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Abstract

LLM (large language model) users of hosted
providers commonly notice that outputs can
vary for the same inputs under settings expected
to be deterministic. While it is difficult to
get exact statistics, recent reports on specialty
news sites and discussion boards suggest that
among users in all communities, the majority
of LLM usage today is through cloud-based
APIs. Yet the questions of how pervasive non-
determinism is, and how much it affects perfor-
mance results, have not to our knowledge been
systematically investigated. We apply five API-
based LLMs configured to be deterministic to
eight diverse tasks across 10 runs. Experiments
reveal accuracy variations of up to 15% across
runs, with a gap of up to 70% between best pos-
sible performance and worst possible perfor-
mance. No LLM consistently delivers the same
outputs or accuracies, regardless of task. We
speculate about the sources of non-determinism
such as input buffer packing across multiple
jobs. To better quantify our observations, we
introduce metrics focused on quantifying de-
terminism, TARr@N for the total agreement
rate at N runs over raw output, and TARa@N
for total agreement rate of parsed-out answers.
Our code and data will be publicly available at
https://github.com/breckbaldwin/llm-stability.

1 Introduction

Large Language Models (LLM) perform well on
many types of Natural Language Processing (NLP)
or NLP-related tasks, including question answer-
ing (Robinson and Wingate, 2023), diverse types of
reasoning (Qiao et al., 2023), and code generation
(Jiang et al., 2024b). Their general applicability has
resulted in their widespread adoption for diverse,
high-stakes societal functions, such as information
gathering in medicine (Shool et al., 2025) or law
(Niklaus et al., 2024), financial planning (de Zarza i
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Cubero et al., 2024), or manufacturing optimization
(Du et al., 2025), to name a few. In tandem with
these high stakes uses, there has been increasing
attention to reliability (e.g., for Out-of-Distribution
behavior (Liu et al., 2024; Du et al., 2022)), along-
side other aspects of LLM trustworthiness (Shrid-
har et al., 2024; Chen and Mueller, 2024). Uncer-
tainty in LLM output is an aspect of performance
that could either degrade or bolster trust, depending
on the level of transparency. The laudable practice
of testing on benchmark datasets to demonstrate
progress is counterbalanced by the frequent lack of
uncertainty measures. Despite known uncertainty
across different training runs of a model, it has be-
come standard to report LLM results from a single
run (Hendrycks et al., 2021; Suzgun et al., 2023;
Wang et al., 2024; Gema et al., 2024; Rein et al.,
2023), possibly due to cost and computational time
restrictions. Benchmark results reported without
measures of uncertainty (e.g., confidence intervals)
therefore undermines reliability. In this paper, we
examine another factor that introduces variance
in benchmark results: non-determinism in hosted
LLMs.

Many users of LLMs gain access to models
that are hosted through APIs. It is difficult to get
exact statistics, but recent information from spe-
cialty news sites and discussion boards suggests
that among users in all communities, the major-
ity of LLM usage today is through cloud-based
APIs.! Many users of LLM APIs presumably ex-
pect model output to be deterministic when temper-
ature=0. While some users may have observed a
degree of non-determinism in this setting, there is
little if any quantification of this variance. Through-
out the paper, we refer to this behavior of output

'E.g.: https://www.prnewswire.com/news-releases/study-
finds-72-of-enterprises-plan-to-ramp-spending-on-genai-in-
2025-302484025.html?utm_source=chatgpt.com;
https://konghq.com/resources/reports/ai-and-api-adoption-
challenges.
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Figure 1: Percentage difference between maximum and minimum accuracy in 10 runs per model, for 5 models on 8

tasks with zero-shot and few-shot settings.

variance despite zero temperature as instability or
non-determinism. We demonstrate an alarming
degree of variation across equivalent input runs
with a varied collection of high performing API-
based LLMs? under presumed deterministic set-
tings. Our findings of up to 15% differences in
accuracy across runs demonstrate there is far too
much uncertainty in a realm where robust engineer-
ing is the expectation.

To quantify the problem of instability when tem-
perature=0, we measure it in three LLM families
(GPT, Llama, and Mixtral) on diverse tasks from
two common benchmarks: Massive Multitask Lan-
guage Understanding (MMLU) (Hendrycks et al.,
2021) and BIG-Bench Hard (BBH) (Suzgun et al.,
2023). Figure 1 depicts differences between max-
imimum and minimum accuracies in multiple runs,
showing that the degree of instability changes
across model families, model sizes, tasks and set-
tings. Therefore, performance instability can doubt-
less impact the ranking performance of systems.
Our specific contributions include:

* Quantification of LLM system instability over
8 tasks randomly selected from two common
benchmarks: BBH and MMLU.

* Two metrics, TARr@N (total agreement rate
for raw data across N runs) and TARa@N
(total agreement rate for parsed answer across
N runs) for LLM system instability to capture
the variability in answer accuracy and in the
output word spans.

* Comparison across settings, including zero-

2API-based LLMs refer to the usage of LLMs through
APIs such as OpenAl API or Together API.

shot and few-shot (3 for BBH, 5 for MMLU
as in the standard settings).

* Correlation analyses of instability with accu-
racy, input length, and output length.

* Experiments on locally run LLMs that demon-
strate the desired stability.

« Data from runs and source code.?

2 Related Work

To the best of our knowledge, no work systemati-
cally investigates LLM instability given the same
inputs and configurations (zero-shot and few-shot)
with maximally deterministic hyperparameters for
hosted LLMs. However, there is relevant work on
both robustness of evaluation results in general,
and on instability of hosted LLMs. Biderman et al.
(2024) introduce a standard evaluation toolkit for
LLMs and suggest best practices for reproducibil-
ity, but do not discuss instability. Works on the
robustness of machine learning (ML) models with
trivial changes to the input include (Sehwag et al.,
2019; Freiesleben and Grote, 2023; Hancox-Li,
2020; Rauber et al., 2017). The (Song et al., 2024)
paper, which mentions instability, analyzes the ef-
fect of temperature, sampling strategy, repetition
penalty, and alignment algorithms on performance
evaluation. Findings include that LLMs have some
variance in the output that should be taken into ac-
count in evaluation benchmarks. However, they use
a temperature of 1, thereby introducing the variabil-
ity that our study seeks to minimize. Ouyang et al.
(2025) present an instability analysis of a single
model, ChatGPT, with varying temperatures on the

3https://github.com/breckbaldwin/lim-stability
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Task Description Size | Options
BBH: navigation does path end at start 250 2
BBH: ruin names humorous edit of a band or movie title | 250 4
BBH: geometric shapes shape given SVG format 250 10
BBH: logical deduct. 3 objects | order of 3 objects given constraints 250 3
MMLU: h. s. Europ. hist. identical 165 4
MMLU: college math identical 100 4
MMLU: prof. accounting identical 282 4
MMLU: public rel. media theory, crisis mgmt., etc. 110 4

Table 1: Eight tasks from BBH and MMLU with brief descriptions, and numbers of examples and answer options.

one task of code generation. Lastly, Holtzman et al.
(2020) mention freedom in text generation which
might lead to different outputs for the same inputs,
but they do not talk about the parameters that affect
this behaviour.

3 Datasets

To ensure that our investigation of instability in-
cludes diverse NLP tasks, we selected tasks from
two widely used multiple-choice benchmarks: Be-
yond the Imitation Game Benchmark Hard (BBH)
(Suzgun et al., 2023), with 27 diverse tasks from
mathematics, commonsense reasoning and other
domains; Measuring Massive Multitask Language
Understanding (MMLU) (Hendrycks et al., 2021),
with 57 tasks across disciplines including the hu-
manities, social sciences, and STEM areas. To bal-
ance diversity against computational resources, we
randomly selected four subtasks from each bench-
mark. Table 1 lists the tasks we selected, number of
examples, and number of multiple-choice options.

4 Methods

The subsections here discuss the LLM temperature
parameter, the models we chose, and our metrics.

4.1 Controlling LLM Determinism

The temperature hyperparameter controls the de-
gree of determinism. Equation 1 shows the prob-
ability of word ¢ where 7" is temperature € [0, 1]
and y; is the LLM logit: v
erT

N

j=
Theoretically, when 1" = 0, the LLM should pro-
duce the same output given the same prompt, and
T can be raised to diversify outputs. As shown in
Figure 1, utilization of LLMs through APIs leads
to variable output at T = 0.

(D

v
1€7T

4.2 Models

We chose five top performing models from different
families and with varying sizes: GPT-3.5 Turbo
(Brown et al., 2020), GPT-40 (OpenAl et al., 2024),
Llama-3-70B-Instruct (Meta, 2024), Llama-3-8B-
Instruct (Meta, 2024), and Mixtral-8x7B-Instruct
(Jiang et al., 2024a).

4.3 Metrics

To quantify instability, we report three metrics
based on accuracy that capture accuracy extremes
within a set of runs in a given experimental condi-
tion (model x dataset; see below). We also report
median accuracy; we do not report means and stan-
dard deviations because the distributions in runs
for a given condition are not normal (see below).
Additionally, we present two key metrics that are
variants of Total Agreement Rate@N (TAR@N):
the percentage of test set questions across N runs
where generated answers are all identical, regard-
less of whether the answer was correct. This gives
six measures per condition:

1. TARr@N (TAR@N for the raw model re-
sponse) LLM responses are string equivalent.

2. TARa@N (TAR@N for the parsed answer)
The parsed answers are the same, e.g., “The
answer is a)” is the same as “a) is the answer.”

3. The best possible accuracy over N runs
(BestAcc), which is the maximum possible
accuracy that could be extracted from NV runs.
For each question, if there is a run in which
the answer is correct, that question is marked
as correctly answered.

4. The worst possible accuracy over N runs
(WorstAcc), which is the minimum possible
accuracy that could be extracted from NV runs.
For each question, if there is a run in which the
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Figure 2: Accuracy over 20 identical runs on college
math, temperature=0, top-p=1. Median in blue, mean in
black with dashed 5% and 95% quantiles.

answer is incorrect, that question is marked as
incorrectly answered.

5. Maximum-minimum accuracy difference
across N runs (max-min-diff). Note that be-
cause it represents the largest gap in N runs,
it is not the same as the difference between
BestAcc and WorstAcc.

6. Median accuracy over N runs.

The TARr@N score is very strict, since any charac-
ter variation will result in a disagreement. Thus in
principle, it is possible for the same set of runs to
have 100% TARa@N and 0% TARr@N.

To examine the distributional behavior of accu-
racy scores, we did 20 few-shot runs of GPT-40
and Llama-3-70b on college math, two of the more
unstable conditions. The results in Figure 2 clearly
show non-normal distributions, with mean and me-
dian values far from the mode. A Kolmogorov-
Smirnov normality test (Massey Jr, 1951) rejected
the normal hypothesis with a p-value < 1077,

4.4 Correlation Analyses

In addition to reporting measures of instability, we
also investigate how independent the measures are
using Spearman’s rank correlation test. As part of
this analysis, we include median input length and
median output length as possible correlates.

5 Experimental Conditions

For our investigation of instability, we perform ex-
periments on models without fine-tuning in both
zero-shot and few-shot prompting (without Chain-
of-Thought (CoT) (Wei et al., 2022)). Regarding

the number of examples for few-shot, we use the
standard settings of 3-shot for BBH tasks, and 5-
shot for MMLU tasks.

All runs use the same compute infrastructure, in-
puts, and configurations. However, we should note
that we do not have any control of the compute
infrastructure on the API-side. We set tempera-
ture at O, top-p at 1, and we fix the seed. We use
OpenAl API for GPT models and togetherAPI for
open-sourced models. All experiments are done
in February 2025 (the exact dates are provided on
Github). For the local run that we talk about in Sec-
tion 7.1 was done using Huggingface and Pytorch
on Nvidia A6000 without any optimization.

Our eight datasets, five base models and two set-
tings (zero/few-shot) yield eighty conditions. For
each condition, we performed ten runs.

6 Results

Here, we report our two types of results. Overall
results on the instability measures show that all
five models have a high degree of instability with
respect to both the raw output and the task accura-
cies. The correlation analyses show that instability
increases with output length, and that lower in-
stability correlates with median accuracy for the
few-shot setting.

6.1 Instability Results

Figure 1 summarizes the extremes observed across
our eight datasets for the five models in zero-shot
and few-shot settings. The y-axis is the percentage
difference between the minimum and maximum
accuracies (max-min-diff) in ten runs for each con-
dition. Notably, there are 5-15% differences on
some tasks.

The top of Table 2 reports BestAcc, median ac-
curacy and WorstAcc in the few-shot conditions for
our five models (zero-shot results show a similar
degree of non-determinism, with varying consis-
tency across conditions, see Table 3 in Appendix
A.2). The lower half of the table reports TARa@10
and TARr@10. When there is a gap between
BestAcc and WorstAcc > 10, there is often very
low TARr@10 (e.g., GPT3.5 on geometric shapes,
logical deduction, ruin names; GPT4o on public
relations, European history professional account-
ing, college math). Notably, TARr@10 is typically
fairly low, and there is a lot of variation across mod-
els and datasets. Unsuprisingly, TARa@10 can
be much higher than TARr@10, following from
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Task gpt3.5 gptdo llama8b llama70b mixtral8-7b
BestAcc, Median Accuracy, WorstAcc
navigation 96.8,95.6,93.2 | 98.8,98.8,98.4 | 82.0,80.2,78.0 | 95.2,94.6,93.6 | 84.4,79.0,71.6
geo. shapes 72.4,59.6,46.8 | 82.4,68.4,53.6 | 49.2,40.6,32.8 | 67.2,57.0,47.2 | 54.4,27.8,08.8
logical deduct. | 88.8,81.6,75.2 | 100., 100., 99.6 | 95.6,90.2, 81.2 | 98.0,96.4,95.2 | 87.6, 75.0, 64.0
public rel. 75.5,69.1,65.5 | 80.0,76.4,73.6 | 63.6,61.8,61.8 | 67.3,60.5,53.6 | 58.2,48.2,36.4
Europ. hist. 83.6,81.2,78.2 | 89.1, 81.5,72.1 | 74.5,67.0,59.4 | 61.8,50.3,41.2 | 65.5,51.5,35.8
ruin names 72.0,58.0,44.8 | 93.2,90.8, 88.4 | 68.4,66.8,64.4 | 89.2,87.2,84.4 | 78.8, 67.6,55.6
prof. account | 52.5,50.9,48.9 | 89.0, 74.5,57.8 | 48.2,45.4,44.0 | 78.0, 67.2,55.3 | 67.0,39.0, 13.1
college math 39.0, 38.0, 34.0 | 88.0,69.0,44.0 | 50.0,22.5,04.0 | 85.0,54.5,22.0 | 75.0,31.5,03.0
TARa@10, TARr@10

navigation 96.4,46.0 99.6, 46.0 96.0, 86.0 98.4,64.0 84.8, 50.0
geo. shapes 62.8,25.2 63.2, 00.0 58.8,27.6 66.4, 18.0 12.0,02.4
logical deduct. 84.4,34.8 99.6, 36.8 85.2,50.0 97.2,49.6 74.8, 16.4
public rel. 87.3, 82.7 92.7,37.3 96.4,73.6 81.8,17.3 62.7,10.9
Europ. hist. 94.5,70.9 81.2,09.1 82.4,07.3 73.3,22.4 55.2,23.6
ruin names 66.0, 05.6 95.2,00.0 88.4,47.6 94.4,10.8 70.4,24.8
prof. account 91.1,76.6 66.7, 04.6 89.0, 52.1 69.5, 00.0 23.4,00.7
college math 89.0, 76.0 50.0, 00.0 22.0, 00.0 25.0, 00.0 07.0, 00.0

Table 2: BestAcc, Median Accuracy, WorstAcc on top; TARa@ 10, TARr@ 10 on bottom, for the few-shot conditions
(3 for BBH, 5 for MMLU, see section 5). Results are in terms of percentages.

the fact that TARr@N is a very strict metric (see
above).

Figure 3 shows the TARr@10 for each task
and model in a few-shot setting (for zero-shot
scores, see Figure 12 in Appendix A.2). GPT-3.5
Turbo has lower TARr@10 (less instability) than
other models, and Llama-3-70B often has very low
TARr@10.

Figure 4 shows TARa@ 10 for each condition in
a few-shot setting (see Figure 11 in Appendix A.2
for zero-shot). While the TARa@ 10 results show
less instability than TARr@10, they are still far
from perfect and show task-specific results. The
high scores for the navigation task indicate that
leaderboards on this task can be expected to be
more reliable. On the other hand, the more scat-
tered results for the college math and professional
accounting tasks indicate that results reported on
these tasks are not as robust.

6.2 Correlation Analyses

We perform a Spearman rank correlation analysis
on all pairs of the following metrics: TARa@10,
TARr @10, max-min-diff, median accuracy, median
input length, and median output length. Heat map
results are shown in Figure 5 for the few-shot and
zero-shot prompted models. Here we define accu-
racy as the median accuracy over the 10 runs with
the same model and dataset setup. Input length

and output length are median word counts split
by space, calculated over the input and output of
each LLM experiment setup. We split the words by
space instead of using a particular tokenizer.

The results show a strong to moderate nega-
tive correlation between the output length and
TARa@10, as well as between the output length
and TARr@10 in few-shot/zero-shot settings. Note
this is also consistent with the positive correlation
of output length with max-min-diff. These corre-
lations mean that as an LLM’s output length in-
creases, the instability of the output increases, re-
sulting in more diverse natural language responses
as well as in the actual multiple choice answer pre-
diction. The strong negative correlation between
LLM output length and instability could motivate
those using LLMs in hosted environments to re-
strict the max generation tokens to control the in-
stability. We also see a strong positive correlation
between median accuracy and TARa@10 in the
few-shot setting. This indicates that when the LLM
is more accurate it becomes more deterministic
for multiple choice selections. Additionally, in
the few-shot setting, there is a moderate negative
correlation between the output length and median
accuracy, which indicates that restricting max gen-
eration tokens may improve both determinisim and
accuracy. This is in parallel with the findings in
(Zhang et al., 2024).
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Figure 3: TARr@ 10 for each model in the few-shot setting. Dataset colors have been chosen to distinguish them by
relatively challenging (increasingly dark red hues) versus relatively easy (increasingly dark blue hues).
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Figure 4: TARa@ 10 for each task in the few-shot setting. Models colors have been chosen to distinguish them by
relatively low performing (increasingly dark red hues) versus relatively high performing (increasingly dark blue

hues).

In addition to general correlations, we also look
at correlation maps per model to see how general
findings apply to each.* We find that all models are

more stable when they generate shorter responses.

Notably, Mixtral and Llama-3 models are more
stable when they are more accurate in the few-shot

setting, but the effect varies in the zero-shot setting.

Last but not least, in the few-shot setting GPT-3.5
is more stable when the input is longer, but this
effect shows up less in the zero-shot setting.

7 Discussion

Theoretically, at 0 temperature the LLLMs should
be deterministic given the same input, with values

“These correlation map figures are in Appendix A.1.

of 100% for TARa@10 and TAR@10, the same
values for BestAcc and WorstAcc, and 0% differ-
ence in the minimum and maximum values across
all tasks. Our results show that zero temperature
is far from deterministic for API usage of LLMs.
The TARr@10 scores show that hosted LLLMs are
not stable at the string level in the 7" = 0 setting,
while the TARa@10 scores show they are far more
deterministic at the parsed answer level. String
variation does not affect a human reader much be-
cause we can extract the same answer even if the
output format is different, but a downstream sys-
tem that needs to parse the LLM response can be
affected significantly when the format or pattern is
different. This should be taken into account when
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Figure 5: Spearman correlation matrices for pairs of metrics in the few-shot (left) and zero-shot (right) settings.

using hosted LLMs.

TARa@10 values are much more consistent than
TARr@10, yet still lead to high instablity of up
to 15%, as shown in Figure 1. One caveat is that
our answer extraction system has many hard-coded
parts, which reduces the generality of the system.
Therefore, we have no guarantee that raw outputs
will lead to the exactly the same results for our
various accuracy metrics, if the experiments are
repeated.

Theoretically, the maximum-minimum accuracy
difference (max-min-diff) should be 0%. All LLMs
here demonstrate considerable variation on this
metric. Mixtral-8x7b on college math is 72% (75%
- 3%) for a particularly bad example on suggesting
a truly random element in the generative process
driving the minimum value to 0%. This instabil-
ity lowers confidence in the reliability of reporting
only a single number in LLM benchmarks. We
encourage reporting maximum-minimum scores
across runs to have a more robust comparison of
LLM systems.

7.1 Implications for Practical Engineering

Although the use of multiple GPUs introduces
some randomness (Nvidia, 2024; Dror et al., 2019),
it can be eliminated by setting random seeds, so
that Al models are deterministic given the same
input. In that case, performance errors could be
attributed to the model’s generalization capability
(e.g., under-/over-fitting). However, engineering
optimizations to run LLMs faster, such as contin-
uous batching, chunk prefilling, or prefix caching,
might lead to non-deterministic behavior. Since

141

many of the models are close-sourced (GPT-3-5,
GPT-40), and all are hosted behind APIs we don’t
control, we can only speculate about the reason
for this behavior. In order to support this line of
reasoning, we ran Llama3-8b on our local GPUs
without any optimizations, yielding deterministic
results. This indicates that the models and GPUs
themselves are not the source of non-determinism.
Additionally, we fine-tuned GPT-3.5 using two-
fold cross validation. Although the results indi-
cate that fine-tuning helps reduce instability, we hy-
pothesize that a fine-tuned model cannot be shared
across users and as such, our tasks were the only
ones being run. Hence, fine-tuning itself may not
be the only reason for reduced instability.
Non-deterministic Al brings new challenges to
developers, especially in commercial applications:

* The usage of unit tests for Al functions is
limited because of non-determinism.

* Low stability might also increase the potential
for inexplicable errors that are very different
from human mistakes such as responding as
“none of the above” when the task is a multiple
choice selection.

* Instability of the format of the outputs can
result in downstream parser failures.

* One of the most important effects is in sys-
tem complexity that has to handle gracefully
“asually correct but this time wrong” results.
Zipfian distributions are commonly seen in
applied Al systems where the frequency of an



input/category is inversely related to its rank
in count sorted order frequency o 1/rank).
Testing tends to concentrate on the frequent
events, potentially resulting in user confidence
that the resulting system is stable for the com-
mon inputs. However, the lack of stability
shown here undermines the entire foundation
of this confidence, especially if mistakes are
costly.

8 Conclusion

We have made a systematic analysis of the deter-
minism of hosted LL.Ms with the temperature hy-
perparameter value that should maximize it. Our
results show that such systems can be highly non-
deterministic with 7' = 0. Furthermore, we find
that these LLLMs rarely produce the same response
ten times given the same input; the parsed answer
is often more stable. Note that the observation
that instability results are not normally distributed
makes it more difficult to measure the resulting
uncertainty. Lastly, instability is highly variable
across tasks for the same model, and across models
for the same task.

Other questions about instability remain to be
explored. For instance, how can we reduce the in-
stability of hosted LLM systems during training
or inference time (e.g., adding a meta prompt to
indicate the model is only allowed to answer with
a single letter)? Second, how can the instability
of hosted LLM systems be taken into account in
business products? Third, how should we commu-
nicate with decision-makers about instability? Last
but not least, more analysis could be done to see if
there is any correlation between the stability and
specific types of errors, such as false positives and
false negatives.

Limitations

Our experiments are limited to 8 datasets and mul-
tiple choice questions. Further, we only experi-
mented with 5 LLM systems. However, given the
overal pattern we have observed, we believe that the
findings likely apply to other datasets and LLMs.
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Figure 6: Spearman correlation matrices for GPT-4o for pairs of metrics in the few-shot (left) and zero-shot settings

(right).
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Figure 8: Spearman correlation matrix for Llama-8b between metrics in few-shot setting (on the left) and zero-shot

setting (on the right).
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Task gpt3.5 gptdo llama8b llama70b mixtral8-7b
Accuracy Results
navigation 67.2,64.8,61.6 | 94.8,92.0, 88.8 | 88.4,73.0,54.0 | 94.0, 88.0, 78.4 | 66.0, 57.6, 48.0
geo. shapes 16.8,15.2,13.6 | 76.0,56.8,30.4 | 24.4,18.8,12.0 | 44.4,21.6,6.4 | 29.6,27.0,24.8
logical deduct. | 52.8, 50.8, 48.8 | 100.0, 98.6,96.0 | 72.4,62.8,55.6 | 95.6,92.2, 87.6 | 70.0, 59.6, 49.6
public rel. 66.4,65.0,61.8 | 81.8,75.5,66.4 | 28.2,25.0,19.1 | 39.1,26.4,13.6 | 57.3,46.8,35.5
Europ. hist. 75.2,74.5,72.7 | 76.4,65.2,55.2 | 38.8,34.2,30.3 | 41.2,27.9,19.4 | 66.1, 56.1,45.5
ruin names 67.2,65.6,65.2 | 85.2,83.2,80.0 | 54.8,50.6,45.6 | 67.6,60.0,51.2 | 38.0, 34.4,30.4
prof. account | 60.3,53.2,47.5 | 84.0,72.0,58.5 | 36.2,29.1,25.5 | 54.6,38.7,24.8 | 42.9, 28.9, 20.2
college math 54.0,32.0,15.0 | 85.0,59.0,41.0 | 55.0,34.0,17.0 | 77.0, 58.0,40.0 | 57.0, 31.5, 13.0
TAR Results

navigation 94.4,94.4 91.6,15.2 65.2,9.2 83.2,4.8 77.6,3.2
geo. shapes 91.6,91.6 45.6,0.8 60.4,31.2 39.2,5.6 90.4, 83.6
logical deduct. 92.8,90.4 96.8, 7.6 80.4, 37.6 92.0,16.4 74.4,14.0
public rel. 92.7, 86.4 83.6,38.2 82.7,46.4 56.4,0.9 61.8,10.0
Europ. hist. 94.5,94.5 74.5,17.0 77.6,41.2 53.9,6.1 63.6,19.4
ruin names 95.6,97.2 93.6, 27.6 86.8, 26.8 79.2,11.6 82.4,20.8
prof. account 81.9,49.3 713,43 77.0,44.0 57.8,2.1 48.2,4.3
college math 46.0, 10.0 50.0,0.0 45.0,3.0 54.0,0.0 29.0,2.0

Table 3: BestAcc, Median Accuracy, WorstAcc on top; TARa@10, TARr@10 on bottom, for the zero-shot
conditions. Results are in terms of percentages.
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Figure 11: TARa@ 10 for each task in the zero-shot setting. Model colors have been chosen to distinguish them by
relatively low performing (increasingly dark red hues) versus relatively high performing (increasingly dark blue
hues).
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Figure 12: TARr@ 10 for each model in the zero-shot setting. Dataset colors have been chosen to distinguish them
by relatively challenging (increasingly dark red hues) versus relatively easy (increasingly dark blue hues).
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