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Abstract

Code documentation plays a vital role in en-
hancing collaboration, maintainability, and
comprehension throughout the software devel-
opment lifecycle. This becomes especially crit-
ical in legacy codebases, where missing or out-
dated comments hinder effective debugging
and onboarding. Among documentation types,
inline comments are particularly valuable for
conveying program logic and supporting code
reuse. With the growing capabilities of large
language models (LLMs), their application to
tasks such as code understanding and summa-
rization has gained significant attention in the
NLP community. However, the specific task of
generating high-quality inline code comments
using LLMs remains relatively under-explored.
In this work, we conduct a systematic evalua-
tion of several state-of-the-art LLMs to assess
their effectiveness in producing meaningful and
context-aware inline documentation. To this
end, we curate a dataset of well-documented
code snippets and propose a fine-grained evalu-
ation framework that assesses both the quality
and sufficiency of generated comments at the
statement level. We further investigate the im-
pact of prompting strategies and offer a com-
parative analysis across a range of models, in-
cluding large foundational LLMs to smaller,
code-specialized variants, within the domain
of inline code documentation. Our findings
offer actionable insights that can guide the de-
velopment of effective and scalable systems for
automated inline code documentation.

1 Introduction

Good quality code documentation is essential for
the sustainability, readability, and maintenance of
software projects. It facilitates onboarding, reduces
the learning curve, and accelerates time-to-market.
Inline and block comments are particularly impor-
tant as they summarize code sections, explain as-
sumptions, and describe control flow, thereby im-
proving interpretation of software modules. How-

ever, writing rich, developer-level documentation
requires significant time and effort, often reduc-
ing developer productivity. Xia et al. (2018) in
their study show that developers spend nearly 59%
of their time on program comprehension during
software development, underscoring the need for
automated tools to improve efficiency through high-
quality inline comments.

Large Language Models (LLMs) have demon-
strated strong performance in code-related tasks,
benefiting from training corpora enriched with mul-
tilingual programming data. While they show
promise in generating summaries and function-
level comments, systematic evaluation of their ca-
pabilities for producing meaningful inline com-
ments remains limited. Such evaluation must assess
not only comment quality but also whether com-
ments are added to the necessary sections of the
code without compromising its readability.

In this paper, we investigate the ability of LLMs
to generate inline comments using a curated dataset
of developer-written code snippets. Starting from
The Vault corpus Nguyen et al. (2023), we derive
a filtered dataset of functions with inline comments
and evaluate multiple LLMs under zero-shot and
few-shot prompting. We emphasize balancing com-
ment quality and coverage, proposing an algorith-
mic approach that quantifies semantic alignment
and sufficiency via an optimal comment-to-code
ratio.

We address the following research questions
through systematic experimentation:

• RQ1: How well do LLMs generate inline
comments that align with developer-written
standards in terms of semantic quality?

• RQ2: Can smaller, code-specialized models
match the performance of larger foundational
models in inline comment generation?

• RQ3: What role do prompting strategies play
in enhancing comment quality?

This work contributes to the understanding
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of inline comment generation through: (1) a
language-agnostic evaluation framework that de-
rives ICscore, a metric capturing semantic align-
ment and coverage of block-level comments; (2) a
benchmarking study across foundational and code-
specialized LLMs using ICscore; and (3) an anal-
ysis of prompting strategies, comparing zero-shot
and few-shot setups to assess their impact on com-
ment quality and guide prompt design for code
documentation.

2 Related Work

Several prior studies have investigated the capa-
bilities of NLP models in generating inline code
comments. Huang et al. (2023) present an empir-
ical comparison between method-level and inline
comments, revealing a notable decline in model per-
formance when generating inline comments. Their
findings underscore the inherent difficulty of this
task, attributed to the need for fine-grained contex-
tual understanding, and motivate the development
of more context-aware and adaptable generation
methods.

More recent work has focused on leveraging
large language models (LLMs) for code documen-
tation, primarily at the function or module level.
Dvivedi et al. (2024) evaluate both proprietary and
open-source LLMs across multiple documentation
granularities, while Sun et al. (2025b) examine
how varying the context window affects the qual-
ity of generated documentation. Bappon et al.
(2024) specifically target inline comment gener-
ation for code snippets from Q&A platforms like
Stack Overflow, demonstrating that enriching the
input with additional context improves comment
quality. However, these studies rely exclusively on
human evaluation for assessing the quality of gen-
erated comments. With the growing availability of
well-documented code in large-scale repositories
and community-curated platforms, evaluation set-
tings that include high-quality ground truth are be-
coming increasingly common. Yet, existing work
does not propose automated metrics to assess se-
mantic sufficiency or coverage in such contexts - a
gap this work directly addresses.

The evaluation of LLMs for code summarization
has also received considerable attention. Studies
such as Geng et al. (2024), Szalontai et al. (2024)
and Sun et al. (2025a) benchmark models of vary-
ing scales, from compact code-specialized mod-
els to large foundational LLMs, under different

in-context learning setups. These evaluations typi-
cally rely on surface-level metrics such as BLEU,
ROUGE, or METEOR, or use model-based scor-
ing for contextual relevance. While informative for
summarization tasks, these approaches overlook
the dual challenge of semantic adequacy and cover-
age that is central to inline comment generation.

Notably, some of recent analyses have also ques-
tioned the reliability of standard metrics. Haldar
and Hockenmaier (2024) demonstrate that scores
often reflect superficial token overlap rather than
genuine semantic understanding, while Song et al.
(2024) propose FineSurE, a multi-dimensional
framework for evaluating natural language sum-
maries. However, these approaches remain limited
to sentence-level abstraction and do not address
the unique demands of inline comment generation.
Our work fills this gap by introducing an automated
metric that jointly captures semantic relevance and
coverage, tailored specifically to code block-level
comment placement.

3 Method

3.1 Task Definition
Let x ∈ X denote a code snippet without inline
comments, and let y ∈ Y represent the correspond-
ing code with meaningful inline comments inserted
at appropriate locations. Let l ∈ L be an optional
set of few-shot examples, where each example is a
pair (x′, y′) of uncommented and commented code.
Let i ∈ I denote the natural language instructions
in the prompt that guides the conversion.

We define the task of inline code comment gener-
ation as a conditional generation problem modeled
by a language model M , such that:

M : X × L× I → Y where M(x, l, i) = ŷ

Here, ŷ is the generated code with inline comments,
and the goal is for ŷ to closely approximate the
ground truth y in terms of both quality and quantity
of generated comments.

In the zero-shot setting, l = ∅, and the model
relies solely on the instruction i and the input code
x. In few-shot settings, l includes multiple demon-
stration pairs to teach the intended transformation
to the model M .

3.2 Inline Comments Evaluation Framework
An effective code documentation system must not
only add meaningful and contextual comments to
the code, but also discern the specific code blocks
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that need explanation. The inline comments must
be non-trivial, domain-aware and contribute to the
understanding of the code block logic and func-
tionality. Additionally, comment placement must
be judicious: excessive commentary can clutter
the code and impact readability, while sparse an-
notations risk omitting important code blocks that
need explanation. Addressing this dual challenge
requires an evaluation framework that is ideally
language-agnostic and capable of assessing both
the semantic relevance of comments and the ap-
propriateness of their placement within the code
snippets.

3.2.1 Comment scope
While generating ŷ, LLMs may inadvertently alter
the original code, such as by introducing optimiza-
tions or unwrapping compact expressions, even
when explicitly instructed not to do so. This behav-
ior makes it unreliable to align comments between
the original (y) and generated (ŷ) versions solely
based on line numbers. Furthermore, as illustrated
in Figure 1, discrepancies may arise in the gran-
ularity of comments where one version may con-
tain multiple fine-grained annotations for a code
block, while the other may offer a single, broader
comment. To address such variations, we adopt a
block-level comment matching strategy rather than
a line-level alignment.

To perform a block-level comment matching pro-
cedure between y and ŷ, we first define the scope
of an inline comment. In our framework, the scope
extends from the comment line to either the next in-
line comment or the end of the current code block,
determined usually by indentation levels in most
programming languages. The second condition is
particularly important, as not all code blocks are an-
notated; relying solely on the next comment could
include unrelated, uncommented code, thereby in-
troducing noise into the evaluation.

Using this definition, we parse both y and ŷ code
versions to identify corresponding comment-code
pairs at the block level. For both the commented
code versions y and ŷ, we record a mapping be-
tween each inline comment and its associated code
scope, represented as a line range in the format:

comment→ [start_line_num, end_line_num]

This mapping, recorded for both the versions
separately, enables a fine-grained analysis of
whether the model has over-commented or under-
commented relative to the ground truth.

3.2.2 Comment alignment
Once the comment-to-scope mappings are estab-
lished for both the reference code (y) and the gener-
ated version (ŷ), the next step is to align the inline
comments across the two versions. This alignment
is essential for enabling a fine-grained evaluation of
documentation quality. To identify candidate pairs,
we use the start_line_num and end_line_num
of each comment’s associated code block to detect
scope overlaps between y and ŷ.

Given that the same code block may be an-
notated with varying levels of granularity, rang-
ing from multiple fine-grained comments to a sin-
gle high-level summary, we define four alignment
cases that determine what gets included in the com-
parison candidate set:

• Case 1 (Exact Match): If a comment from y
(cy) and a comment from ŷ (cŷ) share an iden-
tical scope, the pair (cy, cŷ) is directly added
to the comparison set. These pairs contribute
to the true positive count.

• Case 2 (Partial Overlap): When the scopes
of cy and cŷ partially overlap, typically due
to differences in comment granularity, we ag-
gregate all comments within the overlapping
region from each version. For instance, a
single cy may align with a set of comments
{c1ŷ, c2ŷ, . . .}, or vice versa. These are concate-
nated in each version to form the composite
comments:
{

Concat
{
c1y, c

2
y, . . .

}
,Concat

{
c1ŷ, c

2
ŷ, . . .

}}

This composite pair is then added to the com-
parison set. This strategy allows for flexibility
in alignment, focusing on whether the code
block is adequately explained rather than en-
forcing strict one-to-one comment matching.
These pairs also contribute to the true positive
count.

• Case 3 (Missed by Model): If a comment cy
has no overlapping counterpart in ŷ, it is added
to the comparison set as a false negative.

• Case 4 (Hallucinated by Model): If a com-
ment cŷ has no overlapping counterpart in y,
it is added to the comparison set as a false
positive.

In summary, the comparison candidate set con-
sists of all aligned comment pairs, either exact or
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Figure 1: Illustrating comment alignment variations and representative mapping scenarios between reference and
generated inline comments

aggregated, as well as unmatched comments from
either version. This structured set forms the basis
for evaluating the model’s ability to generate con-
textually appropriate and well-placed inline docu-
mentation.

3.2.3 Quality metric

To assess the semantic relevance of the generated
comments, we evaluate the aligned comparison
candidates in terms of contextual similarity. This
step is crucial for understanding how effectively an
LLM interprets the underlying code logic and pro-
duces meaningful and quality documentation. Fol-
lowing the strategy used earlier for comment com-
parison (Geng et al., 2024; Szalontai et al., 2024;
Sun et al., 2025a), we adopt an embedding-based
approach to quantify this similarity. In particular,
we employ a pretrained embedding model, Sen-
tenceTransformer’s all-MiniLM-L6-v2 (Reimers
and Gurevych, 2021), to encode each comment in
the aligned pairs and compute their similarity score.
These scores are then aggregated at the sample level
to yield an average similarity score per instance.
We refer to this metric as ICquality, which serves
as an indicator of the interpretive and contextual
fidelity of the generated comments with respect to
the reference annotations.

3.2.4 Quantity metric

An often overlooked yet critical aspect of code
readability is the documentation coverage. Striking
the right balance in annotation density is essential:
overly verbose comments can disrupt the cognitive
flow of reading code, while insufficient documenta-
tion may leave key segments opaque to the reader.
Existing approaches to evaluating comment gen-

eration systems predominantly focus on semantic
relevance, frequently neglecting the quantification
of sufficient documentation coverage.

To address this, our framework adds a quantity
factor that measures block-level coverage equiva-
lence between the reference y and generated ŷ. We
use our comparison candidate set to compute the
true positives, false positives and false negatives
as outlined in Section 3.2.2. A key consideration
in the evaluation of documentation system perfor-
mance is the asymmetry in error impact: missing a
comment on a developer-identified block (false neg-
ative) is more detrimental than over-commenting
(false positive). To capture this notion, we propose
to use fβ score, where β weighs the precision and
recall contribution appropriately. For our study, we
use β = 2 to value the recall more than the preci-
sion. We denote this metric as ICquantity capturing
the adequacy of comment density in generated doc-
umentation.

3.2.5 Combined metric

To enable a holistic evaluation, we use a uni-
fied metric derived from the previously derived
ICquality and ICquantity components. We com-
pute a weighted average of these two values, allow-
ing for flexible calibration based on task-specific
priorities. The final evaluation score is given by:

ICeval = w1 · ICquality + w2 · ICquantity

This formulation supports flexible evaluation
across systems by adjusting the weights w1 and w2

to reflect different documentation goals. For our
evaluation, we have given equal weightage to these
components by setting w1 = 0.5 and w2 = 0.5
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4 Experimental Setup

4.1 Dataset

To construct a high-quality benchmarking dataset
for the task of inline comment generation, we begin
with the train split of the Vault - Inline dataset, fo-
cusing exclusively on Python code samples. While
the original dataset verifies the presence of inline
comments, it does not account for their semantic
quality or coverage across code blocks. To address
this limitation, we apply a series of checks and
quality filters aimed at curating a more representa-
tive and challenging dataset. Specifically, we retain
only those functions that contain diverse program-
ming constructs and are accompanied by mean-
ingful, well-aligned inline comments. The result-
ing dataset, denoted hereafter as ‘Vault-Inline++’,
serves as a robust benchmark for evaluating the
performance of LLMs on the inline comment gen-
eration task.

The curation process for Vault-Inline++ dataset
is explained in detail as follows:

• Language checks: The dataset contains code
samples with multilingual inline comments.
To ensure consistency and prevent distortion
in evaluation metrics, we retain only those
samples where comments are written entirely
in English.

• Content checks: This step checks the content
of comment in relation to the code that follows
it, and eliminates those samples which may
introduce noise. We exclude those samples
which have decorative comments and samples
where comment lines outnumber code lines.

• Coverage of key programming constructs: A
critical requirement for evaluation is ensuring
diverse and semantically rich code structures.
To this end, we retain only those code samples
that present a high density of inline comments
across a variety of programming constructs.
These include:

– external function calls
– conditional branches (e.g., if-else)
– control flow statements like loops, break,

continue, assert, etc.
– exception handling blocks

We leverage Abstract Syntax Tree (AST) pars-
ing to identify the presence of these constructs

and verify that each is accompanied by a cor-
responding developer-written comment.

• Comment sufficiency: As a final filtering step,
we ensure that each code sample includes a
sufficient volume of inline comments. Specif-
ically, we retain only those samples where at
least 10% of the code lines are accompanied
by comments, and each comment meets a min-
imum word count threshold to ensure basic
descriptive adequacy.

These filtering steps ensure that the final dataset
includes code samples that have monolingual, con-
sistent and detailed inline comments. Moreover,
it also constitutes of programmatically rich and
diverse samples with high volume of developer-
annotated programming constructs. These samples
form a robust test bed for evaluating the inline com-
ment generation capabilities of language models.
A few statistics on the final dataset are given in
Table 1.

Measure Value
Number of functions 2190
Average lines of code 70
Average length of comments 5

Table 1: Dataset composition used in our analysis.

4.2 Models
Language models finetuned on coding datasets, al-
though smaller in size, have shown performance on
par with larger, general-purpose foundational mod-
els across a range of code interpretation and genera-
tion tasks (Szalontai et al., 2024; Sun et al., 2025a).
Models that have a deep understanding of program-
ming language, structure, are better positioned to
produce relevant and well-aligned comments. To
draw meaningful conclusions about model suitabil-
ity for code documentation systems, it is essential
to conduct a fair comparison between smaller, code-
finetuned models and larger foundational models.

In our study, we experiment with two founda-
tional models - Anthropic’s Claude Sonnet 3.5
(Anthropic, 2024) and Meta’s Llama-3.1-70B (AI,
2024) models - as representatives of larger general-
purpose LLMs. For assessing the performance of
code-finetuned models, we choose to evaluate Al-
ibaba’s Qwen-Coder-2.5-1.5B (Hui et al., 2024),
Google’s CodeGemma-7B (Team et al., 2024) and
Meta’s CodeLlama-7B (Rozière et al., 2023) mod-
els. We use the ‘instruct’ versions of these models,
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Figure 2: Comparative trends of ICquantity and
ICquality scores under zero-shot and few-shot prompt-
ing settinfs

unless specified otherwise. The inference setting
used while invoking each of these models is men-
tioned in Appendix A. Each of these models are
trained on Python code samples and have shown
strong performance on various coding benchmarks.
Our choice of models span a wide spectrum in
terms of training specialization and model sizes,
enabling representative evaluation across different
modeling paradigms and deployment scenarios.

4.3 Prompting Techniques

Most language models designed for code under-
standing and generation tasks are typically pre-
trained on curated code repositories and high-
quality coding datasets (Kocetkov et al., 2022;
Chaudhary, 2023). Since these corpora often in-
clude well-annotated code snippets, the language
models possess a strong prior understanding of
commented code. Hence, zero-shot prompting
technique often suffices to instruct these models for
generating meaningful comments.

However, the ability to determine which code
blocks need to be commented requires logical rea-
soning, that can benefit from additional learning

signals. Towards this, we experiment with k-shot
prompting technique, where each shot is a pair
of raw code snippet paired with its correspond-
ing well-commented code version. To curate a rich
bank of exemplars, we start with our Vault-Inline++
dataset and use LLM-as-a-judge strategy to help
identify the ideal code samples that demonstrate
a good balance of contextual comments with opti-
mal quantity. The choice of model is driven by the
fact that identifying such samples is a reasoning
task as the judge needs to evaluate the relevance
and impact of comments. Specifically, we employ
Anthropic’s Claude Sonnet 3.7-Thinking model
(Anthropic, 2025) and instruct it to qualify each
sample into positive or negative category. Among
the positive-ly qualified samples, we choose top-n
samples that have the highest density of the key
programming constructs like function calls, condi-
tional statements and exception handling blocks to
ensure good diversity in our exemplar bank.

During inference with few-shot prompting, we
use dynamic example selection strategy (Liu et al.,
2022; Li et al., 2024; Bhattacharya and Gupta,
2024) to identify the most relevant examples based
on code similarity. For each test instance, we com-
pute similarity scores between its embedding and
those of samples in the exemplar bank. These em-
beddings are obtained using the GraphCodeBERT
(Guo et al.) model, which is pretrained to capture
structural and semantic properties of source code.
The top-k most similar examples are then selected
as demonstration pairs to guide the model during
generation. In our experiments, we fix k = 3 and
maintain an exemplar bank of size n = 50.

5 Results

The experiments for generating commented code
were conducted using the prompting strategies out-
lined in Section 4.3. The specific instructions and
prompt templates provided to the models are de-
tailed in Appendix C. This section presents the
outcomes of these experiments and addresses the
research questions defined earlier.

5.1 Main Findings

To ensure a fair evaluation, we first preprocess the
raw outputs by correcting any code modifications
introduced by the models. As proposed in our eval-
uation framework in Section 3.2, we compute three
metrics: ICquality, ICquantity, and ICscore, which
respectively assess semantic relevance, comment
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density, and an aggregate performance measure. Ta-
ble 2 presents a comparative overview of the scores
across all evaluated models. Among the models
evaluated, Claude Sonnet 3.5 consistently outper-
forms others across individual metrics. Notably, all
models exhibit marked improvements under few-
shot prompting conditions.

RQ1: Overall performance across models Fig-
ure 2 illustrates the distribution of scores ob-
tained across the evaluated metrics. Larger founda-
tional LLMs demonstrate consistently strong per-
formance on the overall score, suggesting a robust
capacity for producing high-quality inline code doc-
umentation. The notably high values for ICquantity

across models indicate that LLMs are effective at
identifying key code segments and inserting com-
ments at appropriate locations. Furthermore, de-
spite the variability in intent and style within the
reference comments, the elevated ICquality scores
suggest that the generated comments are semanti-
cally aligned with the code functionality and com-
parable to those written by developers.

RQ2: On Code-Specialized Models Code-
specialized language models exhibit competitive
performance on the combined metric relative to
larger foundational models. However, their perfor-
mance showcases greater fluctuations across dif-
ferent code samples. Among these, CodeGemma-
7B stands out for maintaining a balanced trade-off
between mean performance and variance across
both metrics. Interestingly, Qwen-Coder-2.5-1.5B,
despite being the smallest model in the cohort, de-
livers respectable average performance, making
it a promising candidate for deployment in low-
compute environments. Given that our selection of
code models was guided by practical constraints
suitable for industry-scale deployment, these re-
sults highlight the potential of such models to sup-
port in-house code documentation systems tailored
to specific organizational styles, conventions, and
requirements.

RQ3: Impact of Few-Shot Prompting The in-
clusion of few-shot exemplars in the prompt con-
sistently elevates the overall performance metrics
across models. While the improvement for larger
foundational models remains relatively marginal,
its impact on smaller, code-specialized models is
both substantial and consistent. Specifically, few-
shot prompting leads to a marked increase in mean
performance and a notable reduction in variance,

indicating that these models not only perform better
on average but also exhibit greater stability across
diverse code samples. This effect is particularly
pronounced in models such as Qwen-Coder-2.5-
1.5B and CodeLlama-7B, with the former outper-
forming the latter across all evaluation metrics de-
spite its smaller size. These findings underscore
the value of carefully curated exemplar pairs, es-
pecially for low-compute deployment scenarios.
In such settings, investing in high-quality prompt
design can yield significant gains in both the ef-
fectiveness and reliability of automated code docu-
mentation systems.

5.2 Instruction Adherence and Comment
Coverage

One notable limitation observed in smaller code-
specialized models is their inconsistent adherence
to the provided instructions. For many test samples,
these models generate only a high-level function
docstring while copying the remainder of the in-
put code verbatim, or they omit inline comments
for critical code blocks altogether. This behavior
results in poor alignment with the intended com-
ment placement, as reflected by low ICquantity

scores during our evaluation. In contrast, larger
foundational models demonstrate better instruction
adherence, even under zero-shot settings. To assess
whether few-shot prompting mitigates this issue,
we analyzed the number of samples that obtained
low ICquantity scores in this setting. As shown in
Figure 3, this number decreases substantially for
the smaller models when few-shot exemplars are
included in the prompt, but they still exhibit occa-
sional failures despite that. Some of the examples
with improved instruction adherence are also pro-
vided in Appendix B. For the larger models, there
is little to no change in the quantity-based scoring.

5.3 Distributional Shifts in Semantic Quality

To assess the semantic quality of generated inline
comments, we conducted a comparative analysis of
samples positioned at the extremes of the ICquality

spectrum - those rated as very poor versus those
rated as good. We discretized the ICquality scores
into three bins: poor, average, and good, using em-
pirically derived thresholds based on the distribu-
tion across the test set. This allowed us to examine
how model performance shifts under zero-shot and
few-shot prompting conditions, particularly at the
tails of the distribution. As illustrated in Figure 4,
all models, including both foundational and code-
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Table 2: Comparative evaluation of foundational and code-specialized language models on quantity (ICquantity),
quality (ICquality), and composite (ICscore) metrics under zero-shot and few-shot prompting regimes.

Model Size ICquantity ICquality ICscore

# of Params (B) Zero-Shot Few-Shot Zero-Shot Few-Shot Zero-Shot Few-Shot

Qwen-Coder-2.5-1.5B 1.5 0.447 ± 0.325 0.53 ± 0.29 0.345 ± 0.241 0.411 ± 0.21 0.396 ± 0.265 0.471 ± 0.229

CodeLlama-7B 7 0.369 ± 0.319 0.498 ± 0.296 0.309 ± 0.253 0.402 ± 0.221 0.339 ± 0.268 0.45 ± 0.237

CodeGemma-7B 7 0.517 ± 0.32 0.573 ± 0.292 0.391 ± 0.233 0.438 ± 0.213 0.454 ± 0.256 0.506 ± 0.23

Llama-3.1-70B 70 0.704 ± 0.165 0.707 ± 0.169 0.489 ± 0.129 0.501 ± 0.132 0.597 ± 0.12 0.604 ± 0.123

Claude Sonnet 3.5 - 0.72 ± 0.174 0.721 ± 0.176 0.491 ± 0.131 0.498 ± 0.133 0.605 ± 0.123 0.61 ± 0.126

Figure 3: Comparison of test instances with
ICquantity = 0 across models under zero-shot and few-
shot prompting settings

specialized groups, show consistent gains in the
proportion of samples falling into the ‘good’ cat-
egory, with improvements ranging from 9% (for
Sonnet-3.5) to 38% (for CodeLlama). Notably,
the incidence of ‘poor’ cases declines sharply for
smaller models under few-shot settings. These find-
ings suggest that the inclusion of well-crafted ex-
emplars in the prompt substantially enhances the
contextual relevance of generated comments, re-
gardless of model size.

6 Conclusion

This work presents a comprehensive evaluation of
large language models for inline comment genera-
tion, a task requiring both semantic precision and
contextual coverage. Using a curated dataset of
well-commented code, we propose a structured
framework that enables holistic validation of gener-
ated comments under varied prompting conditions.

Our benchmarking reveals that larger founda-
tional models consistently produce high-quality
comments, while smaller, code-specialized mod-
els perform competitively with few-shot prompt-

Figure 4: Comparison of low- and high-quality seman-
tically relevant matches across models under zero-shot
and few-shot prompting conditions

ing. Exemplar-based prompts notably improve in-
struction adherence and output consistency, making
smaller models strong candidates for low-compute
environments where efficiency and adaptability are
essential.

A key contribution of this work is an evaluation
framework, enabling interpretable and fine-grained
assessment of inline comments by jointly capturing
semantic relevance and coverage. As high-quality
annotations become increasingly available, such
automated frameworks are vital for scalable bench-
marking. Our findings highlight the importance of
prompt design and model choice laying a founda-
tion for future research in code-focused NLP.

Future work can extend this study by evaluat-
ing model performance across a wider range of
programming languages to assess generalizabil-
ity. It can also explore validation mechanisms for
production systems that generate comments with-
out ground-truth annotations, focusing on scalable
methods to assess comment quality and coverage
in real-world deployments.
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A Model Inference settings

All language models used in this study, includ-
ing both foundational LLMs and code-specialized
variants, were inferred with a temperature setting
of 10−8 ensuring near-deterministic outputs. The
foundational models, namely the Claude series and
Llama-70B, were accessed via Amazon Bedrock.
The code-finetuned models were hosted locally
through the Ollama framework (oll, 2025).

B Illustrative examples demonstrating
improved adherence to instructions

This section presents pairs of outputs illustrating
improved adherence to instructions when using
k-shot prompting with a code-specialized smaller
model.

49

https://doi.org/10.1109/TSE.2017.2734091
https://doi.org/10.1109/TSE.2017.2734091
https://doi.org/10.1109/TSE.2017.2734091


(a) (b)

(c) (d)

Figure 5: Demonstration pairs (a), (b) and (c), (d) illustrating improved instruction adherence with k-shot prompting.
Panels (a) and (c) show outputs under zero-shot prompting, while (b) and (d) present the corresponding k-shot
generations with CodeGemma model.
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C Prompt templates

For reproducibility, we provide below the prompt
templates that were used to query LLMs for the
respective tasks.
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Prompt to employ LLM-as-a-judge for qualifying an exemplar

You are an experienced developer and code reviewer. You are given a code snippet or a function
with inline comments added by a developer. Your task is to carefully analyze the inline comments
written in this code, and based on that, categorize the code into one of the two categories - positive
or negative. Follow up your answer with a proper justification of why the code was categorized into
the final category. Make sure that the given rules are strictly followed. Be stricter while making
your decision.
Follow the given rules STRICTLY while categorizing the code:
<rules>
**Positive category**
- Most of the important code blocks are properly commented. The code has balanced number of
inline comments.
- Inline comments are explanatory and contextual, helping the reader to understand the code
functionality.
- Most of the comments are high quality and contextual.
**Negative category**
- Either too many comments are present, or a lot of important code blocks have no comments
written for them.
- Inline comments are too generic and naive, and do not add any value to code interpretation.
</rules>

Follow the given output format while responding. Do not add any additional lines or explanations:
<output_format>
Reason: reason for categorizing the code into the final category
Category: Positive or Negative
</output_format>

Now analyze and categorize the following code:
{input_code}
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Zero-shot prompt for generating inline comments

You are an experienced Python developer who is responsible for maintaing the documentation and
comments in the codebase. Given a Python code snippet or a function as input which consists
of barely any comments, your goal is to add inline comments to the code and convert it into a
well-commented coversion. All your comments must be meaningful and context-aware such that
any junior developer can read them and understand the code functionality. You are only allowed to
add comments to the input code, without modifying the existing code lines.

Follow the given guidelines while adding your inline comments:
<guidelines>
- Identify important blocks or set of code lines and add comments for them. Do not add comments
for simpler lines of code, and do not leave any major block uncommented. Strike a balance in your
response.
- Your comments must be highly contextual and meaningful to the domain for which the code is
written.
- Do not add trivial or naive comments as they are not really helpful in code understanding.
- Add appropriate comments for every function call that is present in the code.
- Add appropriate comments for every if-else, loop, assert, break or similar code flow altering
statements.
- Add appropriate comments for exception or error handling blocks.
- Add comments only on top of a code line. Do not add comments in front of the line.
- Return the commented version of the same code enclosed in triple backticks in your response. Do
not add any additional lines or explanations.
</guidelines>

Now write a commented version for the following code:
{input_code}
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k-shot prompt for generating inline comments

You are an experienced Python developer who is responsible for maintaing the documentation and
comments in the codebase. Given a Python code snippet or a function as input which consists
of barely any comments, your goal is to add inline comments to the code and convert it into a
well-commented coversion. All your comments must be meaningful and context-aware such that
any junior developer can read them and understand the code functionality. You are only allowed to
add comments to the input code, without modifying the existing code lines. Use the provided
examples as reference to understand how a commented code version looks like.

Follow the given guidelines while adding your inline comments:
<guidelines>
- Identify important blocks or set of code lines and add comments for them. Do not add comments
for simpler lines of code, and do not leave any major block uncommented. Strike a balance in your
response.
- Your comments must be highly contextual and meaningful to the domain for which the code is
written.
- Do not add trivial or naive comments as they are not really helpful in code understanding.
- Add appropriate comments for every function call that is present in the code.
- Add appropriate comments for every if-else, loop, assert, break or similar code flow altering
statements.
- Add appropriate comments for exception or error handling blocks.
- Add comments only on top of a code line. Do not add comments in front of the line.
- Return the commented version of the same code enclosed in triple backticks in your response. Do
not add any additional lines or explanations.
- Use the given list of examples as reference to understand how inline comments are added by
developers to form a commented version.
</guidelines>

Use the given example pairs of inputs and outputs for your reference:
<examples>
{list_of_fewshots}
</examples>

Now write a well-commented version for the following code:
{input_code}
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