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Abstract

Large Language Models (LLMs) with extended
context windows promise direct reasoning over
long documents, reducing the need for chunk-
ing or retrieval. Constructing annotated re-
sources for training and evaluation, however,
remains costly. Synthetic data offers a scalable
alternative, and we introduce SynClaimEval,
a framework for evaluating synthetic data util-
ity in long-context claim verification—a task
central to hallucination detection and fact-
checking. Our framework examines three di-
mensions: (i) input characteristics, by vary-
ing context length and testing generalization
to out-of-domain benchmarks; (ii) synthesis
logic, by controlling claim complexity and er-
ror type variation; and (iii) explanation qual-
ity, measuring the degree to which model ex-
planations provide evidence consistent with
predictions. Experiments across benchmarks
show that long-context synthesis can improve
verification in base instruction-tuned models,
particularly when augmenting existing human-
written datasets. Moreover, synthesis enhances
explanation quality, even when verification
scores don’t improve, underscoring its potential
to strengthen both performance and explainabil-
ity.

1 Introduction

Extending the context window of large language
models (LLMs) to process thousands and millions
of tokens is a promising step toward building sys-
tems capable of comprehending long, complex
documents without relying on aggressive chunk-
ing or retrieval-based pipelines (Liu et al., 2025).
However, constructing datasets for both fine-tuning
and evaluating long-context LLMs remains labor-
intensive and costly, limiting scalability. Synthetic
datasets have emerged as a promising alternative
to manual annotation, enabling large-scale, low-
cost generation of training and evaluation data

∗Work done during an internship with Zillow.

(Viswanathan et al., 2025). Yet, in the long-context
setting, empirical findings remain mixed: some
studies report diminished or even negative effects
from synthetic long-context training (Gao et al.,
2024), while others demonstrate substantial gains
over weak long-context baselines (Pham et al.,
2025). These discrepancies highlight the need for
a systematic evaluation of synthetic data’s utility
in improving long-context reasoning. In this work,
we focus on evaluating long-context synthesis for
long-context claim verification task.

We pose the following research questions (RQs),
addressing both verification performance and ex-
planation quality. RQ1: How does synthetic long-
context training data affect downstream claim?
We study this question along two dimensions: (i)
the effect of context length on verification accu-
racy, and (ii) the impact of the source domain of the
synthetic data on out-of-domain verification bench-
marks. RQ2: How does synthesis logic affect
downstream claim verification? We study this
by varying error types in unverifiable claims and
claim complexity in verifiable ones. RQ3: Does
synthetic training improve the quality of model-
generated explanations? We examine whether
synthetic tuning improves explanation quality by
encouraging rationales that more consistently cite
relevant evidence from the input context.

We introduce SynClaimEval, an evaluation
framework for systematically evaluating the utility
of synthetic data in long-context claim verification
across the dimensions outlined in our research ques-
tions. Figure 1 provides an overview of the frame-
work. For RQ1, we vary training context length
by truncating source articles, while keeping evalua-
tion benchmarks untruncated as reference, and test
both within-domain and out-of-domain settings to
assess generalization. For RQ2, we manipulate the
logic of synthesis along two dimensions: complex-
ity, by conditioning on structured representations
that induce multi-hop reasoning, and error type,
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Figure 1: Overview of the SynClaimEval pipeline. The framework is designed to evaluate synthetic data along
three dimensions: (1) context length and domain effects, (2) claim generation logic, and (3) explanation quality.

by contrasting hallucinated (unverifiable) claims
with contradictory ones. For RQ3, we evaluate
explanation quality through pairwise ranking, ask-
ing whether rationales generated under different
synthesis strategies offer more support to the same
predicted label.

Our study yields five key insights: (i)
long-context synthesis enables base instruction-
following models to narrow the gap with stronger
models, though gains are not always consistent;
(ii) extending training contexts improves verifi-
cation performance; (iii) balancing contradictory
and unverifiable (hallucinated) errors yields larger
improvements than relying solely on unverifiable
errors; (iv) structured synthesis (e.g., multi-hop
reasoning) improves performance and generalizes
more effectively than unstructured approaches; and
(v) although verification gains are modest, synthe-
sis consistently improves explanation quality, inde-
pendent of verification accuracy improvements.

2 Related Work

Long-context Claim Verification Early work on
claim verification largely relied on natural language
inference (NLI) models such as BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and DeBERTa
(He et al.), which were limited to short contexts
(Kryscinski et al., 2020). To adapt these models for
longer inputs, prior approaches typically truncated
documents (Zha et al., 2023; Zhang et al., 2024) or
used retrieval-based strategies (Bishop et al., 2024).
More recently, advances in position interpolation
and extrapolation have enabled LLMs to process
extended contexts directly (Press et al.; Peng et al.),
motivating the development of long-context ver-
ification benchmarks. For example, Zhao et al.
(2024) introduced a financial benchmark where
even state-of-the-art models (e.g., Claude-3.5) fall

far behind human experts, while Karpinska et al.
(2024) proposed a benchmark for verifying claims
across fictional books. In this work, we address
long-context claim verification from a broader per-
spective: rather than targeting a specific domain,
we study how synthetic data derived from public
benchmarks can serve as effective tuning resources
that generalize across diverse long-context settings.

Synthetic Data in Claim Verification Claim veri-
fication can be framed as an entailment task, where
most widely used datasets are short-context and
human-authored across diverse domains (Bowman
et al., 2015; Williams et al., 2018). In contrast,
human-written long-context resources are scarce
and often domain-specific, such as legal contracts
Synthetic data has shown promise in extending ver-
ification tasks: for short contexts, Tang et al. (2024)
proposed two synthesis pipelines that augmented
existing NLI benchmarks, yielding performance
comparable to GPT-4o. Building on this, Lei et al.
(2025) demonstrated that generating claims from
context graphs improves over direct prompting, es-
pecially for multi-hop reasoning. Results in long-
context settings, however, remain mixed. Some
studies suggest that short-context synthesis is suffi-
cient for generalization to longer documents (Gao
et al., 2024; Bai et al., 2024), while others show
that in claim verification—particularly narrative
domains—long-context synthesis, often from com-
pressed document representations, yields stronger
results (Pham et al., 2025). In this work, we sys-
tematically explore long-context claim synthesis
with a strong LLM, evaluating unexplored dimen-
sions such as the effect of error types, varying claim
complexity, cross-domain generalization, and the
impact of synthesis on explanation quality.
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Row Content (verifiable-only examples)

Summary
(sinppet) The report examines the Senators’ Official Personnel and Office Expense Account (SOPOEA),

which funds staff salaries, travel, supplies, and other office costs.
The largest expenditure category is personnel compensation, which accounts for approximately

90% of total SOPOEA spending . Across selected fiscal years (2007, 2008, 2011, 2012),

spending categories are largely consistent and overall trends remain relatively stable .

There is still variation across spending categories and overall funding levels have decreased

or remained flat in recent years . The allocation formula depends on population and distance from
Washington, DC, and the Senate Appropriations Committee periodically adjusts SOPOEA limits to
emphasize transparency and prudent spending.

Unstructured claim Claim: Personnel compensation accounts for approximately 90% of total SOPOEA spending.

Context-graph
(entities & path) 3-Hop Path:

SOPOEA has_category−−−−−−−→ personnel_compensation accounts_for−−−−−−−→ 90% implies−−−−→ largest_category
Claim: Within SOPOEA, personnel compensation constitutes about 90% of total spending making
it the largest category.

Argument-graph
(roles & polarity) Chain: Claim ← Premise (opposes)

Generated Claim:
Personnel compensation consistently represents the largest expenditure category in SOPOEA

spending, accounting for approximately 90% of total expenditures,

despite variations in other spending categories and overall funding levels.

Table 1: Verifiable claims examples. Entities are bolded. Arguments are highlighted: Claim ,

Supporting Premise , Opposing Premise .

3 SynClaimEval

In this section, we describe the components of our
evaluation framework.

3.1 Preparing Claim Sources

Document Truncation For RQ1, we examine
how context length affects continual supervised
fine-tuning (SFT) with synthetic claims. To sim-
ulate different source configurations, each doc-
ument is truncated to a maximum length T ∈
{4,096, 8,192, 16,384} tokens. This design allows
us to directly compare models trained on shorter
versus longer contexts under identical evaluation
conditions, while preserving the integrity of the
source.
Compression-based Claim Synthesis. Follow-
ing CLIPPER (Pham et al., 2025), we synthesize
claims from compressed document representations
(summaries), which produce less noisy and more
cost-effective claims than generating directly from
full long-context inputs. We leverage GPT-4o to
generate a summary of no more than 1,000 words
by instructing the model to produce a concise ver-

sion of the truncated document. This compressed
summary then serves as the source for claim synthe-
sis. To account for domain-specific characteristics
in our synthesis sources, we design a dedicated
summarization prompt for each domain type1.

3.2 Claim Synthesis Strategies 2

We design a synthetic data generation pipeline
that produces claims varying along two key axes.
First, we control complexity: unstructured claims
are generated directly from the source text (sum-
maries), while structured claims require multi-
hop reasoning either across entities or across dis-
course/argument units in the context. Second, we
vary the error type, generating both unverifiable
claims that introduce hallucinated content and con-
tradictory claims that embed factual errors. Algo-
rithm 1 outlines the generic synthesis framework.
Unstructured Synthesis. We directly prompt the
LLM with (S,D) to generate verifiable claims
C+ ← fclaim(S,D). To generate error vari-

1Summarization prompts are provided in Appendix A
2We use GPT-4o as the synthesizer. All prompts are in B
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Algorithm 1 Generic Claim Synthesis Framework

1: Input: (Document D , summary S)
2: Extract structured representation I ←

fstruct(S)
3: if Unstructured mode then
4: I ← S
5: else
6: I ← fstruct(S)

extract structure from text
7: end if
8: Generate verifiable claims: C+ ← fclaim(I, S)

9: Generate unverifiable variants: Cu ←
funverif(I, S, C

+)
10: Generate contradictory variants: Cc ←

fcontrad(I, S, C
+)

11: Output: Synthetic set S =
{(D,C+), (D,Cu), (D,Cc)}

ants, we obtain unverifiable claims by Cu ←
funverif(C

+, D), which takes the verifiable claim
C+ and inserts plausible but unsupported facts
that are not grounded in D. Contradictory claims
are obtained by: Cc ← fcontrad(C

+, D), where
fcontrad applies common error transformations ob-
tained from the error taxonomy in (Mishra et al.;
Devaraj et al., 2022; Pagnoni et al., 2021). Namely
we include negation, entity errors, or discourse po-
larity reversal 3. Table 1, second row, shows an
example of generated unstructured verifiable claim
synthesized from the summary.
Context-graph Synthesis. Many claims in long
contexts require reasoning over entity relations
spanning multiple document segments. To sim-
ulate this, we follow the method in (Lei et al.,
2025) by constructing a context graph G = (V,E)
by prompting an LLM to extract entity–relation
triplets from summary S. We normalize triplets and
form non-branching connected components. From
G, we sample multi-hop paths πentity of length
up to k = 3 4. Verifiable claims C+ are gener-
ated by fclaim : (S, πentity) 7→ C+. Unverifiable
claims Cu are obtained by inserting unsupported
relations, while contradictory claims Cc are cre-
ated by corrupting existing edges (e.g., reversing
relation types). Table 1, third row, shows an exam-
ple of an extracted 3-hop path from the entities and
how they are aggregated into one single claim.

3Appendix C includes error types definitions and examples
4More hops do not yield further improvement

Argument-graph Synthesis. Building on prior
work in claim verification that leverages composite
evidence roles (Habernal et al., 2018), and recent
advances in argumentative LLMs that demonstrate
improvements in the explainability of verifiable
claims (Freedman et al., 2025), we extend these
insights to structured synthesis for long-context
verification. We introduce a synthesis strategy that
leverages argument graphs to capture multi-hop
argumentative reasoning. In this formulation, we
construct an argument graph A = (V,E), where
nodes V represent argumentative units (claims
or premises) and edges E encode polarity rela-
tions (supports, opposes). Argument roles are
extracted from S using an LLM-based argument-
mining prompt. From A, we then sample coher-
ent chains πarg that connect a central claim to its
supporting and/or opposing premises. This design
simulates claim synthesis that relies on reasoning
across multiple argumentative evidence, rather than
purely entity-based links, exposing models to more
discourse-level verification challenges. The remain-
der of the synthesis pipeline mirrors the context-
graph setup: given an extracted chain, we first gen-
erate a verifiable claim, which is then perturbed to
produce its unverifiable and contradictory variants.
Table 1, final row, shows an example of a gener-
ated claim based on two rhetorical roles where the
premise opposes the claim. The synthesized claim
is controlled to capture the relation between them,
yielding more complex claims at the sentence level.

3.3 Evaluating Explanations (RQ3)

We assess justification strength, i.e., how well an
explanation provides valid and sufficient evidence
from the context to support the predicted label.
Following Elaraby et al. (2024), we frame this
as a pairwise ranking task, comparing explana-
tions from different models or tuning strategies
against the untuned baseline. Given two expla-
nations (ei, ej) for the same claim and predicted
label l ∈ {True, False}, we use GPT-4o to judge
which better supports the decision. Each explana-
tion earns 1 point per win and 0.5 per tie:

si =
M∑

j=1
j ̸=i

I[ei > ej ] + 0.5
M∑

j=1
j ̸=i

I[ei = ej ],

where I denotes the judge’s preference. We report
average ranking scores across benchmarks.
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Variant Truncation Total Claims Verified (n) Unverified (n) Claim len (min/mean/max) Reasoning len (min/mean/max)

Unstructured
4k 14,074 2,815 11,259 6 / 23.17 / 187 13 / 31.83 / 100
8k 14,072 2,815 11,257 4 / 20.70 / 90 11 / 29.77 / 80
16k 14,072 2,815 11,257 5 / 23.41 / 102 12 / 31.78 / 87

Context-graph Synthesis
4k 8,403 2,793 5,610 7 / 32.46 / 124 17 / 46.85 / 99
8k 7,882 2,420 5,462 7 / 32.63 / 111 16 / 43.65 / 118
16k 8,421 2,803 5,618 7 / 32.71 / 148 16 / 46.82 / 110

Argument-graph Synthesis
4k 7,977 2,672 5,305 6 / 44.95 / 259 16 / 65.86 / 198
8k 6,156 2,048 4,108 5 / 44.06 / 208 10 / 58.64 / 140
16k 7,970 2,687 5,283 6 / 45.04 / 473 12 / 65.64 / 221

Table 2: Claim distribution and claim length statistics (in words) across all training synthesis strategies.

4 Datasets

4.1 Synthetic Sources

We construct our synthetic data from widely
used, publicly available long-context benchmarks:
PubMed (Cohan et al., 2018), GovReports (Huang
et al., 2021), MeetingBank (Hu et al., 2023), and
SQuality (Wang et al., 2022). These datasets were
selected to provide a diverse set of domains, en-
abling us to evaluate the utility of synthesis across
varied and openly accessible benchmarks. We
uniformly sampled 900 documents from the four
datasets, ensuring no overlap with those included in
our test benchmarks. Of these, 600 5 serve as train-
ing sources, while the remaining 300 are reserved
to construct an in-domain synthetic test set.
Filtration and Truncation. For both training and
testing sources, we exclude documents < 1024
tokens. We then apply the pipeline in §3.1. Trunca-
tion is applied only to training sources to simulate
the effect of context length on benchmarks, while
test documents are preserved in their full length.
Obtaining Synthetic Training. We apply both
unstructured and structured synthesis strategies as
described in §3.2. For each strategy, we sample an
equal number of verified and unverified claims to
ensure balanced supervision. To study the impact
of error type, we construct two parallel training sets
for each synthesis strategy: (1) an unverified-only
set, where all negative pairs correspond to unveri-
fied errors, and (2) a diverse-error set, where nega-
tive pairs are evenly split between unverified errors
(hallucinations) and contradictory errors (balanced
across contradiction types). This design allows us
to isolate the effect of different error distributions
on model training. Table 2 summarizes statistics
for the synthetic training datasets across synthesis
strategies. Unstructured synthesis yields the largest
number of claims, since generating contradictory

5Comparable training source sizes are also used in (Pham
et al., 2025)

variants naturally increases error diversity. Trunca-
tion has only a minor effect on claim counts and
lengths, reducing the risk of confounds when an-
alyzing truncation during fine-tuning. In contrast,
structured synthesis produces longer claims and
reasoning spans, reflecting our design choice to
encourage more complex, multi-faceted examples.
Quality of Generated Claims 6 We employed
three annotators to validate the quality of syn-
thetic claims, ensuring no confounding errors from
the synthesis process. From the 4k unstructured-
context set (avoiding longer contexts for efficiency),
we sampled 540 claims evenly across types (180
verifiable, 180 unverifiable, 180 contradictory)
7. Annotators checked each claim’s assigned la-
bel against its source context, yielding agreement
rates of 97.22%, 97.77%, and 99.16% for verifi-
able, unverifiable, and contradictory claims, respec-
tively—demonstrating the high purity of our syn-
thetic pipeline.

4.2 Evaluation Benchmarks

We evaluate fine-tuning on both synthetic test sets
from SynClaimEval, aligned with the training dis-
tributions, and on publicly available long-document
benchmarks with claim- or statement-level support
annotations.
SynClaimEval We applied the unstructured syn-
thesis pipeline to 300 source documents that were
not part of training or any publicly available bench-
mark. We deliberately avoided constructing a struc-
tured synthesis test set in order to assess whether
models trained on structured claims can generalize
to unstructured settings, where the error distribu-
tion differs. In total, we generated 2,500 claims
evenly distributed across the labels: verified, unver-
ified, negation, entity error, and discourse error.

6Automatic quality evaluation of synthetic claims is in D
and of synthetic explanations in E

7Annotators only disagreed on 14 samples out of the 540
IAA = 0.991%
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UniSummEval 8 (Wang et al., 2022)is a summariza-
tion evaluation benchmark constructed from widely
used long-context datasets: PubMed, GovReports
, MeetingBank, SQuality, and MediaSumm. Each

Benchmark # Pos. # Neg. Claim len. Context len.

SynClaimEval (Test) 500 2000 6/22/76 54/4921/31923
UniSummEval 4897 402 2/23/97 293/3903/10462
FinDver 350 350 11/38/87 4160/39866/69724

Table 3: Statistics of included test benchmarks.

summary sentence is annotated with a binary la-
bel indicating whether it is fully supported by the
input context. The benchmark covers both short-
and long-context documents; in this work, we fo-
cus exclusively on the "long" subset, yielding
5,299 sentence–document pairs. Our motivation
for using UniSummEval is to evaluate models tuned
on SynClaimEval against a large, multi-domain
benchmark that shares the same document charac-
teristics as training, but differs in downstream task
framing.

FinDVer 9 (Zhao et al., 2024)is a long-context fi-
nancial document benchmark in which claim veri-
fication requires reasoning across multiple sections
of a document. Verifying these claims often entails
identifying and correctly interpreting the relevant
evidence within the text. We use the test-mini split,
which contains 700 long financial reports paired
with annotated claims and their corresponding rea-
soning. Our motivation for including FinDVer is
to test SynClaimEval on more complex and out-
of-domain long-context benchmarks where long
context LLMs are known to struggle to verify the
claims against them.

Table 3 summarizes the overall statistics of the
included test beds. For our in-domain synthetic test
set, the average claim length is comparable to that
of the UniSummEval benchmark, which is expected
given the shared source domains used for synthesis.
Among the public benchmarks, FinDver contains
the longest documents on average, a characteris-
tic that is reflected in its relatively longer claims.
In contrast, UniSummEval shows a strong skew to-
ward positive claims, which is unsurprising since
its claims are derived from sentences in generated
summaries—a task where LLMs have been shown
to perform strongly (Chang et al.).

8https://github.com/DISL-Lab/UniSumEval-v1.0
9https://github.com/yilunzhao/FinDVer
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5 Experimental Setup

5.1 Models and Prompting

We evaluate long-context LLMs with
>120k token capacity, including proprietary
(GPT-4o, GPT-4o-mini) and open-weight
(LLaMA-3.1-8B-Instruct (LLaMa) (Grattafiori
et al., 2024), Qwen-2.5-7B-Instruct (Qwen)
(Yang et al., 2024), interpolated linearly from
32k→128k). For both inference and tuning, we
use the BeSpoke prompt from MiniCheck (Tang
et al., 2024), which requires a binary decision
(yes/no) and a free-text explanation; decoding
temperature is fixed to 0.

5.2 Continual Fine-tuning

Continual SFT is performed with QLoRA (Dettmers
et al., 2023) (4-bit, rank=16, α = 32), training each
model for two epochs.10 As a baseline, we fine-
tune on 16892 human-written samples from ANLI
(Nie et al., 2020), following prior work showing
short-context tuning may transfer to long contexts
(Grattafiori et al., 2024; Gao et al., 2024) and to

10Larger ranks/α offered no gains.
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measure utility of synthetic long context datasets
against human written short ones. For synthetic
tuning, we construct 4k balanced pairs (2k verified,
2k unverified), split 85/15 into train/validation. We
also evaluate hybrid settings that augment ANLI
with synthetic data, extending strategies effective
in short-context verification (Tang et al., 2024).

6 Results and Analysis

6.1 RQ1: Context Length and Domain
Generalization

Context Length. We first isolate the effect of in-
put length by truncating source documents, hold-
ing synthesis complexity fixed through the unstruc-
tured variant. Figure 2 shows that for both LLaMA
and Qwen, expanding the context window consis-
tently improves verification performance. This pat-
tern is consistent with prior findings (Pham et al.,
2025), which similarly reported that longer con-
texts yield stronger supervision for claim verifica-
tion. In subsequent experiments, we therefore fix
the training context length at 16k to focus on the
effect of synthesis complexity (RQ2).
Generalization Figure 2 On in-domain and
near-domain tests (SynClaimEval, UniSummEval),
LLaMA shows clear gains at 16k over its non-tuned
baseline, whereas Qwen underperforms its already
strong baseline, which outperforms LLaMA across
all benchmarks. This suggests that unstructured
synthesis can help weaker models narrow the gap
but provides limited benefit for models that already
perform well. We further investigate whether more
complex claims improve generalization in RQ2.

6.2 RQ2: Error types and synthesis logic

Effect of Error Types. Figure 3 shows that, across
benchmarks and models, incorporating diverse er-
ror types generally improves verification scores
compared to using only unverifiable errors, with
the sole exception of SynClaimEval on Qwen. This
underscores the value of error-type variation during
tuning for enhancing model robustness.
Complexity of claims Table 4 shows that introduc-
ing structure into synthesis further shapes model be-
havior. For LLaMA, structured variants outperform
unstructured ones: context-graph synthesis yields
moderate improvements, while argument-graph
synthesis delivers the strongest results, atleast at
lower context sizes. This ordering—argument-
graph > context-graph > unstructured—highlights
the benefit of conditioning on richer discourse and
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Model / Setting SynClaimEval F1 UniSummEval F1 FinDver F1

Baselines (Proprietary)
GPT-4o 0.97 0.71 0.81
GPT-4o-mini 0.93 0.71 0.74

Baselines (Open-weight)
LLaMA-3.1-8B 0.77 0.67 0.55
Qwen-2.5-7B 0.86 0.67 0.66

Unstructured synthesis
LLaMA-3.1-8B 0.77 0.66 0.50
LLaMA-3.1-8B 0.79 0.66 0.58
Qwen-2.5-7B 0.82 0.70 0.61
Qwen-2.5-7B 0.82 0.69 0.62

Context-graph (structured)
LLaMA-3.1-8B 0.79 0.69 0.52
LLaMA-3.1-8B 0.78 0.68 0.57
Qwen-2.5-7B 0.82 0.70 0.61
Qwen-2.5-7B 0.81 0.70 0.62

Argument-graph (structured)
LLaMA-3.1-8B 0.82 0.62 0.58
LLaMA-3.1-8B 0.79 0.66 0.57
Qwen-2.5-7B 0.79 0.69 0.60
Qwen-2.5-7B 0.79 0.70 0.60
Blended Synthetic dataset with and without ANLI
LLaMA-3.1-8B 0.72 0.65 0.61
LLaMA-3.1-8B 0.81 0.64 0.63
LLaMA-3.1-8B 0.82 0.64 0.65

Table 4: Performance across benchmarks in F1.
Underline = fine-tuned improvements; Italics = best

among LLaMA rows. Diverse errors ,

ANLI only tuning , ANLI + synthetic mix indicate
the type of row.

argumentative structure. In contrast, Qwen again
shows limited variation across synthesis strategies,
suggesting that structural supervision is more valu-
able for weaker models that lack strong baseline
verification ability.
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Figure 4: Pairwise supportiveness ranking of explanations across benchmarks. Colors denote synthesis type (Base,
Unstructured, Context-graph, Argument-graph). Higher scores indicate stronger judged quality.

Mixing Synthesis Strategies. We evaluate strat-
egy mixing on LLaMA, the model that benefited
most from synthesis. Table 4 shows that combining
strategies yields higher performance than any sin-
gle strategy, particularly on FinDver (0.63 F1) and
SynClaimEval (0.81), while UniSummEval shows
a slight drop. We hypothesize that this decline
reflects differences in average context length, as
both SynClaimEval and FinDver consist of longer
inputs.
Using Synthesis for Augmentation. Table 4 , last
3 rows, shows that augmenting the mixed strat-
egy with ANLI yields the strongest overall results,
reaching 0.82 F1 on SynClaimEval and 0.65 on
FinDver. These scores surpass tuning with ANLI
or synthetic data alone, underscoring the benefits of
synthetic claims as complementary augmentation.

6.3 RQ3 Impact on generated explanations

We apply the ranking formula from §3.3 to all syn-
thesis variants. Figure 4 shows that for LLaMa, a
consistent ordering emerges across all four bench-
marks: argument-graph > context-graph > un-
structured > base model. The highest ranking
scores are obtained by the argument-graph vari-
ants with 16k context length, followed by context-
graph based synthesis, while unstructured synthesis
trails behind. This ordering mirrors our quantita-
tive results, reinforcing the finding that structured
synthesis—particularly when applied with longer
contexts—is more beneficial than either unstruc-

tured synthesis or no finetuning 11 . By contrast,
the trends for Qwen differ. Here, only argument-
graph synthesis yields clear improvements over the
base model, while context-graph synthesis shows
limited gains and unstructured synthesis consis-
tently ranks lowest. This divergence suggests that
while synthetic tuning can enhance both prediction
scores and explanation quality, its impact depends
strongly on the underlying model family. Taken
together, these findings highlight both the promise
and the limitations of synthetic data: structured syn-
thesis can promote more supportive rationales, but
its benefits are not uniformly transferable across
architectures.

7 Conclusion and Future Work

We introduced SynClaimEval, a framework for
evaluating the utility of synthetic data in long-
context claim verification. By disentangling three
dimensions—context length, synthesis logic, and
explanation quality—we found that synthetic fine-
tuning can improve verification accuracy, partic-
ularly under structured synthesis settings that ex-
pose models to more complex claims, though these
gains are not always consistent. Beyond accu-
racy, synthetic data proves valuable as an aug-
mentation to human-written claims and more reli-
ably enhances explanation quality, especially with
argument-graph synthesis. Looking forward, ap-

11Illustrative examples of generated rationales are provided
in Appendix F.
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plying SynClaimEval to more diverse and domain-
specific settings, and combining synthetic with
human-annotated data, will be key to understanding
the broader impact of synthetic training on long-
context reasoning.

Limitations

Our study evaluated several long-context synthe-
sis strategies for claim verification, but important
limitations remain. First, we relied on widely avail-
able public datasets as synthesis sources. While
this choice ensures reproducibility, it also risks
overlap with model pretraining corpora. Future
work should incorporate more diverse and domain-
specific sources to better probe generalization and
reduce contamination effects. Second, we re-
stricted training to supervised fine-tuning (SFT).
Exploring alternative paradigms—such as rein-
forcement learning or domain-adaptive pretrain-
ing—could reveal different trade-offs between gen-
eralization and explanation quality. Third, we lim-
ited our experiments to parameter-efficient tuning;
extending the framework to full-parameter tuning
may yield additional insights. Fourth, scaling syn-
thesis to more challenging domains (e.g., scientific,
legal, or financial texts where LLMs often struggle)
would clarify how task complexity mediates the
benefits of synthetic data. Finally, our explanation-
quality assessment relied on LLM-based judges,
which, while cost-effective, may introduce biases.
Complementing them with human evaluation re-
mains an important direction.

Ethics Statement

This work relies exclusively on publicly available
datasets for both synthesis and evaluation, which
minimizes risks of handling sensitive or private in-
formation. Nevertheless, synthetic data generation
may inadvertently amplify biases present in the un-
derlying sources or in the language models used for
synthesis. We attempt to mitigate this by sampling
from diverse domains and by analyzing multiple
synthesis strategies, but acknowledge that residual
bias may remain.
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A Summarization Prompts

Table 5 presents the domain-specific summariza-
tion prompts used to compress inputs from various
domains to generate synthetic data. Each template
is tailored to the conventions of its source domain
(e.g., government reports, meeting transcripts, sci-
entific articles, or books), while enforcing common
constraints such as conciseness, professional tone,
and length limits.

B Claim Synthesis Prompts

B.1 Unstructured Synthesis

Table 6 presents the prompts used to generate veri-
fiable, unverifiable (hallucination-based), and con-
tradictory claims. To ensure a strict 1:1 mapping
across verification types, we first synthesize verifi-
able claims and then apply corruption procedures
to derive their unverifiable and contradictory coun-
terparts.

B.2 Context-graph Synthesis Prompts

Table 7 presents the prompt used to extract entity
triplets from the input document. Building on these
outputs, Table 8 provides the synthesis prompts for
generating verifiable, unverifiable, and contradic-
tory claims, each of which consumes the extracted
entities as input.

B.3 Argument-graph Synthesis Prompts

Table 9 shows the prompt for extracting argument
roles—claims and premises—along with their
support/oppose relations. These roles are assem-
bled into an argument graph, from which connected
chains are sampled and passed to the synthesis
prompts in Table 10.

C Error types definitions

Table 11 outlines the error granularities considered
when synthesizing unverified claims.
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D GPT-4o Evaluation of Claim Synthesis

Table 12 captures the quality of synthetic claims
across different dataset and context length. We
pass the generated claim along with relevant docu-
ment and leverage GPT-4o as a judge to understand
the quality of generated data measured in terms of
accuracy

E Evaluating the quality of synthetic
explanations

Quality of generated explanations Following
(Pham et al., 2025) which evaluated informative-
ness/faithfulness of the CoT through grounding
each step to the input, we evaluate how well gen-
erated explanations remain grounded before and
after synthesis. We decompose each explanation
into atomic facts with GPT-4.1, and we compute
the proportion of those facts that can be verified
against the original context across all synthetic
strategies. We sample 100 generated explanations
from each synthetic strategy from the verifiable
label. At the 4k truncation level, unstructured
synthesis achieved 86.12% verified units, context-
graph synthesis achieved 80.72%, while argument-
graph synthesis attained the highest verification
rate at 93.57%. At the 16k truncation level, un-
structured (89.39%) and context-graph (88.32%)
synthesis improved compared to their 4k counter-
parts, though argument-graph synthesis remained
strong (91.11%). These numbers are in the same
range with prior findings of synthetic CoT faith-
fulness described in (Pham et al., 2025), which
showed benefits of synthetic claim generation.

Table 13 shows the prompts for extracting
atomic claims from model generated reasoning jus-
tifying the final judgment. Once the atomic claims
are extracted Table 14 shows the prompts used
to evaluate the correctness of the atomic fact and
finally evaluated the quality of CoT reasoning used
for training the models

F Reasoning Output

Table 16 shows the comparison of model-
generated explanation under different synthesis
strategies and help understand the impact complex
synthesis strategies like Argument-Graph has on
model-generated explanations.
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Domain Prompt Template

GovReports Your task is to write a concise, structured summary for the government report below.
Organize your summary into multiple paragraphs. Use a clear, professional tone. Keep
the total length under 1000 words. Do not include the full report title in your
summary—refer to it generically as “the report.”
Report
{input_text}
Summary:

MeetingBank Your task is to produce a concise, structured “mini” summary of the meeting transcript
below (e.g., as in MeetingBank). Treat the summary as a compact representation that
captures all essential discussion points and outcomes.
Additional requirements:
- Keep the summary under 1000 words.
- Do not include verbatim transcript excerpts—paraphrase in your own words.
- Use consistent terminology (e.g., refer to “Project X” the same way throughout).
Transcript
{input_text}
Summary:

PubMed Your task is to write a concise, structured “mini” version of the scientific document
below. Treat the summary as a compact version of the input that retains all critical
content.
Additional requirements:
- Organize the summary into multiple paragraphs.
- Use full technical names on first mention, then acronyms thereafter.
- Keep the summary under 1000 words.
- Do not include the document’s title or citation details—focus only on content.
- Ensure the summary reads as a true “mini” of the input, condensing its essence
into a coherent, readable format.
Document
{input_text}
Summary:

SQuALITY / Books Your task is to write a summary for the book below. Include vital information about
key events, backgrounds, settings, characters, their objectives, and motivations.
Introduce characters (with full names), places, and other major elements on
first mention. The book may feature non-linear narratives (flashbacks, alternate
worlds/viewpoints). Organize the summary into a consistent, chronological narrative.
The summary must be under 1000 words, span multiple paragraphs, and be written as a
single continuous narrative (no bullet lists or outlines). Do not include the book
name in the summary.
Book
{input_text}
Summary:

Table 5: Summarization prompt templates used for synthetic data generation across four domains. Each template
specifies domain-specific constraints and formatting requirements, while maintaining consistency in output length

and style. Replace {input_text} with the source document.
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Synthesis Type Prompt Template

Verified You are given a document. Your task is to extract a list of {num_claims} factual claims
from the document.
Each claim must: - Be a complete, standalone statement that can be independently
verified. - Be factual, atomic, clear, and concise. - Be grounded in the document (no
hallucinations). - Be diverse (avoid closely related claims).
For each claim, provide reasoning showing why it is factual and supported.
Return only the following format:
<BEGINFACT>Factual statement<ENDFACT> <BEGINREASONING>Explanation<ENDREASONING>
Document: {input}

Unverifiable You are given a factual claim from a document. Generate a plausible but unverifiable
variant.
It must: - Sound realistic and grammatically correct. - Be related to the topic but
include unverifiable information. - Not be explicitly contradictory.
Output only:
<BEGINUNVERIFIABLE>Unverifiable claim<ENDUNVERIFIABLE> <BEGINUNVERIFIABLEREASON>Reason
why unverifiable<ENDUNVERIFIABLEREASON>
Document: {document} Claim: {factual_claim}

Contradictory You are given a factual claim. Generate a corrupted version using a specific error type:
{error_type}.
Error types: - negation (flip polarity) - entity_relation (swap/alter entities or
relations) - discourse (flip cause–effect or misattribute support)
If not feasible, return <NOT_POSSIBLE>.
Output only:
<BEGINFALSIFIED>Falsified claim<ENDFALSIFIED> <BEGINFALSEREASON>Reasoning<ENDFALSEREASON>
<BEGINERRORTYPE>{error_type}<ENDERRORTYPE>
Document: {document} Factual Claim: {factual_claim}

Table 6: Unstructured claim synthesis prompts. Each synthesis type is shaded for clarity: Verified , Unverifiable ,
and Contradictory . Placeholders {} are replaced with inputs during generation.

Document→ Entity Triples Extraction Prompt

Given an article, go over every sentence and extract triples in the form: (entity <TUPLEDELIM> entity
<TUPLEDELIM> short description of the relation).
Group triples with the same entity together. Separate groups using <GROUPDELIM>.
Provided Sentences: {input}
Groups of Triples in Provided Document:

Table 7: Prompt for extracting entity–entity–relation triples from a document (Document→ Entities step).
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Context-Graph Synthesis Type Prompt Template

Verified (uses given entities) You are given a document. Write a single factual claim that must
mention all of the following entities:
Entities: {entities}
Then provide a brief explanation grounded in the document.
Output exactly:
<BEGINFACT>Your factual claim using all entities.<ENDFACT>
<BEGINREASONING>Why the claim is factual and supported by the
document.<ENDREASONING>
Document: {input}

Unverifiable Variant (same entities) You are given a factual claim involving the entities {entities}.
Generate a plausible but unverifiable variant that introduces at
least one relationship not verifiable from the document (avoid
explicit contradiction).
Output exactly:
<BEGINUNVERIFIABLE>Unverifiable claim with the same
entities.<ENDUNVERIFIABLE>
<BEGINUNVERIFIABLEREASON>This claim ... (explain why unverifiable
without referencing the original claim).<ENDUNVERIFIABLEREASON>
Document: {document}
Claim: {factual_claim}
Entities: {entities}

Contradictory Variant (same entities) You are given a factual claim involving the entities {entities}.
Generate a contradictory variant by flipping or corrupting at least
one relationship among these entities (keep entities unchanged).
The new claim must be contradicted by the document (not merely
unverifiable).
Output exactly:
<BEGINFALSIFIED>Contradictory claim with the same
entities.<ENDFALSIFIED>
<BEGINFALSEREASON>This claim ... (explain why contradicted, citing
the corrupted relationship).<ENDFALSEREASON>
Document: {document}
Claim: {factual_claim}
Entities: {entities}

Table 8: Context-graph (structured) claim prompts. Row colors indicate type: Verified , Unverifiable , and
Contradictory . The triple-extraction step is omitted here for space; this table assumes entities are already provided.

Argument Graph Extraction Prompt (Document→ Argument Graph)

Given a passage, extract its argument structure by identifying claims, premises, and the relation
between each premise and its claim (supports or opposes).
A claim is the main assertion. A premise is a reason/evidence that supports or opposes the claim.
For each claim, list all connected premises with their relation.
### Output Format (repeat per group): <BEGIN_GROUP_CLAIM> <STARTCLAIM>The claim goes here<ENDCLAIM>
<STARTPREMISE>Premise text<STARTRELATION>supports or opposes<ENDRELATION><ENDPREMISE> ... (repeat
premise blocks as needed) <END_GROUP_CLAIM>
Only include relations explicitly inferable from the passage. Do not include general facts, summaries,
or hallucinated reasoning.
Input: {input_text}

Table 9: Prompt for constructing an argument graph from a document (claims, premises, and support/oppose
links).
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Argument-Graph Synthesis Type Prompt Template

Verified (from argument chain) Given an argument chain (a central claim with connected premises
and their relations: supports/opposes) and the reference document,
generate one concise, overarching factual claim that synthesizes
the core argument. Integrate both supporting and opposing premises
faithfully.
Provide a brief, document-grounded explanation.
Output exactly: <BEGINFACT>Your factual claim synthesizing the
chain.<ENDFACT> <BEGINREASONING>Why the claim is factual, grounded
in the document.<ENDREASONING>
Document: {input} Argument Chain: {argument_chain}

Unverifiable (from argument chain) Given an argument chain and the reference document, generate
one plausible claim that integrates the chain but introduces an
unverifiable detail (cannot be confirmed from the document; avoid
contradiction).
Then explain why it is unverifiable (identify the unconfirmed part).
Start reasoning with “This claim...”.
Output exactly: <BEGINUNVERIFIABLE>Your unverifiable, chain-based
claim.<ENDUNVERIFIABLE>
<BEGINUNVERIFIABLEREASON>This claim ... (why unverifiable, based on
what is missing/uncertain in the document).<ENDUNVERIFIABLEREASON>
Document: {document} Argument Chain: {argument_chain}

Contradictory (flip relation in chain) Given an argument chain and the reference document, generate one
concise claim that falsifies the original argument by incorrectly
flipping at least one premise relation (treat a supporting premise
as opposes, or vice versa). The result must be contradicted by the
document (not merely unverifiable).
Then explain why it is falsified, citing the misrepresented
relationship.
Output exactly: <BEGINFALSIFIED>Your falsified claim that flips
a support/oppose relation.<ENDFALSIFIED> <BEGINFALSEREASON>Why this
claim is contradicted (what relation was flipped and how the document
disagrees).<ENDFALSEREASON>
Document: {document} Argument Chain: {argument_chain}

Table 10: Argument-graph (structured) claim prompts spanning two columns. Row colors indicate type: Verified ,
Unverifiable , Contradictory . This table assumes the argument graph has been extracted using Table 9.

Error Type Definition / Transformation Strategy

Unverifiable Produce a claim that sounds plausible but
cannot be verified from the source (e.g.,
by introducing unverifiable details while
avoiding explicit contradiction).

Negation Flip the polarity of the claim to create a
false statement (e.g., “X occurred”→ “X
did not occur”).

Entity-Relation Corrupt entities or their relationships,
such as swapping subject/object roles,
misattributing actions, or replacing enti-
ties with plausible but incorrect ones.

Discourse Corrupt the logical structure of the claim,
e.g., flipping cause–effect, reversing claim
and evidence, or misrepresenting sup-
port/oppose relations.

Table 11: Error types used in synthetic claim generation. Red rows denote contradictory error types, while
unverifiable errors add uncertainty without explicit contradiction.
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Dataset Length No Error Unverifiable Negation Entity Rel. Discourse

GovReport 4k 0.88 0.86 0.98 0.82 0.86
16k 1.00 0.92 1.00 0.80 0.72

SQuALITY 4k 0.92 0.94 0.96 0.88 0.86
16k 0.96 0.92 1.00 0.86 0.78

MeetingBank 4k 0.96 0.80 0.98 0.76 0.80
16k 0.92 1.00 1.00 0.84 0.76

PubMed 4k 0.96 0.90 1.00 0.80 0.76
16k 1.00 0.94 0.98 0.96 0.84

Table 12: GPT-4o evaluation accuracy of synthetic claims under 4k vs 16k unstructured settings, reported per
dataset and error type.

Prompt Content

Atomic Fact Extraction (Split Reasoning) ## Task Description
You will be given an explanation statement. Your task is to
extract a set of atomic facts—statements that can be directly
inferred from this explanation without interpretation, additional
assumptions, or redundancy.

## Guidelines:
- Extract only explicitly stated atomic facts in the explanations.
- Do not repeat facts or include any that require external
knowledge.
- Maintain granularity: Each fact should be minimal yet complete.
- Structure your output as a valid list of facts, one fact per
line. Do not include any additional text or formatting.
- Each summary has at least 1 atomic fact.

–
## Example Output Format
"First atomic fact"
"Second atomic fact"
"Third atomic fact"
–

## Input
Explanation:
{explanation}

–
## Output
(List Only)

Table 13: Split-reasoning prompt for extracting atomic facts from an explanation. Replace {explanation} with the
input text.
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Prompt Content

Atomic Fact Support Evaluation (yes/no) ## Task Description
You are given an atomic fact and a context.
Your task is to determine whether the fact is fully supported by
the context.

## Guidelines:
- A fact is supported only if all of its information is explicitly
confirmed by the context.
- If any part of the fact is missing, contradicted, or not stated
in the context, mark it as not supported.
- Respond with only: yes (fully supported) or no (not fully
supported).

–
## Input
Context:
{context}

Fact:
{fact}

–
## Output (yes/no only)

Table 14: Prompt for evaluating whether an atomic fact is fully supported by a given context. Replace {context}
and {fact} with inputs.

Prompt Content

Reasoning Ranking The true label is ’{label}’. Both explanations aim to justify this decision.

1) {r1}
2) {r2}

Which explanation is more detailed and supportive? Reply with ’1’, ’2’, or ’equal’.

Table 15: Prompt for pairwise reasoning ranking: given a gold label and two competing explanations, the judge
selects which explanation is more detailed and supportive.

Model / Setting Generated Reasoning (Label = No)

Base Model The claim is inconsistent with the document.

Unstructured The claim is inconsistent with the document. The document states that OSG is exploring opportunities in
transporting liquified CO2.

Context-Graph The claim is inconsistent with the document. The document states that OSG is exploring opportunities in
transporting liquified CO2, which is relevant to maritime innovations and aligns with the company’s strategy
to participate in emerging markets for energy and liquid bulk commodities. However, the claim incorrectly
suggests that all revenue from maritime innovations is allocated to sectors outside the maritime industry,
which contradicts the document’s statement that OSG is actively pursuing such opportunities.

Argument-Graph The claim is inconsistent with the document. The document states that OSG is exploring opportunities in
transporting liquified CO2, which is a natural next step into an emerging market, consistent with OSG’s
expertise with liquid cargoes. However, it does not mention that all revenue is allocated to sectors outside
maritime innovations. The document highlights that OSG is seeking opportunities to increase scale and
drive cost efficiencies through a disciplined approach to investment in core and adjacent asset classes to
maximize return on capital across market cycles. This includes the recent acquisition of the Alaskan
Frontier and the planned life cycle upgrades on the four Alaska class vessels, which are expected to improve
performance and fuel efficiency, leading to a meaningful reduction in carbon output. Additionally, the
document mentions that OSG is committed to acting in the best interests of its stockholders and is carefully
considering Saltchuk Resources’ indication of interest to acquire all outstanding shares of OSG’s common
stock that Saltchuk does not own for $6.25 per share in cash. The document does not provide any
information about revenue allocation outside the maritime sector.

Table 16: Comparison of model-generated explanations under different synthesis strategies (label = No). Structured
synthesis produces longer, more detailed rationales that incorporate specific evidence.
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