
Proceedings of the 5th Workshop on Evaluation and Comparison of NLP Systems, pages 9–20
December 23, 2025 ©2025 Association for Computational Linguistics

Measuring Visual Understanding in Telecom domain: Performance Metrics
for Image-to-UML conversion using VLMs

H. G. Ranjani
Ericsson R & D, Bangalore, India
ranjani.h.g@ericsson.com

Rutuja Prabhudesai
IIITB, Bangalore, India

rutuja10feb1999@gmail.com

Abstract

Telecom domain 3GPP documents are replete
with images containing sequence diagrams.
Advances in Vision-Language Large Models
(VLMs) have eased conversion of such im-
ages to machine-readable PlantUML (puml)
formats. However, there is a gap in evalua-
tion of such conversions - existing works do
not compare puml scripts for various compo-
nents. In this work, we propose performance
metrics to measure the effectiveness of such
conversions. A dataset of sequence diagrams
from 3GPP documents is chosen to be repre-
sentative of domain-specific actual scenarios.
We compare puml outputs from two VLMs —
Claude Sonnet and GPT-4V — against manu-
ally created ground truth representations. We
use version control tools to capture differences
and introduce standard performance metrics
to measure accuracies along various compo-
nents: participant identification, message flow
accuracy, sequence ordering, and grouping con-
struct preservation. We demonstrate effective-
ness of proposed metrics in quantifying conver-
sion errors across various components of puml
scripts. The results show that nodes, edges and
messages are accurately captured. However,
we observe that VLMs do not necessarily per-
form well on complex structures such as notes,
box, groups. Our experiments and performance
metrics indicates a need for better representa-
tion of these components in training data for
fine-tuned VLMs.

1 Introduction

Sequence diagrams are widely used to represent
signaling sequences and interactions among sys-
tem components. However, these diagrams are
often available only as static images within tech-
nical documents and scattered across versions and
sections. This limits machine-readability of such
sequences and their usability in tools that support
analysis, simulation, automated verification and/or
troubleshooting. We consider the telecom domain

as a case in point to illustrate some challenges using
3rd Generation Partnership Project (3GPP) specifi-
cations (3GPP, 2022). These are publicly available
as word documents containing text, tables, equa-
tions and images (Roychowdhury et al., 2024a,b,
2025) including sequence diagrams (as images)
within to illustrate procedural call flows across var-
ious network entities in various scenarios.

Recent advances in Vision-Language Large
Models (VLMs) have enabled the extraction of
structured information from images, including
charts, tables and UML (Unified Modeling Lan-
guage) diagrams. Several studies have proposed
methods to extract UML components from visual
representations, converting image-based diagrams
into machine-readable formats using tools such as
PlantUML to create puml scripts (PlantUML, 2025;
PlantUMLGuide, 2023; Romeo et al., 2025). These
approaches aid towards automating the conversion
of legacy diagram archives into usable data. In
this work, we use puml to refer to UML scripts
(accessed or generated using PlantUML tools or
equivalent ones). The work in (De Bari, 2024) uses
LLMs to generate UML class diagrams. The di-
agrams are analyzed for syntactic, semantic, and
pragmatic quality against that of human generated
UML diagrams. In (Ye et al., 2024), flowchart
images are converted to graphical structures using
VLMs. Then, these structures are compared for the
optimal representation format (puml, Mermaid or
Graphviz) for improved performance in reasoning
based question answering (QA) task. For evaluat-
ing the UML representation format, node-F1 and
edge-F1 metrics have been considered. The work
of (Axt, 2023) converts human sketches into UML
diagrams using OpenCV libraries. The UML di-
agrams are evaluated based on precision and re-
call of classes, inheritances, and associations. The
work (Conrardy and Cabot, 2024) also addresses
converting human sketches into UML diagrams, by
using VLMs. The approach is based on chain-of-

9

Figure 1: A block diagram depiction of proposed approach to compare image-to-UMLs outputs from two VLMs.

thoughts (CoT) via multiple prompts. They evalu-
ate the approach through count of number of mis-
takes (including non-compilation, hallucinations,
and similar errors). Another recent work (Bates
et al., 2025) also leverages multi-modal LLMs to
convert image based UML diagrams to puml format
using fine-tuned VLMs. A synthetic image-based
UML dataset was created. The generated puml was
again visualized as an image and compared with
the original image for visual fidelity using Struc-
tural Similarity Index Measure (SSIM) and use
Bilingual Evaluation Understudy (BLEU) scores
for semantic similarity.

Despite these recent efforts, we observe a signif-
icant gap in terms of evaluations: currently there
is no systematic approach to evaluate the correct-
ness of such image-to-UML datasets. As a result,
it is challenging to assess the accuracy of the con-
verted puml representation in terms of efficiency
of capture of various structural components of the
original image. Thus, benchmarking of existing
methods and the development of more robust sys-
tems is difficult. This is specifically true for com-
plex puml representations where synchronous and
asynchronous events, grouping of events are impor-
tant information to be captured.

A wishlist of error metrics to compare two
UML diagrams include errors pertaining to compo-
nents such as participants, connector types, connec-
tor directions, messages passed, notes, sequences,
groups amongst other syntactic and semantic com-
ponents. In this work, we address this gap by intro-
ducing a set of metrics across these components to
measure correctness of puml conversions.

The dataset chosen focuses on the telecom do-

main using 3GPP sequence diagrams (parsed from
publicly available documents), where the sequence
diagrams range from simple to complex and in-
clude synchronous and asynchronous events and
contain many puml components listed above. We
propose to measure the differences between two
puml representations. Towards this, we manually
curate ground truth and quantify puml output VLM
for various components: participants, message flow,
ordering, and grouping constructs.

The contributions of this work are: (i) compare
VLM (Claude and GPT 1) performances based on
their ability to convert sequence diagram images
to puml format (ii) propose use of version control
tools for capture differences between puml format
(iii) introduce metrics for various components to
measure differences between various components
of puml representations.

The manuscript is organized as follows: Section
2 details proposed approach, followed by experi-
mental setup in Section 3 which includes dataset
preparation, puml script generation and difference
analysis. This is followed by the detailing of met-
rics introduced for error analysis in Section 2.3.2.
Detailed analysis of the results is in Section 4 fol-
lowed by concluding remarks in Section 5.

2 Proposed Approach

Figure 1 shows a block diagram representation of
the proposed approach. As can be seen, there are 3
major steps:

• Image-to-UML conversion using VLMs.

• Difference analysis: extract the patch files
1In this work, we use GPT-4 and GPT to refer to GPT4-V.

Similarly, we use Claude to refer to Claude Sonnet.

10

between VLM outputs and ground truth. For
analysis, the patch files are grouped into two
groups (i) similar pairs and (ii) unmatched
lines.

• Error analysis: introduce error metrics into
various categories such as node-based, edge-
based, message-based and other structural
components (detailed in Section 2.2.2)

We detail each step in subsections below.

2.1 Image-to-UML conversion using VLMs

We parse images from the publicly available 3GPP
standard documents. We manually categorize these
imagesinto two: (i) sequence diagrams and (ii) non-
sequence diagrams. This image categorization can
be automated with a fine-tuned classifier such as
(Moreno et al., 2020; Soman et al., 2025), but is
not the focus of this work. We curate a subset of
these sequence diagrams for analysis in this work.
More details on the dataset is in Section 3.1.

We consider two VLMs (Claude and GPT-4)
for converting sequence diagram images to puml
formats. We include details of the VLM models
considered in Section 3.2.3.

2.2 Difference Analysis

The puml files are diagrams-as-code scripts. In or-
der to capture and evaluate the differences between
the VLM outputs and ground truth, we consider
version control tools, due to the textual nature of
the puml scripts. We obtain the differences between
the ground truth and VLM outputs by first extract-
ing differences and then performing a similarity
calculation.

2.2.1 Difference extraction

There are two components involved in difference
extraction:

• Repository creation: Here, we consider the
ground truth puml scripts in the main branch
of a git repository while each set of the VLM
outputs with same name as corresponding
ground truth files can be considered under a
separate branch.

• Patch extraction: Git diff or patch files are
generated for each VLM model output with
respect to main branch. These captures doc-
ument specific differences with respect to
ground truth.

2.2.2 Similarity calculation
We propose a multi-step approach for similarity
calculation using the git diff/patch files.

1. Preprocess the diff/patch file such that only
relevant lines are considered for analysis:

• Lines containing arrows (connections be-
tween participants) such as “PGWA ->
SGW : 2a. Update Bearer Request (PGW
Change Info)”

• Lines with keywords such
as "group", "note", "box",
"participant","actor".

• Non-structural lines are excluded (e.g.,
"end", "end group", "end note", "end
box")

2. Pairing of lines to align groups of lines and
find optimal matching lines from the diff file.
For this, Levenshtein distance (Levenshtein,
1966) is calculated between every element of
removed (starts with -) and added (starts with
+) lines to quantify textual differences. Linear
sum assignment implementation (lin, 2025) of
modified Jonker-Volgenant algorithm (Crouse,
2016) is applied to find optimal matching
between removed and added lines, minimiz-
ing the total distance. This pairing approach
identifies candidate lines in the model out-
put which correspond to similar lines in the
ground truth. Similar lines can be considered
to be aligned based on minimal Levenshtein
distance between candidate pairs.

3. Post processing output of the pairing of lines
process includes:

• Unpaired lines from removed groups are
considered as elements missing in model
output.

• Unpaired lines from added groups are
considered as insertions w.r.t. ground
truth.

• Paired lines with differences are catego-
rized either as substitutions or as a com-
bination of additions and deletions, de-
pending on the component, nature and
extent of the change.

2.3 Error Analysis
Consider a sample puml sequence component
“PGWA -> SGW : 2a. Update Bearer Request
(PGW Change Info)”. Here, ‘PGWA’ and ‘SGW’
are considered as nodes, ‘->’ corresponds to edges,
‘2a. Update Bearer Request (PGW Change Info)’

11

corresponds to message element. In addition, there
are other components such as box, group, partici-
pant and notes.

In this subsection, we describe the process con-
sidered for error categorization into various com-
ponents, followed by the metrics introduced in this
work to measure the categorized errors.

2.3.1 Error Categorization
For each paired line with Levenshtein distance > 0
(indicating a difference), and unpaired lines, the
specific type of difference is determined through
regex pattern matching and context analysis (such
as presence of “->", “:" patterns). Each difference
is categorized into one of the pre-defined categories
based on the specific nature of the error (e.g., arrow
direction, message content, participant name). The
categories are based on the specific element types:

• Node related errors (participant identification
issues)

• Edge or connection errors (arrow direction,
type)

• Message content errors

• Other structural element errors: notes, groups,
boxes, participants2.

2.3.2 Error Metrics
We quantify the differences between the ground
truth and model output scripts for each of the cat-
egorized errors using the metrics introduced and
detailed component-wise below:

• Node related Metrics: These metrics are
closely associated with participants occurring
in each sequence of the puml scripts.

– Node Insertion rate: Count of nodes
in present in model output, but not in
ground truth divided by total number of
nodes in ground truth.

– Node Deletion rate: Count of nodes not
present in model output, but present in
ground truth divided by total number of
nodes in ground truth.

– Node Substitution rate: Count of nodes
with incorrect naming/representation di-
vided by total number of nodes in ground
truth. It is also associated with edit dis-
tance to quantify the incorrectness.

2We differentiate nodes and participants based on the con-
text of their occurrence. Lines such as ‘participant PGWA’
contribute to participant category while lines such as ‘PGWA
-> SGW : 2a. Update Bearer Request’ contributes to node
category.

• Edge/Connection Metrics: These metrics are
associated with connectors (or edges) and in-
clude:

– Edge Direction change rate: Count of
arrows with incorrect direction in model
output divided by total number of arrows
in ground truth.

– Edge Direction insertion rate: Count of
inserted arrows not in ground truth, but
present in model output divided by total
number of arrows in ground truth.

– Edge Direction deletion rate: Count of
deleted arrows not in model output, but
present in ground truth divided by total
number of arrows in ground truth.

– Edge Direction type change rate: Count
of arrows with incorrect type divided by
total number of arrows in ground truth
(e.g., solid vs. dashed i.e., ‘->’ vs. ‘- -
>’ representing synchronous message vs.
asynchronous message)

• Message related Metrics: Most sequence
diagrams considered show passing of mes-
sages between participants. Through these
metrics, we can measure correctness of mes-
sages passed between participants.

– Message insertion rate: Count of in-
serted messages present in model output,
not present in ground truth divided by to-
tal number of messages in ground truth.

– Message deletion rate: Count of mes-
sages present in ground truth, not present
in model output divided by total number
of messages in ground truth.

– Message change rate: Count of messages
with non-exact matches in model output
divided by total number of messages in
ground truth.

• Structural Element Metrics: In addition to
the nodes (participants), edges (connectors)
and messages, there exist other structural el-
ements in a complex puml diagram such as
notes, groups, boxes.

– Note Changes: Rate of insertion, dele-
tion, and substitutions of notes.

– Group Changes: Rate of insertion, dele-
tion, and substitutions of groups.

– Box Changes: Rate of insertion, deletion,
and substitution of boxes.

12

– Participant Changes: Rate of insertion,
deletion, and substitution of participants.

3 Experimental Setup

In this section, we detail the setup considered for
the experiments to measure effectiveness of VLMs
for sequence diagram images-to-UML conversion.

3.1 Dataset Preparation

We parse 3GPP (Rel 18) documents (3GPP, 2022)
for all the images in the word doc and docx files.
The corresponding image-dataset comprises of
∼14000 images. The images along with their cap-
tions are collected and labeled in accordance to the
order of their occurrence in the documents. This
dataset contains various categories corresponding
to graphs, sequence diagrams, frequency diagrams,
block diagrams and schematic diagrams. A sample
set is shown in Figure 1 in Appendix A (available
as Supplementary material)

These images are manually classified into se-
quence and non-sequence diagram categories; 32%
of the images are sequence diagrams. This se-
quence diagram dataset, along with its correspond-
ing captions corresponds to 4010 images. The
total pixel count of these images ranges between
240 × 57 to 7548 × 6510. This collection of se-
quence diagrams forms the dataset considered for
further steps. We highlight that these images do not
have the ground truth puml script readily available.

A sample representative subset of 50 sequence
diagrams are selected from the complete dataset
to create ground truth puml files. The selection
criteria includes diversity of diagram features, in-
cluding arrow types and styles, color schemes, note
positioning, special features such as loops, alterna-
tive paths and participant representation styles. All
results in this work pertain to these 50 sequence
diagrams.

Although readers might presume that 50 files is
a modest size dataset, we would like to highlight
that the purpose of this work is to propose evalu-
ation metrics considering associated complexities
in comparing two puml scripts than evaluate the
VLMs themselves on large datasets.

3.2 PlantUML Script Generation

Here, we describe the ground truth preparation and
approach for puml script generation using VLMs.

3.2.1 Ground Truth
The ground truth puml scripts are manually created
for all 50 selected images. The resulting ground
truth scripts serve as the reference for evaluation.
The overall number of lines in ground truth puml
script corresponds to ∼ 2500. The distribution of
50 files w.r.t. number of lines in ground truth is
shown in Table 1.

Range of puml script lines Count of puml files
1-20 10
21-30 13
31-40 5
41-50 13
51-100 9

Table 1: Distribution of puml files w.r.t. number of lines
of script in ground truth.

3.2.2 VLM Prompt
The following prompt was used to generate puml
scripts from the diagram images using VLM:

Generate puml script for given 3GPP
standard call flow diagram of "{Caption
of the image}" according to puml doc-
umentation. Please consider following
important points:
1. Correctly identify participants/actors.
2. Correctly identify the connection be-
tween the nodes using given arrows.
3. Correctly identify the arrow direction,
start and end of the arrow.
4. Correctly identify text associated to
the arrow.
5. If any text is in rectangles consider
them as notes and write them in appro-
priate place.
6. Give numbering to each call sequen-
tially.
7. Correctly identify color if any.

3.2.3 VLM Models
The prompt described above was used with two
VLMs:

• Claude 3.7 Sonnet model from Anthropic (Cla,
2025)

• GPT-4-Vision model from OpenAI (GPT,
2024)

VLMs is an evolving field with new models re-
leased quite frequently. At this juncture, we again

13

highlight that although other VLMs can be con-
sidered for comparison, the focus of this work is
to establish an approach to evaluate puml scripts
generated from VLMs and not to evaluate all the
VLMs as such.

The generated puml scripts are rendered using
the puml web server to manually visually verify
syntactic correctness. We do not penalize VLM
model outputs unnecessarily during error analy-
sis. Hence, in scenarios where the scripts were
not syntactically correct (and leads to not being
able to generate the puml image), we identify and
rectify minor issues such as introduction of spuri-
ous characters such as ‘#’ and ‘-’, replace elements
identified as actors (by VLMs) as participants be-
cause the ground truth contains only participants,
invalid arrow syntax such as ‘..>’ to −− >. In
addition, unsupported note placements, overuse of
participants in note overs are manually corrected
and not counted towards errors. A few sample in-
stances of such corrections (not counted towards
errors) are depicted in Figure 2.

Figure 2: Sample snapshot related to manual syntax cor-
rections on VLM outputs with the errors and corrections
highlighted in gray.

Sample sequence diagram image from 3GPP
standard are depicted in supplementary material,
Appendix B along with its corresponding visual
renderings generated from .puml scripts including
the ground truth, Claude output, and GPT-4 output.
Manually inserted annotations indicate some of the
proposed metrics from the puml scripts.

3.3 Difference Analysis

We detail the experimental setup for repository cre-
ation and for patch extraction steps corresponding
to Section 2.2 here.

3.3.1 Repository Structure
A Git repository is created to manage the differ-
ent versions of puml scripts. Each sequence dia-

Figure 3: Snapshot of repository with three branches -
main, claude and gpt

gram image is converted to it’s corresponding puml
file within a folder corresponding to the document
name. Three branches are created:

• main: containing the manually verified
ground truth puml scripts

• claude: containing Claude generated puml
scripts

• gpt: containing GPT-4 generated puml scripts

Figure 3 shows a sample snapshot of repository
branches.

3.3.2 Difference Extraction
A Git diff analysis is performed to identify differ-
ences between models and ground truth. Towards
this, two sets of patch/diff files are generated for
each comparison to document specific differences:

• main (ground truth) with claude branch
• main (ground truth) with gpt branch

These patch/diff files are used for capturing and
quantifying differences between ground truth and
model outputs. A snapshot of diff file is shown in
Figure 4. Figure 5 depicts an example of matched
and unmatched lines from the depicted patch file .

4 Results and Analysis

We report the metrics considered for comparing
puml files, aggregate them and analyze for quanti-
fying behavior of models.

For the error analysis, we first aggregate error
count at both file level and at overall dataset level.

The overall dataset analysis provides a com-
plete view of the model performance, while the
file level analysis can provide more details of when
the model doesn’t perform well. For each file com-
parison, the following were calculated:

• Total count of elements in the ground truth
(nodes, arrows, messages, notes, etc.)

• Raw counts of each error type (additions, dele-
tions, substitutions) by category

• Percentage of each error type relative to the
total count of relevant elements

• Error density per diagram (errors per element)

14

Figure 4: An example of patch/diff file obtained by com-
paring model (claude/gpt branch) output with ground
truth (main branch).

Figure 5: An example of distance calculation and clas-
sification of matched pairs and unmatched lines from
patch/diff file shown in Fig. 4.

Node Direction change Direction type Message Box Group Note Participants

Ground truth count

1736 881 881 873 19 39 229 278

Error analysis for Claude output

Insertion (%) 13.02 12.71 0.00 13.06 42.11 0.00 17.03 0.72

Deletion (%) 15.78 15.44 0.00 14.89 52.63 69.23 17.90 2.88

Substitution (%) 12.56 6.02 10.90 11.23 21.05 15.38 31.88 8.63

Error analysis for GPT-4 output

Insertion (%) 19.76 19.41 0.00 19.70 0.00 69.23 42.36 1.44

Deletion (%) 18.66 18.50 0.00 17.87 100.00 76.92 64.19 5.76

Substitution (%) 34.10 7.95 16.00 39.29 0.00 5.13 35.37 40.64

Table 2: Statistics of components of puml in Ground truth and error analysis metrics for the same using Claude and
GPT-4 output files.

15

Figure 6: Error bars for node, message, direction error
rates in Claude outputs based on number of lines in
ground truth files.

Figure 7: Error bars for node, message, direction error
rates in GPT-4 outputs based on number of lines in
ground truth files.

Table 2 depicts the percentage of insertion, dele-
tion and substitution rates measured for Claude
and GPT-4 models w.r.t. the ground truth. We ob-
serve that Claude outputs have lesser number of
insertion, deletion and substitution rate than GPT-4
outputs across almost all components of puml 3.
The direction type errors are mostly related to sub-
stitution because they correspond to synchronous
being categorized as asynchronous or vice-versa.

It is worth noting that there are higher errors in
both VLMs outputs with respect to structural ele-
ments such as box, group and notes. This indicates
that it might be required to fine-tune VLMs for such
tasks to reduce error rate across these components.

We further analyze the VLM outputs using these
metrics in terms of number of lines of the puml
script. The errors are accumulated across inser-
tion, deletion and substitution categories at a file
level and calculated as percentage of total. Figure
6 and Figure 7 depict the same. We observe that
the trend of percent of error in Claude increases
with increasing number of lines of script. This is
expected because when the sequence diagram is
longer, there is less likelihood of retaining the vi-
sual context and it is possible that there are more
errors. With GPT-4, however, the error rate shows
a decreasing trend. This, although is not intuitive,
hints that GPT-4 retains higher visual context in
more complex sequence diagrams over that of sim-
pler one. This needs further investigation. In sum-
mary, the overall performance seen from Claude
model is much better than that of GPT4.

5 Conclusions

It is possible to convert images to puml scripts. We
have explored the use of VLMs on limited set of
sequence diagrams from publicly available 3GPP

3Claude performance is statistically significant over GPT4
at p < .05 except for box and group components.

documents. These have applications in telecom
network analysis, simulation, and automated verifi-
cation systems.

In this work, we highlight the lack of system-
atic evaluation of image-to-UML conversion using
VLMs. We propose to use version control tools
to capture the differences in puml representations
between ground truth and VLM outputs. We ana-
lyze the patch files, align them to be able to capture
effectiveness of the puml conversion. We propose
a set of performance metrics to measure the effec-
tiveness of image-to-uml conversion across various
components (viz. nodes, edges, messages, partic-
ipants, box, groups and notes). We observe that
Claude model is more effective than GPT-4 in the
puml conversion for the considered dataset.

The errors are concentrated on complex compo-
nents such as box, groups, notes. It is expected
that a fine-tuning of VLMs focused on sequence
diagrams to improve effectiveness for such compo-
nents. To realize the same, it is important to ensure
that training set has these components included
appropriately.

We also observe that errors for Claude increases
with increasing number of lines in the script. This
is expected as retaining longer visual context may
be challenging. However, GPT-4 shows that perfor-
mance is not much impacted by the number of lines
in the script. This is unexpected and necessitates a
detailed further analysis.

In this work, we have focused on simple prompts
for the VLMs. Future experiments can include
advanced prompts to introduce chain-of-thought
approach for image-to-UML conversions. While
this work has used limited and focused number
sequence diagrams from publicly available 3GPP
specifications, the proposed set of performance
metrics are agnostic to the domain, source and
dataset size of sequence diagram images.

16

References
2024. GPT4(OpenAI) Vision. https://openai.com/

index/gpt-4/.

2025. Claude 3.7 Sonnet from Anthopic. https://
www.anthropic.com/news/claude-3-7-sonnet.

2025. Linear Sum Assignment. https://docs.scipy.
org/doc/scipy/reference/generated/scipy.
optimize.linear_sum_assignment.html.

3GPP. 2022. 3GPP release 18. Technical report. Ac-
cessed: 2024-05-19.

Monique Axt. 2023. Transformation of sketchy UML
Class Diagrams into formalPlantUML models.

Averi Bates, Ryan Vavricka, Shane Carleton, Ruosi
Shao, and Chongle Pan. 2025. Unified modeling lan-
guage code generation from diagram images using
multimodal large language models. Machine Learn-
ing with Applications, page 100660.

Aaron Conrardy and Jordi Cabot. 2024. From im-
age to UML: first results of image based UML
diagram generation using LLMs. arXiv preprint
arXiv:2404.11376.

David F. Crouse. 2016. On implementing 2D rectan-
gular assignment algorithms. IEEE Transactions on
Aerospace and Electronic Systems, 52(4):1679–1696.

Daniele De Bari. 2024. Evaluating large language mod-
els in software design: A comparative analysis of
UML class diagram generation. Ph.D. thesis, Po-
litecnico di Torino.

V. I. Levenshtein. 1966. Binary Codes Capable of Cor-
recting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707.

Valentín Moreno, Gonzalo Génova, Manuela Alejan-
dres, and Anabel Fraga. 2020. Automatic classi-
fication of web images as uml static diagrams us-
ing machine learning techniques. Applied Sciences,
10(7):2406.

PlantUML. 2025. Open-source tool that uses simple
textual descriptions to draw beautiful UML diagrams.
https://plantuml.com/.

PlantUMLGuide. 2023. Drawing UML with
PlantUML: PlantUML Language Reference
Guide. https://pdf.plantuml.net/PlantUML_
Language_Reference_Guide_en.pdf.

Joseph Romeo, Marco Raglianti, Nagy Csaba, and
Michele Lanza. 2025. UML is back. Or is it? In-
vestigating the Past, Present, and Future of UML in
Open Source Software. In ICSE 2025 47th Interna-
tional Conference on Software Engineering.

Sujoy Roychowdhury, HG Ranjani, Sumit Soman,
Nishtha Paul, Subhadip Bandyopadhyay, and Sid-
dhanth Iyengar. 2025. Intelligibility of text-to-speech
systems for mathematical expressions. arXiv preprint
arXiv:2506.11086.

Sujoy Roychowdhury, Sumit Soman, HG Ranjani,
Neeraj Gunda, Vansh Chhabra, and Sai Krishna Bala.
2024a. Evaluation of RAG metrics for question
answering in the telecom domain. arXiv preprint
arXiv:2407.12873.

Sujoy Roychowdhury, Sumit Soman, HG Ranjani, Avan-
tika Sharma, Neeraj Gunda, and Sai Krishna Bala.
2024b. Evaluation of Table Representations to An-
swer Questions from Tables in Documents: A Case
Study using 3GPP Specifications. arXiv preprint
arXiv:2408.17008.

Sumit Soman, HG Ranjani, Sujoy Roychowdhury,
VDSN Sastry, Akshat Jain, Pranav Gangrade, and
Ayaaz Khan. 2025. A Graph-based Approach for
Multi-Modal Question Answering from Flowcharts
in Telecom Documents. KDD 2025 Workshop on
Structured Knowledge for Large Language Models.

Junyi Ye, Ankan Dash, Wenpeng Yin, and Guiling Wang.
2024. Beyond End-to-End VLMs: Leveraging Inter-
mediate Text Representations for Superior Flowchart
Understanding. arXiv preprint arXiv:2412.16420.

17

https://openai.com/index/gpt-4/
https://openai.com/index/gpt-4/
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1109/TAES.2016.140952
https://plantuml.com/
https://pdf.plantuml.net/PlantUML_Language_Reference_Guide_en.pdf
https://pdf.plantuml.net/PlantUML_Language_Reference_Guide_en.pdf

NOTE TO REVIEWERS: We have included the appendix section along with the submission as
there was no explicit provision/option/portal field in to include the supplementary material inspite of
request for clarifications to org team. Our submission otherwise conforms to the required number
of pages (8 pages + 1 for reference).

Appendix A 3GPP image categories

A sample snapshot of various categories of images present in 3GPP standards are shown in Figure 8.

Figure 8: Representative images from various categories from the 3GPP dataset.

Appendix B Sample sequence diagrams from 3GPP specifications

Figure 9 shows sample sequence diagram seen in 3GPP standard and it’s equivalent image constructed
from various puml scripts (viz. ground truth scripts and scripts from two VLMs models as output.). Figure
10 shows the corresponding puml scripts.

18

(a) Reference image (b) Ground Truth

(c) Claude Output (d) GPT-4 Output

Figure 9: Reference image from the 3GPP standard dataset, along with manually created ground truth and outputs
from Claude and GPT-4, as visualized on the puml web server.

19

@startuml
participant "UE-A" as UEA
participant "AS-A\n(P-CSCF,\nI-CSCF, S-CSCF,\nAS)" as ASA
participant "AS-B\n(P-CSCF,\nI-CSCF, S-\nCSCF, AS)" as ASB
participant "UE-B" as UEB
participant "AS-C\n(P-CSCF,\nI-CSCF, S-\nCSCF, AS)" as ASC
participant "UE-C" as UEC

note over UEA, UEB #FFB347: Media streams have been setup between A and B , AS-A and AS-B are in
the\nsignalling path . See "Basic Call" procedure

note over UEA, UEB #ADD8E6: B puts A on hold , see "Session Hold /Resume" Procedure

note over UEA, UEB #FFB347: Media between A and B are on Hold

note right UEB #4169E1: This allows B to pick up \nthe existing session when \nthe transfer fails

note over UEB, UEC #ADD8E6: B uses standard "Basic Call" procedure to setup a call with C

note over UEB, UEC #FFB347: Media streams between B and C

note over UEB, UEC #ADD8E6: B puts C on hold , see "Session Hold /Resume" Procedure

note over UEB, UEC #FFB347: Media streams between B and C are on Hold

note right UEC #4169E1: This allows B to pick up \nthe existing session when \nthe transfer fails

note left ASB #4169E1
AS-B stores theReferTo" and
"ReferredBy" information and
replaces it with ECT Session
Identifier URIso that UEA will not
know the identity of UEB or UEC
and the ASB is kept in the route
This also solves the charging
problem
end note

UEB -> ASB: 1. REFER Refer To: C?Replaces=dialog2

note right UEB #4169E1
B initiates the transferBy referring A
to C
It is send in the target dialog so that
the Transferee can correlate this
dialog with the original to be
transfered dialogThis ensures that
the receiver of the REFER request
can authenticate the request
end note

ASB -> ASA: 2. REFER Refer To: privateURL
ASA -> UEA: 3. REFER Refer

Figure 10: Comparison of ground truth, Claude and GPT-4 puml script with metrics

20

