to ensure that the annotation process did not pose
any risks to their physical or mental well-being.
The tasks were designed to be manageable, and
we provided adequate support to ensure a safe and
respectful working environment.

In this study, Al was used solely for data aug-
mentation and grammar/typo correction, with no
involvement in generative or creative tasks. We
carefully considered potential risks to ensure Al
usage did not compromise the originality or trans-
parency of the research.
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A Appendix

A.1 Data Construction Details

In this section, we present additional details on
COVER construction, including information about
the task splitting scores, annotation agreements,
data augmentation prompts and process flow.

We invited three expert annotators to indepen-
dently score each benchmark task based on our
two-dimensional quadrant framework (abstract vs.
concrete and perception vs. cognition). Their scor-
ing results in Table 8 demonstrates the strictness,
consistency, and logical coherence of our task cate-
gorization, effectively preventing overlaps and am-
biguity.

The annotators were recruited to evaluate
COVER across multiple dimensions, with the re-
sultant assessments systematically compiled in Ta-
ble 9, ensuring comprehensive evaluation coverage.
The methodological workflow for data augmenta-
tion is schematically outlined in Figure 6.

The schematic framework outlined in Figure 7
delineates the methodology employed for contex-
tual data augmentation, leveraging the generative
capabilities of GPT-4o(Hurst et al., 2024) to con-
struct domain-specific instructional prompts.

A.2 Additional Results

In this section, we present additional experiments
on COVER. The comprehensive evaluation frame-
work delineated in Table 14 presents granular per-
formance metrics across 13 meticulously defined
tasks.

GPT-40 exhibited notable vulnerability in the
Procedure Understanding task. While it attained a
respectable raw accuracy of 78.17%, its counterfac-
tual accuracy plummeted to 28.97%, representing
a precipitous decline of 49.2%. This substantial
drop suggests that the performance of GPT-40 in
understanding procedures may be overly reliant
on surface-level features. Counterfactual perturba-
tions, such as changes in conditions, can severely
disrupt its reasoning capabilities, thereby highlight-
ing a robustness limitation of the model when han-
dling complex tasks.

Figure 5 (a) depicts the relationship between
OT%qcc and subg,.. across different models, with a
purple regression line characterizing the functional
correlation between mean ori,.. and mean subgcc.
Figure 5 (b) demonstrates the association between
Cface and subge. across different models, with a
red regression line characterizing the functional
correlation between mean ¢ f,.. and mean subgcc.
The bivariate correlation analysis delineated in Fig-
ure 5 demonstrates statistically significant covari-
ation patterns (r = 0.836) between semantic com-
prehension and multi-step reasoning capabilities in
MLLMs.

We conducted an additional ablation study to
examine whether the observed trend where ex-
cessive visual information impairs reasoning ac-
curacy holds consistently across both short and
long videos. Our results are summarized in Ta-
ble 10, 11. We observed a clear pattern across
both short and long videos: model accuracy typi-
cally peaks within a moderate frame range (8-32
frames) and subsequently declines at the maximum
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Task A Ay B, By Cy Cy Avg, Avgy
Counting 32 34 31 -36 -33 37 -32 -357
Color 41 44 44 42 42 43 423 43
Material -3.8 33 -39 -32 40 -34 -39 -33
Size 24 25 26 -23 22 -24 24 2.4
Shape -33 32 35 -32 -38 40 -353 -347
Emotion 24 40 25 35 24 31 -243 353
Location -7 -14 20 -16 -13 -1.7 -1.67 -1.57
Direction 21 -17 25 -15 -26 -18 24 -1.67
Object Recognition 30 30 24 -20 12 -23 2.2 -2.43
Action Recognition 25 31 23 -30 21 -35 23 -3.2

Action Prediction .
Procedure Understanding 3.0 3.5
Social Relation 34 4.3

38 25 32 22 363 237
36 32 22 33 293 333
30 44 31 41 317 427

Table 8: Annotator scoring table. Annotators A, B, and C provide ratings along two axes: the perceptual-cognitive
dimension (x-axis, from —5 to 5, where higher values indicate more cognitive tasks) and the concrete—abstract
dimension (y-axis, from —5 to 5, where higher values indicate more abstract tasks).
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Figure 6: Flowchart depicting the data augmentation pipeline.

setting (64 frames). This decline is particularly pro-
nounced in tasks involving the original questions
(ori) and sub questions (sub), suggesting that an
excessive amount of visual input can indeed neg-
atively impact model performance, regardless of
video length.

Additionally, we evaluated test-time reasoning

strategies on manually curated seed data using long-
chain reasoning models in Table 12. Notably, mod-
els such as InternVL2.5-78B-CoT show significant
improvement in bridging the cf—sub-ori gap, fur-
ther supporting that reasoning-guided prompting
(e.g., CoT) helps align sub-level and cf-level accu-
racy. These observations suggest a promising direc-



Enlarge Prompt

System: You are a professional video Q&A data annotator. Your task is to generate question-answer pairs
based on video frames while adhering to strict formatting rules and avoiding information leakage.

Required Q&A Types

multiple-choice options.

Rules

Expected Output Format

original: "gs": "...?"

counterfactual: "gs": "If <clause>, ...?"
sub: "gs": "If <clause>, ...?“

Notes:

In-Context Examples

original: "gs": "...?"

counterfactual: "gs": "If <clause>, ...?"
sub: "gs": "If <clause>, ...?“

Action Instructions

User: Below is your task description and examples provided.

original_ga: A question focused on {aspect} with multiple-choice options (ABCD).
counterfactual_ga: Identical to original_ga but adds one carefully constructed if-clause.
sub_gas: At least two sub-questions addressing intermediate reasoning steps for counterfactual_ga, also with

All questions must strictly follow {aspect_rules[aspect]}.

No information leakage: Questions must not reveal answers without analyzing the video.

Choices: Must have semantic distinctions; avoid overlapping or ambiguous options.

Format consistency: original_ga and counterfactual_ga share identical choices; sub_gas inherit the if-clause.

Use double quotes for JSON keys/values.
Ensure the if-clause in counterfactual_ga and sub_gas is logically
compatible with the question body.

Analyze Video Frames: Extract key visual elements relevant to {aspect}.
Generate Q&A Triplets: Follow the format and rules strictly.
Validate: Ensure no information leakage and logical consistency.

Final Output: <Your generated JSON here>

Figure 7: Methodological framework for data augmentation using GPT-4o.

Aspect ‘ A B C Average
Data Quality | 4 4 5 43
Data Diversity ‘ 5 4 5 4.7

Relevance ‘ 4 5 4 4.3

Annotation Quality ‘ 4 5 5 4.7
Dataset Usability | 4 4 4 4
Innovation ‘ 5 5 4 4.7

Table 9: Cross-annotator validation on COVER. The
table summarizes quality scores assigned by three an-
notators. A, B, and C denote randomly assigned codes
for the assessment data, and Average indicates the mean
score across all entries.

tion: larger and better-aligned models, when com-
bined with explicit reasoning strategies, are more
capable of maintaining coherence across percep-
tion, decomposition, and abstract reasoning tasks.

A.3 Sample Reaults on Test Time Long
Reasoning Models

As illustrated in Figure 10, the reasoning model
QVQ-72B-Preview (Team, 2024), equipped with a
built-in Chain-of-Thought (CoT) mechanism, ex-
hibits human-aligned reasoning patterns. Its cog-

Frame InternVL2.5-4B InternVL2.5-8B

OTiacc Cface SUbace OTiace Cface Subace
2 69.09 4594 6033 68.72 56.53 61.14
4 70.81 46.18 6091 68.97 56.90 60.68
8 71.31 4397 60.62 69.83 56.28 61.14
16 70.81 4483 59.86 70.07 56.40 61.20
32 70.69 43.84 59.57 69.21 56.90 61.26
64 69.95 46.55 59.63 69.09 57.27 60.62

Table 10: Performance of MLLMs with different num-
bers of sampled frames for short videos (1-64 frames).

Frame InternVL2.5-4B InternVL2.5-8B

OTiacc Cface SUbace OTiace Cface SUbace
2 73.90 49.22 61.09 7224 59.26 59.67
4 7579 46.61 62.13 75.04 59.07 61.07
8 76.46 46.23 6224 75779 57.37 61.78
16 7745 4538 6231 7594 58.27 61.82
32 7740 4557 6149 7598 57.08 61.49
64 76.13 46.57 61.11 7617 58.41 61.55

Table 11: Effect of different frame sampling strate-
gies on MLLM performance for long videos (64—2000
frames).



Model ori_acc cf acc sub_acc
QVQ-72B-Preview 69.33 59.33 58.76
InternVL2.5-78B-CoT  70.00 71.33 70.80

Table 12: Variation in accuracy across different test-
time reasoning strategies.

nitive process integrates detailed scenario descrip-
tions, systematic elimination of implausible options
(e.g., excluding candidates A/B/C), and rigorous
conclusion verification. In contrast, InternVL2.5-
78B employs a CoT mechanism that presents an-
swers in a bullet-point format without explanatory
justification, reflecting weaker anthropomorphic
reasoning characteristics.

However, the cf,.. discrepancy in Table 13
(QVQ-72B-Preview: 59.33% < InternVL2.5-78B:
71.33%) suggests that contemporary reasoning
models may rely more on memorization than on
structured reasoning. InternVL2.5-78B’s concise
response paradigm appears to leverage rapid pat-
tern recognition and information retrieval, leading
to superior accuracy. While QVQ-72B-Preview’s
elaborate reasoning workflow better approximates
human cognition, potential redundancies or logical
inconsistencies may reduce answer precision.

Table 13 further indicates that InternVL2.5-
78B achieves a substantial lead in the sub,.. met-
ric (70.80%), significantly outperforming QVQ-
72B-Preview (58.76%) and Claude-3.7-sonnect
(46.72%). This performance hierarchy remains con-
sistent across models when evaluated on the 077,
metric: InternVL2.5-78B (70.00%) > QVQ-72B-
Preview (69.33%) > Claude-3.7-sonnect (46.00%).
Empirical evidence suggests a statistically signifi-
cant positive correlation between reasoning capa-
bility (subgc.) and comprehension ability (074 4¢c)-
In addition, under the CoT paradigm, reasoning
capability demonstrates stronger generalization, ex-
hibiting a positive correlation with performance on
human-annotated essential logical sub-problems,
thereby reinforcing the intrinsic relationship be-
tween logical reasoning and generalizability.

Moreover, the reasoning processes of models
such as QVQ frequently generate sub-problem con-
tent that aligns with human-annotated data, which
to some extent suggests that the inferential patterns
of test-time long-reasoning models demonstrate
closer correspondence with human cognitive intu-
ition. For instance, in the Figure 11 the analytical
content regarding the opening and closing scenes

OTiacc Cfacc SUbacC
QVQ-72B-Preview  69.33 59.33  58.76
Claude-3.7-sonnect  46.00 59.33 46.72
InternVL2.5-78B 70.00 7133  70.80
VILA1.5-13B 65.33 44.67 53.65

Table 13: Performance of different chain-of-thought
(CoT) reasoning architectures on a manually annotated
dataset of 150 samples. QVQ and Claude-3.5-Sonnet
represent dedicated reasoning models, while the others
apply CoT-based augmentation.

of videos (highlighted in blue font) exhibits precise
alignment with the manually curated sub-problems
in the upper-right annotation (specifically address-
ing inquiries about video commencement and con-
clusion scenarios), thereby empirically validating
this cognitive congruence.

A.4 Examples of Sub-question Guidelines

Figure 8 illustrates how sub-question errors propa-
gate to counterfactual question failures. In Figure 9,
we observe that subtle errors in the reasoning pro-
cess lead to reasoning failures, highlighting the
model’s sensitivity to the integrity of its reasoning
steps.



Task

Model Type . . . -
Action Procedure Social Action Object . N - S § . .
Prediction Understanding  Relation  Recognition —Recognition Color Counting - Direction  Location  Material - Shape  Size  Emotion

OTigec 65.20 78.17 69.00 74.87 74.87 9223 7525 50.88 70.59 79.12 7200 52.88 6501
GPT-40 Cface 41.41 28.97 56.33 44.65 42.67 3786 40.59 33.33 42.86 59.34 5800 29.81 5565
Subace 51.85 22.82 5243 69.54 67.09 5194 4752 56.90 48.96 5808 5556 36.08 6397
50.22 7222 63.32 78.61 74.08 84.47  70.30 52.63 57.98 7143 6200 56.73 6556
GPT-40-mini 44.05 5119 62.01 56.42 5236 26.21 39.60 36.84 59.66 5275 53.00 17.31 5826
Subace 53.16 19.44 58.85 68.03 64.82 3835  38.12 53.88 47.72 5389 5344 2885 6596
[P 43.61 63.10 63.32 66.31 73.82 79.61 68.32 48.25 52.10 63.74 6634 4519 6694

Claude-3.5-Sonnet ¢ fqce 39.21 3333 38.86 43.85 40.84 36.89 19.80 35.96 40.34 3736 4059 18.27 3981
Stbgce 46.19 15.87 46.68 62.54 60.93 39.81 24.26 48.28 48.55 46.11 3770 3413  56.81
OTigec 54.63 80.95 71.62 83.42 80.89 84.47 7327 61.40 76.47 81.32 6733 59.62 7548
Gemini-1.5-Pro Cface 46.70 29.76 58.52 45.45 5838 46.60  37.62 35.96 42.86 5495 5545 36.54 5799
Subace 57.52 39.68 64.38 72.58 72.99 7330  43.56 61.21 58.09 59.88 5550 45.67  69.54
OTigee 53.74 85.32 70.74 82.62 81.41 8252 70.30 57.02 70.59 79.12 6931 6827 7204
Gemini-1.5-Flash Cface 45.81 34.92 56.33 49.20 49.48 4175 37.62 33.33 41.18 64.84 5347 2596 5826
Subace 61.87 32.94 63.94 73.28 69.60 46.60  43.07 62.93 54.77 6287 5550 37.98 71.36
OTigee 60.35 86.90 74.24 87.97 80.10 9029  69.31 64.04 78.99 8132 7030 66.35  75.90

Gemini-2.0-Flash Cface 42.29 36.51 51.97 44.12 51.31 2039 39.60 31.58 37.82 57.14 5644 31.73 5771
Stbgce 60.78 3552 59.51 73.16 72.49 69.90  59.41 65.95 53.53 5808  58.64 4231 66.84
OTigee 67.84 75.00 75.55 79.68 82.20 94.17  82.18 52.63 76.47 76.92 8317 69.23  76.86
InternVL2.5-78B Cface 43.61 76.19 57.21 65.51 61.78 8738  37.62 4737 75.63 61.54 5743 3943 5620
Subace 62.09 44.64 67.70 76.90 62.28 79.13  69.80 66.38 58.09 6228  59.69 5048  70.07
43.17 50.79 65.50 60.70 69.90 8544  69.31 5175 73.11 7473 6139 61.54  70.66
LLaVA-Video-72B 4493 59.92 59.39 63.10 57.85 62.14 4257 47.37 66.39 5385 5149 4135 5620
59.26 32.94 69.47 67.56 66.46 63.59 5297 61.21 45.23 55.69 5340 4327 7001
57.27 78.58 76.42 82.35 79.58 9126  74.26 62.28 85.71 7473 7822 6635  73.14
InternVL2.5-26B 47.14 45.24 51.09 60.43 57.59 5923 25.74 45.61 60.50 57.14 2500 25.00  50.00
59.91 61.08 62.39 71.18 73.24 65.05  56.44 68.97 58.09 61/08 5096 50.96  65.61
OTigee 5551 75.00 78.17 81.28 80.63 90.29  70.30 63.16 78.99 7463 7426 6635 7218
InternVL2.5-8B Cface 48.02 76.19 49.78 71.39 57.85 8447  36.63 5351 70.59 59.34 5545 2885 5179
Subgce 55.99 29.37 66.81 69.89 72.24 5243 5297 60.34 53.53 56.89 5497 5144  68.19
5242 81.75 68.56 80.48 82.20 94.17  70.30 63.16 81.51 7033 6832 6250 69.28
VideoLLama3-8B 35.68 53.97 46.29 55.08 54.71 66.02  42.57 42.11 64.71 5824 4851 32,69 5344
Subace 49.45 33.93 67.48 67.91 68.84 5777 39.60 58.62 49.79 5389 5445 47.12 6790
OTigee 48.90 48,81 66.81 60.43 65.45 86.41 63.37 44.74 63.03 7253 6139 6346  68.60
LLaVA-ov-7B Cface 43.61 64.29 45.85 55.35 50.79 5922 4257 45.61 52.94 60.44 5743 30.77 5275
Stbgce 50.11 30.36 63.94 62.78 60.68 54.85  42.08 5345 45.64 5090  48.69 5096  64.73
OTigec 50.66 3571 65.50 56.15 67.02 8350  67.33 41.23 58.82 7472 6436 59.62  66.39
LLaVA-Video-7B Cface 44.93 73.02 45.85 59.09 42.15 7379 4257 48.25 60.50 5824 4851 3558  49.59
Subace 48.58 29.96 56.64 62.19 58.67 5534 41.09 56.03 43.15 5449 5288 48.08  63.03
OTigee 44.49 84.12 67.25 84.22 80.10 8835  70.29 57.89 73.94 7473 6534 69.23 6749
Qwen2-VL-7B Cface 4229 58.73 45.41 44.92 41.88 56.31 21.78 42.11 58.82 60.44 4554 33.65 49.72
Subace 5337 30.16 63.72 67.33 66.71 4320  42.08 59.48 51.87 5269 5183 5144 65.02
OTigee 45.37 73.02 54.59 66.31 59.95 8155  61.39 54.39 71.43 4725 4752 47.11  59.50
VILA-U-7B Cface 2247 53.17 4236 4439 39.53 45.63 4554 23.68 43.70 35.16 3564 36.54  33.88
Stbgce 38.78 3433 44.03 52.16 57.04 4126 2228 39.22 40.66 3593 4293 4231 5534
OTigec 52.86 50.40 61.57 67.65 66.23 61.17  56.44 40.35 40.34 7143 6040 62.50  63.64
VILAL.5-7B Cface 28.64 85.71 50.22 68.45 56.29 86.41 5743 49.12 76.47 51.65 4158 4423 5234
Subace 34.86 24.80 59.96 61.73 65.45 48.06  31.19 50.86 42.74 4731 4555 46.63 6191

Table 14: Overall performance of MLLMs on 13 tasks in COVER, including original accuracy, counterfactual
accuracy, and sub-question accuracy.



/ Video Reasoning Steps \

Sub1 Question:
Which action happened first, if the sequence of actions in the video is reversed?

A: The woman places a plate of food on the table  B: The woman sits down Golden: A
________ C: The woman eats the food D: The woman leaves the room
Model Prediction:
[D]The woman leaves the room.

Sub2 Question:

Which action happened later, if the sequence of actions in the video is reversed?
A: The woman wraps a blanket around herself B: The woman sits down Golden: B
---=| C: The woman places a plate of food on the table  D: The woman eats the food

Model Prediction:
The woman wraps a blanket around herself.

Counterfactual Question:

Does the woman place a plate of food on the table before sitting down in the video,

if the sequence of actions in the video is reversed? Golden: B
A:yes B: no

Model Prediction:
[Alyes.

\_ )

Figure 8: Example from COVER, showing a video accompanied by three related questions. The video is divided
into four key action frames (left), with dashed lines indicating reasoning steps. Single-step prediction errors are
marked with red crosses on the right, while sub-questions that do not support counterfactual reasoning are marked
with red crosses on the left.
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Question
Does the man work on a computer and then engage in a conversation Golden: No
in the video, if the sequence of actions in the video is reversed?
I i i
/ CoT Guide-CoT Guide-CoT with answer \
Step 1 Step 1: Step 1:
Does the man work on a computer in the video? Which action happens first, if the sequence of actions in the Which action happens first, if the sequence of actions in the.
Prediction: video is reversed? video is reversed?
Yes, the man is seen working on a computer. A: the man starts working on a computer A: the man starts working on a computer
B: the man engages in a conversation B: the man engages in a conversation
Step 2: . C: the man stands up C: the man stands up
Does the man engage in a conversation in the video? D: none of the above D: none of the above
Prediction: . : O Prediction: 0 Prediction o
Yes, the man s seen engaging in a conversation. A: the man starts working on a computer B: the man engages in a conversation
Step 3: Y Step2: Step 2:
Is the sequence of actions in the video reversed Which action happens later, if the sequence of actions in the Which action happens later, if the sequence of actions in the
Prediction: video is reversed? video is reversed?
Yes, the sequence of actions in the video is reversed. A: the man engages in a conversation A: the man engages in a conversation
. B: the man starts working on a computer B: the man starts working on a computer
Analysis of the Main Question C: the man adjusts his seat C: the man adjusts his seat
The man is first seen engaging in a conversation and D: none of the above D: none of the above
then working on a computer. Prediction: P}edlcuon
A: the man engages in a conversation B: the man starts working on a computer
Analysis of the Main Question Analysis of the Main Question
Therefore, the man does work on a computer and then Based on the provided sub-questions and answers, the
engagein a in the reversed sequence sequence of actions in the video, if reversed, would have
the man engaging in a conversation first and then
working on a computer later. This suggests that in the
original sequence, the man would have been working on a
K computer before engaging in a conversation. /
ﬁnal Prediction x:inal Prediction ﬁnal Prediction
NO Yes NO

\ %

Figure 9: An example from COVER. The top section shows the video input and corresponding counterfactual
questions. The middle section presents three reasoning processes—CoT, Guide-CoT, and Standard—where correct
steps are marked with green checkmarks. In the analysis, correct reasoning paths are shown in green text, while
incorrect ones are highlighted in red. The bottom section displays the final model predictions, with green checkmarks
indicating correct answers and red crosses denoting errors.
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Video
_ o n H g
Question
Is the woman leaving or returning home in the video, if the video is played in reverse? Golden
A:leaving  B:sitting inthe car  C: walking in the park D: returning D: returning
1l I
/ QvQ InternVL2.5-CoT \
let's start by describing what | see. Step 1:
First, there's a woman in a white tank top and blue jeans. She's walking out of a house through a blue door. The What is the woman doing at the beginning of the
house looks like a single-story building with white siding. As she exits, she walks down a small set of stairs and video?
heads towards a driveway where several vehicles are parked. In the driveway, there's a black car parked closest to Prediction :
the house, followed by a dark blue pickup truck, and then another black vehicle that looks like a larger truck or The woman is putting on her boots O
possibly a tractor trailer. The woman walks past these vehicles, seemingly in a hurry, as she moves quickly across
the driveway and onto a grassy area beyond. The setting appears to be rural or semi-rural, given the open spaces, Step 2:
71| 1 the style of the house, and the types of vehicles present. There are some trees and other buildings visible in the What is the woman doing at the end of the video?
, further ing a countryside . Prediction :
Now, the question mentions that if the video is played in reverse, the woman would be leaving or returning home. The woman is walking towards the truck
The options provided are: A: leaving B: sitting in the car C: walking in the park D: returning. Given that in the
original video, the woman is seen exiting the house and walking away from it, playing the video in reverse would Step 3:
show her walking towards the house and entering through the blue door. So, in reverse, she would be returning What s the woman's location at the beginning of the
home. Therefore, the correct answer should be D: returning video?
Prediction :
But let's double-check to make sure I'm not missing anything. The woman is inside a house
The question says, "if the video is played in reverse," and the woman is seen walking out of the house in the
original video. Reversing the video would show her walking back into the house, which implies she's returning Step 4:
o home. Option A: leaving \u2013 that would correspond to the original direction, not the reverse. Option B: sitting in What is the woman's location at the end of the video?
the car \u2013 there's no indication of her sitting in the car in the reverse video. Option C: walking in the park Prediction :
\u2013 while the reverse video might show her walking, it's not specifically in a park; it's more likely the same path The woman is outside, near the truck O
back to the house. Option D: returning \u2013 this seems the most accurate based on the reverse scenario. So,
my final answer is D: returning Omit similar content below /
inal Prediction nal Prediction
D:returning D:returning

N /

Figure 10: An example from the 150 seed samples. The top section shows the video input and corresponding
counterfactual questions. The middle section compares two reasoning frameworks: the test-time long reasoning
model QVQ and InternVL2.5-78B with CoT, with green marks indicating validated response components. The
bottom section displays final model predictions, where green checkmarks indicate correct answers.

Input Manual annotation \

Sub q1
What is hillary clinton doing at

=
the beginning of the video, if
IV the video is played in reverse?
' : Sub q2
Question £ ) :
q . i P _— . . . . . What is hillary clinton doing at
Is hillary clinton is giving a speech at the beginning of the video, if the video is played in reverse? G;":]‘;” the end of thrgvideo, i ,heg
\ A:yes B:no < video is played in reverse? /

M {117
F {7
f QVQ InternVL2.5-CoT I\

Alright, I've got this video to analyze.. Step 1:
It seems like there are a few different scenes here, and | need to think about the sequence of events if the video is reversed. Let o 9 0
What is Hillary Clinton doing at the

me try to map out the scenes in the order they appear: 1. Large crowd with person at podium giving a speech. 2. Group of people

(possibly officials or security) walking outdoors. 3. Hillary Clinton posing with children.\n\nif the video is played in reverse, the beginning of the video?
order would be: 1. Hillary Clinton posing with children. 2. Group of people walking outdoors. 3. Large crowd with person at Prediction :
/‘/ podium giving a speech. So, in the reversed version, the speech comes at the end, not at the beginning. But the question is Sheis giving a speech toa Iarge crowd.

specifically about the beginning of the reversed video. So, is Hillary Clinton giving a speech at the start of the reversed video?
Based on my understanding, no, because in the reversed video, the first scene would be her posing with children, followed by the

outdoor walking group, and then the speech. Therefore, the answer should be B: no Step 2:

Wait a minute, but | need to make sure I'm not missing something. What is the context of the video?

Let's see. The large crowd and podium suggest a political rally or event, possibly related to an election or campaign. The group of Al .

people walking outdoors could be part of the same event, perhaps arriving or departing. And the photo op with Hillary Clinton and Pred'_c“on o i . -
S| children might be part of the event's agenda, focusing on family or education issues. If the video is reversed, the sequence starts The video shows Hillary Clinton giving a
\] with the photo op, then the outdoor walking, and then the speech. So, again, the speech is not at the beginning in the reversed speech and interacting with people,

version. Perhaps the confusion comes from the fact that Hillary Clinton is known for giving speeches, especially in political

contexts. But based on the images provided, in the reversed video, her speech would come after the other scenes, not before. 'ndUdlng children

Therefore, | think the answer is B: no, Hillary Clinton is not giving a speech at the beginning of the reversed video.

Just to double-check Step 3:
Let's consider if there's any possibility that the speech and the photo op are simultaneous, but that seems unlikely. Typically, such Is the video played in reverse?

S| events have a schedule: there might be speeches, then photo ops, or vice versa, but not both happening at the same time. So, Predicti .
unless there's something unusual about this particular event, | think my reasoning holds. Alright, I think I've thought this through rediction :
\Lsuﬂlciemly. The answer is B: no yes

inal Prediction inal Prediction

B: no B: no

. /

Figure 11: An example from the 150 seed samples. The top section presents the video input and corresponding
counterfactual questions. The middle section compares QVQ and InternVL2.5-78B with CoT, using a dual-color
annotation scheme: blue indicates conceptual alignhment with manual sub-problem annotations, and green highlights
validated response components. The bottom section shows the final model predictions, with green checkmarks
indicating correct answers.
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