Step Guided Reasoning: Improving Mathematical Reasoning using
Guidance Generation and Step Reasoning

Lang Cao' Yingtian Zou'

Chao Peng Renhong Chen

Wu Ning Yitong Li*

{caolang4,liyitong3}@huawei.com

Huawei Technologies Co., Ltd., China, 2Shanghai Jiaotong University

Abstract

Mathematical reasoning has been challenging
for large language models (LLMs), and the in-
troduction of step-by-step Chain-of-Thought
(CoT) inference has significantly advanced
the mathematical capabilities of LLMs. How-
ever, current approaches either necessitate ex-
tensive inference datasets for training or de-
pend on few-shot methods that frequently com-
promise computational accuracy. To address
these fundamental limitations, we propose Step
Guided Reasoning, a novel training-free adapta-
tion framework that efficiently equips general-
purpose pre-trained language models with en-
hanced mathematical reasoning capabilities. In
this approach, LLMs reflect on small reasoning
steps, similar to how humans deliberate and
focus attention on what to do next. By incorpo-
rating this reflective process into the inference
stage, LLMs can effectively guide their rea-
soning from one step to the next. Through
extensive experiments, we demonstrate the
significant effect of Step Guided Reasoning
in enhancing mathematical performance in
state-of-the-art language models — Qwen2-72B-
Instruct outperforms its math-specific counter-
part, Qwen2.5-72B-Math-Instruct, on MMLU-
STEM with a score of 90.9%, compared to
87.3%. The average scores of Qwen2-7B-
Instruct and Qwen2-72B-Instruct increase from
27.1% to 36.3% and from 36.5% to 47.4% in
the math domain, respectively.

1 Introduction

Since the introduction of Chain-of-Thought
(CoT) (Wei et al., 2022) reasoning on LLMs (Yang
et al., 2024c; Zhao et al., 2023; Vaswani et al.,
2017), it has been demonstrated how reasoning abil-
ities naturally emerge in sufficiently large language
models through a simple technique called thought
chaining prompts. This approach involves enrich-
ing the prompts (Sahoo et al., 2024) with thought

* corresponding author. T indicates equal contribution.

chaining examples, which serve as demonstrations
to guide the model’s reasoning process. However,
complex mathematical reasoning remains a signifi-
cant challenge for LLMs (He et al., 2024a). Even
though the accuracy of LLMs in mathematical rea-
soning can be improved with the scaling of model
parameters and that of the training data, the amount
of high-quality CoT data (Cheng et al., 2024) be-
comes the bottleneck (Hoffmann et al., 2022).

There are several approaches to tackle these
challenges in the inference stage, and the meth-
ods discussed below significantly enhance the
model’s performance on both mathematical reason-
ing and MMLU-STEM benchmarks (Hendrycks
et al., 2021a). Cumulative reasoning (Zhang et al.,
2023) has been proposed to make great improve-
ments over MATH datasets (Hendrycks et al.,
2021b). Cumulative reasoning significantly en-
hances problem-solving by decomposing the task
into smaller, more manageable elements and builds
upon prior propositions, improving the overall
effectiveness of problem-solving. Additionally,
Zheng et al. proposed a “Take a Step Back” prompt
(SBP) method, which introduced overall concepts
and principles to guide model reasoning using re-
sults from high-level descriptions of original ques-
tions. Both of these schemes improve the accuracy
of mathematical reasoning by generating intermedi-
ate but useful contexts, namely "scratchpad" (Nye
et al., 2021), during the inference phase.

Another approach to enhancing mathematical
reasoning ability involves methods that increase
computation during the inference stage (Zhang
et al., 2024; Gao et al., 2024; Yao et al., 2024;
Snell et al., 2024). These approaches enable LLMs
to explore multiple possible reasoning paths and
select the most likely correct ones. To be more spe-
cific, techniques such as Best-of-N (BoN) (Cobbe
etal.,2021; Dong et al., 2023) and Tree-of-Thought
(ToT) (Yao et al., 2024) have also been explored.
By scoring intermediate reasoning steps or eval-

21101

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 21101-21118
November 4-9, 2025 ©2025 Association for Computational Linguistics

Stage | (First Iteration)

+
Prompt 1.1: if you need to solve a current
problem, what relevant knowledge do you
need? Ask a question about relevant
knowledge. Please note: You only need to
ask the question, you do not need to
answer it.

Step Guidance Question: This
problem is related with a classic xx
series, which equation should | use?

@
Dﬂﬂ

but organized and informative. +
< <Step Guidance Question>>

Prompt 1.2: The answers should be short,

@ |Step Guidance (1st iteration): |
= [should use the Equ. xx to calc. | can
use Equ.xx to verify.

(<Step Guidance>>; +

5]

Hﬁﬂ

Step Answer (1st iteration): To
address this problem, first | should
transform xxx

Stage Il (Subsequent Iterations)

+
<<Step Answer>>; +

Prompt k.1: If you need to solve the
current problem for the current step, what
relevant knowledge will be needed in the
future?

Step Guidance (k-th): | have already
used the Equ. xx. For the next step, |
can now use Equ.xx to verify.

@
Hﬁﬂ

Prompt k.2: Next for the current topic to
continue the next step of the answer, be
sure not to repeat the previous content, to

answer according to the previous content.
+ <<Step Guidance> >

+ <<Step Answer> >, 4

@
Hﬁﬂ

@ (Final Answer: Above all, the
ﬂ[ﬂﬂ answer to this problem is xxx.

Step Answer (k-th): To address
this problem, first | should
transform xxx Terminated Until the

Figure 1: Illustration of how our proposed SGR method generates step guidance and step answer for each iteration
k. In stage I (k = 1), Prompt 1.1 questions the model to search for relevant knowledge. Subsequently, Prompt 1.2

elicits a guidance from the model by getting it to answer the step guidance question. Original

with such a step

guidance empowers the model to generate a more accurate and well-reasoned step answer. In stage Il (1 < k£ < N),
the step answer at step k is refined by reiterating the process from step answer k — 1 with Prompt k.1 and k.2. We
iteratively enhance the step answer until a satisfactory final answer is obtained.

uating the entire final result, the highest-scoring
outcome by the reward model (RM) (Ouyang et al.,
2022) is selected as the final answer. These strate-
gies have been shown to effectively improve the
model’s mathematical reasoning ability, allowing
it to tackle more complex problems with better
accuracy and reliability.

Our observation in Figure 2 reveals that more
challenging mathematical tasks often demand
deeper and more deliberate multi-step reasoning.
Motivated by this observation, we introduce Step
Guided Reasoning (SGR), a method that explicitly
guides the model through step-by-step reasoning
by encouraging more thoughtful intermediate steps.
This is a simple yet highly flexible approach that
dramatically enhances the reasoning abilities of
general-purpose pretrained models without intro-
ducing any external knowledge. Unlike prior ap-
proaches that rely on an additional reward model,
such as BoN, SGR can be seamlessly applied
to any off-the-shelf pretrained model without
fine-tuning, preserving its broad generalization
abilities. While its iterative design inevitably in-
creases inference latency and token usage com-
pared to single-pass prompting methods such as
CoT or SBP, we show performance gain upon to-
ken costs in Figure 3, which achieves higher accu-
racy but uses a smaller number of sampled tokens
in total compared with resource-intensive strate-

gies like Best-of-N sampling or R1-distilled mod-
els. Remarkably, when mathematical reasoning is
required, Step Guided Reasoning can rapidly ele-
vate a general LLM to expert-level performance,
comparable to or even surpassing math-specific
models or reasoning models. By applying our
method, Qwen2-7B-Instruct improved the accuracy
on the MATH dataset Level 5 (Hendrycks et al.,
2021b), the most difficult level, from 37.1% to
58.6%, while Qwen2-Math-7B-Instruct achieved
an accuracy of 52.0%. Similarly, Qwen2-72B-
Instruct achieved an improvement from 35.8% to
41.2% on the OlympiaBench (He et al., 2024a)
open-ended, no-image English Math Competition
test set, with Qwen2-Math-72B-Instruct achieving
an accuracy of 42.5%. This characteristic makes
Step Guided Reasoning an efficient and practical
solution for deploying versatile LLMs as domain
experts on demand, without sacrificing their gen-
eral capabilities.

2 Method

Step Guided Reasoning (SGR) method employs
a series of reasoning steps during inference, each
step consisting of generating two key components:
a step guidance and a step answer." The step guid-
ance distills the most crucial logical elements and

'All used prompts are listed in Appendix A.1.

21102

generates inferential cues. As a more sophisticated
prompt signal, it fortifies every reasoning step. The
step answer then utilizes these cues comprehen-
sively to produce more refined intermediate step
responses. As a result, the overall reasoning be-
comes more efficient and impactful.

As illustrated in Figure 1, SGR incorporates a
multi-round iterative reasoning mechanism. Dur-
ing the first iteration (Stage-I) of the reasoning,
upon receiving a math query, we first direct the
model to formulate a Step Guidance Question. Sub-
sequently, we prompt the model to engage in in-
depth deliberation and response, thus eliciting a
step guidance. This enables the model to generate
a high-quality step answer autonomously. In the
following iterative cycles (Stage II), we gradually
leverage the step answer obtained from the preced-
ing round to refine the step answer at the k-th step,
until the model outputs a satisfactory result.

SGR method provides a simple guidance mech-
anism that effectively promotes the model’s think-
ing process for any potential auxiliary informa-
tion, thereby fully exploiting the model’s inherent
reasoning abilities. Inspired by CoT prompting,
SGR demonstrates that multi-step reasoning can be
substantially enhanced through carefully designed
self-guidance mechanisms alone. By iteratively de-
composing complex mathematical problems into
manageable sub-steps, our approach significantly
improves both the accuracy and interpretability of
the model’s reasoning process.

2.1 Reasoning Step

SGR consists of multiple iterations as the reason-
ing steps to instruct LLMs during inference. As
shown in Figure 1, the first step initiates a rea-
soning cycle (Stage I), and the subsequent steps
(Stage II) iteratively refine the current step answer.
Each “step” can be defined at various granulari-
ties, including token-level (Zelikman et al., 2024),
sentence-level (Jarrahi et al., 2023), paragraph-
level (Chalkidis et al., 2021; Zhang et al., 2021),
or block-level, typically annotated by human ex-
perts (Lightman et al., 2024). In this paper, we opt
to define a step as a paragraph level, since our ap-
proach focuses on challenging mathematical prob-
lems which generally require answers spanning
thousands of tokens (Fu et al., 2023). Selecting
appropriate granularity for the math domain en-
sures the effectiveness of instruction without losing
coherence or logical flow while minimizing com-
putational overhead.

In practice, we found delimiter . \n\n” serves
as an effective boundary for logical inference
for most instruct models, such as GPT-4/GPT-4o,
Qwen, and LLaMA. However, directly splitting
reasoning at every occurrence of “.\n\n” can lead
to repeated patterns in the model generation, caus-
ing the model to reanalyze the first step instead of
progressing to the next. This issue arises because
the model may interpret each split as a signal to re-
analyze the problem, rather than advancing through
the reasoning process.

To mitigate this problem, we introduce a step
length constraint, where each step, delimited by
“.\n\n”’, must contain a minimum number of char-
acters. This helps ensure that each step contains suf-
ficient information for meaningful reasoning and
reduces the tendency for the model to repeat earlier
analyses. Although this constraint addresses some
of the repetition, LLMs could still exhibit long
repetitive patterns in subsequent steps by chance,
which would be fixed by fine-tuning to improve
instruction following.

In theory, the step length required for different
problems may vary, and even within a single prob-
lem, the length of steps may differ depending on the
complexity of the reasoning required. Ideally, fine-
tuning the language models over manually labelled
data with a special step token could explicitly distin-
guish between steps, providing further clarity and
precision in the reasoning process. However, this
approach is not considered in the current paper, as
our focus remains on leveraging an instruct-tuned
model that requires no additional fine-tuning.

2.1.1 Step Guidance

For each iteration, the prompt guides the LLM to
think about what relevant knowledge is needed next
as step guidance, and the model is then asked to
generate the corresponding reasoning as the step
answer. The model does not revisit or retain pre-
vious step guidance; instead, each generated step
guidance is used exclusively for the current step,
ensuring that each step is handled independently
without carrying over unnecessary context.

For the first iteration, we adopt the SBP ap-
proach (Zheng et al., 2024) by using a question
to obtain a more general step guidance. Specifi-
cally, in the first iteration, the model is prompted
to independently generate a question related to the
query as the step guidance question, and then the
LLM answers this step guidance question, with the
answer serving as the step guidance.

21103

2.1.2 Step Answer

To generate the result of k-th reasoning step, both
the generated step guidance at step k and the pre-
viously accumulated << step answer >>j_1 are
incorporated into the prompt to support continued
reasoning. The generation process is halted once
the model reaches the token ““.\n\n” with a min-
imum length, which indicates the completion of
the current step. This serves as a natural delimiter,
ensuring that each step is sufficiently detailed and
self-contained. To ensure the quality of generation
of the << step answer >>, we explicitly empha-
sized that "not to repeat the previous content" in
the Prompt k.2. However, such repetitions still
occurred. To address this, whenever a duplicate of
the current step is detected, it is removed, and the
model is prompted to resample and generate a new
response. This trick ensures a streamlined reason-
ing process that eliminates unnecessary repetition,
enabling the model to advance smoothly through
each step without redundancy.

2.2 Self-Reflection

SGR method mimics the human self-reflection pro-
cess. It achieves this by iteratively refining the
sub-steps required to reach a goal through multi-
round internal self-questioning, which inherently
constructs a chain of thought by itself. Compared
to CoT, our iterative method does not merely break
the reasoning process into multiple steps, but re-
flects any formulas and theorems that might be
useful and evolve gradually. Therefore, SGR en-
courages the model to reflect more from "its mind",
thereby enhancing the quality of the rationale at
each step within the chain of thought.

Distinct from Retrieval-Augmented Generation
(RAG) (Gao et al., 2023), which leverages addi-
tional pre-existing or externally-retrieved context
to enhance reasoning, our step answer mechanism
hinges on step guidance where the additional con-
text is excited by the model’s inherent reasoning
abilities, rather than being sourced from external
repositories. Step Guided Reasoning enables foun-
dation models to attain competitive, contextually-
aware multi-step reasoning performance on-the-fly
without any need for task-specific fine-tuning or
expensive test-time reflection process. It not only
imparts greater flexibility and adaptability to the
reasoning process, but also empowers foundation
models to dynamically tailor their reasoning strate-
gies, turns out to be a reasoning expert at hand.

3 Experiments

3.1 Experimental Setups

Datasets For evaluation, we use four represen-
tative challenging math benchmarks, AMC23 (Al-
MO, 2024a), MATH (Hendrycks et al., 2021b),
AIME24 (AI-MO, 2024b) and OlympiadBench
(OLY) (He et al., 2024b) with the open-
ended, no-image English Math Competition
(OE_TO_maths_en_COMP) tag. The selected
mathematics test sets are all challenging and
include competition-level questions (See Ap-
pendix A.3).

To assess the generalisability of our method,
whether it is effective beyond mathematical rea-
soning domains, we selected MMLU (Hendrycks
et al., 2021a) with STEM tags (MMLU-STEM)
for evaluation. STEM, which encompasses the
fields of Science, Technology, Engineering, and
Mathematics, often requires specialized problem-
solving skills. Each of the four datasets provides
the problem as a query along with a reference an-
swer, and we report the accuracy by comparing the
final output of the LLM with the reference answer.
Specifically, for the MMLU-STEM test dataset, a
multiple-choice dataset, we determine the accuracy
by comparing the final selected answer option with
the reference answer. For the other test sets, we first
accurately extract the final answer from the refer-
ence answer and then compare this extracted final
answer with the answer generated by the model
to ensure that the model output aligns with the in-
tended task objectives. To ensure the reliability and
consistency of our evaluation, we use GPT-4 (Ope-
nAl et al., 2024) as our validation tool, a model
that has demonstrated near-human level evaluation
capabilities (Sottana et al., 2023).

Models Given that the SGR method demands
that LLMs display remarkably strong and com-
prehensive capabilities, we choose Qwen2-72B-
Instruct, Qwen2-7B-Instruct (Yang et al., 2024a),
LLaMA3.1-8B-Instruct (Dubey et al., 2024) and
LLaMAZ2-70B-Instruct (Touvron et al., 2023) as
our experimental models.

We also use a distilled version of DeepSeek-
R1 of Qwen-7b and LLaMA2-8b (DeepSeek-
Al et al., 2025) to compare with Qwen-7b and
LLaMAZ2-8B as the base instruct models promoted
by our method. We also compared our method
with the state-of-the-art expert models QwQ-32B-
Preview (Team, 2024), Qwen2-Math-7B-Instruct,

21104

MATH

Method AMC23 AIME24 OLY Average
L1 L2 L3 L4 L5 Average
Qwen2-Math-72b-inst [95.0] [94.1] [90.5] [83.7] [67.7] [83.9] 60.0 [20.0] [425] [51.7]
GPTAo CoT 917 860 749 538 76.6 15.0 100 433 36.2
SBP 913 883 8L1 715 512 730 15.0 6.7 433 344(-18)
CoT 914 853 773 669 461 69.2 35.0 6.0 35.8 36.5
Qwen2-72b-inst SBP 886 822 721 602 387 63.6 363 1.7 327 33.6(-2.9)
L2M 929 908 837 748 548 759 413 6.7 440 42.0(+5.5)
SGR 939 893 837 769 656 792 8.0 412 47.4(+109)
CoT 762 612 508 366 212 437 20.0 8.0 14.4 215
LLaMA3.1-8b-inst SBP 753 593 481 364 212 425 11.3 5.0 185 19.3(-2.2)
I2M 852 724 624 487 316 547 17.5 5.0 271 26.1(+4.6)
SGR 817 768 715 668 612 69.5 18.8 6.0 227 292(+7.7)
Method MMLU-STEM

Physics Chemistry Biology Computer Science Math Engineer Average

Qwen2.5-Math-72b-inst 88.2 78.7 86.9 83.9 92.6 81.2 87.3

GPT-4o CoT 90.0 64.8 94.7 85.3 87.8 83.3 86.1
SBP 89.6 82.1 95.1 87.0 87.9 77.8 87.8(+1.7)

CoT 86.3 74.9 93.8 81.8 86.5 75.3 85.3

Qwen2-72b-inst SBP 81.8 70.6 91.4 80.3 82.7 71.9 81.5(-3.8)
L2M 80.8 71.9 89.7 82.8 86.5 76.8 83.0(-1.7)
SGR [90.7] [832] [95.1] [91.3] [927] 788 [90.9]+5.6)

CoT 59.4 62.4 56.1 78.4 61.2 64.9 69.2

LLaMA3.1-8b-inst SBP 62.7 57.7 71.6 60.2 65.4 65.7 64.9(-4.3)
L2M 64.0 524 75.8 65.0 69.2 64.6 66.4(-2.8)
SGR 717 82.1 78.6 89.2 85.9 82.4(+13.2)

Table 1: Accuracy comparison (%) of CoT, SBP(5-shot), Least-to-Most(L2M) and our SGR methods with the SOTA
over MATH (Level 1 to Level 5), AMC23, AIME24, MMLU-STEM and OLY datasets. We also compare the results
of open-sourced SOTA math-specific models - the QwQ, Qwen-Math models and GPT-4o (full results refer to Table
5 in the Appendix). The best results of all are in and best results for each base are in Bold, and the grey

numbers in the brackets indicate the improvements in terms of the models boosted by CoT.

Qwen2-Math-72B-Instruct (Yang et al., 2024a),
Qwen2.5-Math-7B-Instruct, Qwen2.5-Math-72B-
Instruct (Yang et al., 2024b), and GPT-40 (OpenAl,
2023).

Comparisons Alongside the 0-shot CoT results
for LLMs, we also compare with three represen-
tative methods: Best-of-N (BoN) (Cobbe et al.,
2021), “Take a Step Back Prompt” (SBP) (Zheng
et al., 2024), and Least-to-Most (L2M) prompt-
ing (Zhou et al., 2023). For BoN, we sample 16 or
32 responses for each problem using Qwen2-7B-
Instruct and use Qwen2.5-Math-RM-72B (Yang
et al., 2024b) to score these responses, and select
the highest score response as the final result. For
SBP, we adopt the original prompt template and
examples from the SBP method, which is a 5-shot
prompt to generate both the principal and the final
answers. For the L2M method, we follow the orig-
inal implementation, prompting the model to de-

compose challenging problems into a sequence of
simpler sub-questions and solve each sub-question.

Hyperparamters For the decoding strategy, we
set temperature to 1.0 and set top_p to 1.0 or 0.7 for
sampling.” All experimental results are reported as
the average accuracy scores under top_p values of
0.7 and 1.0. The step length constraint for MATH
and MMLU-STEM was specified as 300, while for
the AIME24 dataset, it was set to 500. We use a
maximum of 10 iterations for all test cases. If there
is a duplication between steps, it will delete and
re-sample the solution in the current step. We con-
ducted the experiment using 8 V100 GPUs, with
each problem in the test dataset generating an aver-
age output of 6,384 tokens from the MATH dataset
by the Qwen2-7B-Instruct. We use float32 pre-
cision for the LLaMA3.1-8B-Instruct/Qwen2-7B-

2We observed that top_p decoding tends to mitigate repeti-
tion compared with greedy decoding.

21105

MMLU-STEM

Method
Physics Chemistry Biology Computer Science Math Engineer Average

Qwen2-7b-inst CoT 65.9 56.0 79.5 64.7 73.2 62.2 64.9
wen=-fbmns SGR 792 723 88.9 85.2 B4l 740 823(+174)
DeepSeek-R1-Distill-Qwen-7b CoT 81.0 75.1 71.7 724 90.8 72.2 80.6(+12.3)

. CoT 59.4 62.4 56.1 78.4 61.2 64.9 69.2
LLaMAS.1-8b-inst SGR 717 82.1 78.6 89.2 859 811 824(+132)
DeepSeek-R1-Distill-Llama-8b CoT 74.9 75.1 81.2 70.7 82.5 65.3 77.2(+8.0)

Table 2: This figure compares the MMLU-STEM accuracy (%) of LLaMA3.1-8B-series and Qwen2-7B-series
under three conditions: (1) the Chain of Thought (CoT) results using the instruct model as baseline, (2) the
results after applying the SGR method through instruct models, and (3) the performance following distillation with
DeepSeek-R1 (DeepSeek-Al et al., 2025). The best results of the same model are in Bold.

Instruct model, but float16 precision for the Qwen2-
72B-Instruct model, leading to some degree of per-
formance degradation. The native float16 precision
is utilized for the LL.aMA2-70B-Instruct model.

3.2 Experimental Results

The comparison results in Table 1 demonstrate
the superior performance of our method (SGR)
across various datasets. On the MATH dataset,
particularly with the Qwen2-72b-inst model, SGR
achieves an average accuracy of 79.2%, marking a
significant improvement over CoT’s 69.2%. This
improvement is especially notable at the higher dif-
ficulty levels, where SGR demonstrates its robust-
ness and effectiveness in handling complex prob-
lems. Similarly, with the LLaMA3.1-8b-inst model,
SGR continues to outperform other methods across
all levels, underscoring its adaptability and supe-
rior problem-solving capabilities. These results
highlight the efficacy of SGR in improving model
performance, making it a promising approach for
complex computational tasks.

In Table 1, SGR consistently demonstrates su-
perior accuracy across six disciplines, extending
beyond the math domain to showcase its effective-
ness of general knowledge as well. Our method
outperforms CoT with improvements of 5.6% and
13.2% on Qwen2-72b-inst and LLaMA3.1-8b-inst
respectively. In contrast, SBP and L2M perform
even lower than CoT, highlighting the substantial
advantage SGR offers. These results underscore
SGR’s robust capability in enhancing model per-
formance across diverse STEM disciplines, estab-
lishing it as a more effective approach compared
to traditional methods. Full experimental results of
other base models (QwQ-32b-Preview, Qwen2.5-
Math-72b-inst, GPT40, LLaMA2-70b-inst etc.) are
shown in Appendix Table 5.

Comparison to R1-Distilled Model We also
compare SGR to reasoning-enhanced models
which are distilled from DeepSeek-R1. In Table 2,
SGR significantly enhances the MMLU-STEM per-
formance of base models, enabling them to surpass
this distilled counterpart. Specifically, applying
SGR to Qwen2-7b-inst boosted its average accu-
racy from 64.9% (CoT) to 82.3%. Similarly, the
LLaMA3.1-8b-inst model, when augmented with
SGR, outperforms DeepSeek-R1-Distill-Llama-8b
and achieves high scores in Computer Science,
Math, and Engineering. It is noteworthy that de-
spite DeepSeek-R1 providing substantial reasoning
knowledge to the base model, prompting it with tra-
ditional CoT still limits its reasoning ability when
compared to the gains achieved by SGR. These
results underscore SGR’s substantial contribution
to enhancing and unleashing the reasoning capabil-
ities of instruct models on complex STEM tasks,
positioning them favorably even against models
specifically distilled for improved reasoning.

3.3 Analysis

Number of Reasoning Steps We plot the num-
ber of steps required when the correct answer first
appears in different levels on MATH. Figure 2
shows that the percentage of correct answers con-
centrates on the first four steps of reasoning (espe-
cially, 50% of correct answers appear at the first
step). Intuitively, harder (higher-level) problems
generally require more steps to reach a final so-
lution compared to easier (lower-level) problems,
which corroborates with the results.

Token Numbers vs Accuracy Figure 3 illus-
trates the relationship between the average number
of tokens per query and the accuracy generated by
the Qwen2-7B-Instruct model on the MATH and

21106

Percentage of Different Steps on the MATH

" 0.6 —e— level 1
o —m--
20.5 =-- Level 2
] —4- Level 3
504 Level 4
%0.3 —— Level 5
2
$0.2
-
K 0.1

0.0 ¢ —t

Step Number

Figure 2: Illustrations of the proportion of different steps
at where the correct answer first appears for problems
across various difficulty levels over the MATH dataset.
We report the average accuracies of the outputs from
Qwen2-7b-Instruct with top_p values of 0.7 and 1.0.

MMLU-STEM test sets using different methods.
SGR shows significantly higher results than CoT
and SBP on both datasets. Notably, we achieve
better results than BoON @32 while using less than
half the number of tokens on MATH, which demon-
strates the efficiency of our method.

Optimal Step Length We evaluate models’ per-
formance using different step lengths, ranging from
100 to 600, on the MATH dataset. The step length
serves as a crucial hyperparameter, where the ex-
act split point is dynamically determined by the
first occurrence of the sequence “.\n\n” follow-
ing the specified initial step length. As illustrated
in Figure 4, we observe that when the step length
ranges from 200 to 500, the accuracy is signifi-
cantly higher compared to the baseline, with only
minor variations in accuracy across this range.

Case Study To understand how our method im-
proves the reasoning procedure, we demonstrate
an example in Figure 6. Compared to CoT at step
1, when calculating the “second train”, the step
guidance generated by SGR can help the model
carry out the correct logical reasoning, while CoT
reasoning makes an error. Compared to CoT, our
iterative method gives more guidance to the reason-
ing process. The full contents of this example are
included in the Appendix A.4.

3.4 Ablation

As shown in Figure 1, to explore the impact of each
individual component, we extend ablation studies
of the two stages of SGR independently. In stage
I, we prompt the LLMs to ask a step guidance
question without employing a few-shot template,
allowing the model to answer the step guidance

Token Numbers and Accuracy on MATH and MMLU-STEM

CoT on MATH X []
SBP on MATH
SGR on MATH
QwQ on MATH
BoN@32 on MATH X
CoT on MMLU-STEM
SBP on MMLU-STEM
SGR on MMLU-STEM
QwQ on MMLU-STEM
BoN@32 on MMLU-STEM
X

Accuracy
N N o
o ul o
X X X X o000

(o)}
w

X

(<2}
o

=
o
~

103 104
Token Numbers

Figure 3: The scatter plot between the token numbers
per query and accuracy for the MATH and MMLU-
STEM datasets by Qwen2-7B-Instruct in different meth-
ods and QwQ-32B-Preview.

Accuracy (%) on Different Step Length (SL) on MATH

Accuracy (%)
© o
()] ~

o
5

I
IS

Level 3 Level 4 Level 5

Step Length

0'3Level 1 Level 2

Figure 4: Accuracies vs. step length thresholds on the
MATH dataset using SGR over Qwen2-7B-Instruct. The
0-shot Chain of Thought (CoT) and Step-Back Prompt
(SBP) generated by the same model are compared as
the baseline.

question directly as the step guidance. In stage II,
we directly ask the model what knowledge it needs
to use next and continue the process iteratively as
step guidance.

The experimental results are presented in Table 3.
When we check step guidance and step answer,
we find that for particularly challenging problems,
e.g. OLY, the LLM struggles to generate the step
guidance question, often repeating the query. This
severely undermines the effectiveness of step guid-
ance. However, when the LLM is allowed to di-
rectly use the prompt from Stage II to generate step
guidance, the quality of the step guidance is signif-
icantly improved compared to Stage 1. As a result,
SGR achieves higher accuracy on OLY using only
Stage II, outperforming the full SGR. However, we
do not consider Stage I to be ineffective. This is
because, compared with the complete SGR method,
it can bring more significant improvements in the
overall performance in MATH.

21107

MATH

Method OLY AMC23 AIME24 Average
L1 L2 L3 L4 L5 Average
CoT 85.1 734 652 524 371 57.8 20.1 28.8 1.5 27.1
. Stagel 845 729 665 56.7 435 60.8 20.7 325 3.0 29.3 (+2.2)
Qwen2-7b-inst
StageIl 88.6 777 688 584 40.1 62.3 40.9 27.5 0 32.7 (+5.6)
SGR 902 813 746 683 58.6 71.4 333 38.8 1.5 36.3 (+9.2)
CoT 914 853 773 669 46.1 69.2 35.8 35.0 6.0 36.5
Qwen2-72b-inst Stagel 88.1 804 741 627 46.8 66.5 31.6 37.5 5.0 35.2 (-1.3)
Stagell 939 87.6 821 71.6 539 74.0 50.0 45.0 6.7 43.9 (+7.4)
SGR 939 893 837 769 65.6 79.2 41.2 61.3 8.0 47.4 (+10.9)
CoT 762 612 508 366 212 43.7 14.4 20.0 8.0 21.5
LLaMA3.1-8boinst Stagel 69.1 536 453 335 226 40.1 12.6 18.8 8.0 19.9 (-1.6)
Stagell 77.6 66.0 556 435 276 49.1 26.8 23.8 5.0 26.2 (+5.1)
SGR 817 768 715 668 61.2 69.5 22.7 18.8 6.0 29.3 (+7.8)
CoT 4.5 254 158 9.6 52 15.7 23 4.0 0.0 5.5
LLaMA2-70bsinst Stagel 348 186 11.2 6.0 3.1 11.2 3.8 0.0 2.7 4.4 (-1.],)
StageII 436 279 174 121 6.4 174 7.5 83 4.1 9.3 (+3.8)
SGR 387 253 168 113 7.1 16.3 2.7 5.0 33 6.8 (+1.3)
Method MMLU-STEM
Physics Chemistry Biology Computer Science Math Engineer Average
CoT 65.9 56.0 79.5 64.7 73.2 62.2 64.9
Qwen2-Tb-inst Stage I 65.7 55.1 71.17 65.0 72.5 58.3 62.9 (-2.0)
Stage I~ 77.0 71.6 85.6 84.2 84.9 73.6 81.0 (16.1)
SGR 79.2 72.3 88.9 85.2 84.1 74.0 82.3 (17.4)
CoT 86.3 74.9 93.8 81.8 86.5 75.3 85.3
Qwen2-72b-inst Stage I 84.8 71.1 90.7 79.8 83.6 70.5 82.9 (-2.4)
Stage Il 92.6 88.4 95.6 92.7 92.0 79.9 91.5 (+6.2)
SGR 90.7 83.2 95.1 91.3 92.7 78.8 90.9 (+5.6)
CoT 59.4 62.4 56.1 78.4 61.2 64.9 69.2
LLaMA3.1-8boinst Stagel 59.7 61.4 54.0 77.0 62.0 60.9 67.9 (-1 “v)
Stage Il ~ 82.8 71.3 91.7 87.8 82.4 79.9 83.7 (+14.5)
SGR 71.7 82.1 78.6 89.2 85.9 81.1 82.4 (+13.2)
CoT 46.0 39.4 72.0 55.9 38.7 51.8 48.1
LLaMA2-70boinst ~ Stagel 49.9 40.0 74.2 55.7 37.1 55.6 48.9 (+0.9)
StageIl 71.3 65.0 85.1 76.5 61.7 75.4 70.0 (+21.9)
SGR 69.3 62.3 83.1 75.3 57.9 71.5 67.3 (+19.2)

Table 3: Accuracy(%) for Qwen2-7B-Instruct, Qwen2-72B-Instruct, LLaMA3.1-8B-Instruct and LLaMA2-70B-
Instruct using different prompting methods on MATH, AMC23, AIME24, OLY and MMLU-STEM test datasets.
The stage I refers to the initial iteration within SGR framework (0-shot). The stage II is the second SGR involves
enhancing the first iteration by prompting the model from the outset to decide what action to take next. The best

results are in Bold for each base.
denotes higher results.

4 Benchmarking on Diverse Non-STEM
Tasks

To assess the generalizability of our approach,
we conducted extended experiments on two non-
STEM datasets, SimpleQA (Wei et al., 2024)
and DROP (Dua et al., 2019). SimpleQA is
a representative benchmark for factual QA and
DROP is a complex reasoning QA task, respec-
tively. SimpleQA focuses on short, fact-based ques-
tions, while DROP requires multi-step reasoning
and information synthesis over longer paragraphs.

Red indicates lower results compared to the CoT baselines, while Green

Similarly, we compared our SGR method with
several strong baselines, including SBP (Zheng
et al., 2024), L2M (Zhou et al., 2023), and 0-shot
CoT (Wang et al., 2023).

Table 4 summarizes the results. Notably, we
observe that SGR consistently outperforms the
baselines, especially on the DROP dataset, where
DROP requires complex reasoning. This highlights
the effectiveness of SGR in reasoning scenarios
again and also demonstrates the generalization of
our methods across non-mathematical reasoning
QA benchmarks.

21108

Models / Methods SimpleQA DROP
Qwen3-8B-Instruct - 79.5
QwQ-32B-Preview 2.0 74.1
Claude-3-Sonnet 5.1 -
GPT-3.5 - 64.1
Qwen2-7B-instruct
0-shot CoT 2.4 59.9
SBP 1.7 60.1
L2M 1.6 62.8
SGR (Ours) 2.6 70.7
Qwen2-72B-instruct
0-shot CoT 6.9 68.6
SBP 5.3 70.7
L2M 4.7 59.9
SGR (Ours) 6.9 75.6

Table 4: Experiments on SimpleQA and DROP. All
methods under each model section utilize the corre-
sponding model, demonstrating SGR’s generalization
capability across non-mathematical, factual and reason-
ing QA benchmarks.

5 Human Evaluation of SGR-Generated
Answers on MATH

To further verify the model’s performance, we
make human evaluations of two comparisons, SGR
using Qwen2-72/7B-Instruct (Yang et al., 2024a)
vs. a thinking model QwQ-32B-Preview (Team,
2024), and SGR vs. SBP. We sampled 20 questions
from the MATH test set, where we collected the
corresponding answer pairs from both models for
each sampled question.

For annotation, we invited 10 mathematics an-
notators with extensive experience in mathemati-
cal data analysis to conduct a preference evalua-
tion. The evaluation was carried out double-blind
that all annotators were unaware of which model
produced each answer. Each annotator indepen-
dently assessed the answer pairs according to a
standardized rubric, which included criteria such
as correctness, clarity of reasoning, logical rigor,
completeness of solution steps, and overall expla-
nation quality. Answers that demonstrated clear
step-by-step reasoning, were well-organized, and
provided sufficient explanation for each step were
more likely to be favored.

As shown in Figure 5, QwQ-32B-Preview was
favored in 61.5% of cases, while the SGR method
was preferred in 38.5% of cases. Although SGR
did not outperform QwQ-32B-Preview, it still
showed competitive performance, given that QwQ
is specifically fine-tuned for thinking tasks while
SGR is a tuning-free method. When comparing

Human Preference Comparison: QwQ/SBP vs SGR

E QwQ
[sBP
BN SGR

61.5% 61.0%

D
(=]
1

Preference (%)
2

&
S
L

SGR vs SBP

QwQ vs SGR

Figure 5: Human preference evaluation between QwQ-
32B-Preview, Qwen2-7B/72B-Instruct models with
SBP and Qwen2-7B/72B-Instruct models with SGR.
Results show the percentage of cases where human an-
notators preferred each model’s responses in pairwise
comparisons across evaluation tasks.

with SBP, SGR method consistently outperformed
SBP, and Statistical analysis showed that the dif-
ference is significant. These observations suggest
that SGR can serve as a strong baseline or comple-
mentary approach, especially in scenarios where
task-specific fine-tuning is not feasible.

6 Conclusion

We propose a step-by-step reasoning method that
incorporates guidance generation within each step
for multiple reasoning tasks. Our method, appli-
cable to general instruct LLMs without the need
for further fine-tuning, employs self-questioning
and self-answering at each reasoning step, where
the model generates and answers to guide the step
answer, enhancing the overall reasoning process.
When the model demonstrates a certain level of
accuracy through CoT, it can significantly improve
performance on challenging mathematical and log-
ical reasoning problems across different-sized and
series of models. Compared with the SOTA meth-
ods, our approach can achieve stable improvements
without the need for the Reward Model (RM), nor
does it require fine-tuning.

Limitations

Since extended reasoning sequences characteristic
of our SGR approach demand considerable com-
putational overhead, further optimization could un-
lock even greater performance gains from this large-
scale model. Additionally, although we have ver-
ified that the SGR method leads to improvements
across STEM domains, our evaluation has been
primarily focused on mathematical reasoning tasks.

21109

The generalizability of our approach to more chal-
lenging AIGC tasks and broader domains remains
an open question that warrants future investigation.

References

AI-MO. 2024a. Aimo validation amc dataset on hug-
ging face.

AI-MO. 2024b. Aimo validation dataset on hugging
face.

Ilias Chalkidis, Manos Fergadiotis, Dimitrios Tsarapat-
sanis, Nikolaos Aletras, Ion Androutsopoulos, and
Prodromos Malakasiotis. 2021. Paragraph-level ratio-
nale extraction through regularization: A case study
on european court of human rights cases. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT 2021, Online, June 6-11, 2021, pages 226-241.
Association for Computational Linguistics.

Xiaoxue Cheng, Junyi Li, Wayne Xin Zhao, and Ji-Rong
Wen. 2024. Chainlm: Empowering large language
models with improved chain-of-thought prompting.
In Proceedings of the 2024 Joint International Con-
ference on Computational Linguistics, Language Re-
sources and Evaluation, LREC/COLING 2024, 20-25
May, 2024, Torino, Italy, pages 2969-2983. ELRA
and ICCL.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao
Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang
Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, and et al.
2025. Deepseek-rl: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan
Zhang, Winnie Chow, Rui Pan, Shizhe Diao, Jipeng
Zhang, Kashun Shum, and Tong Zhang. 2023. RAFT:
reward ranked finetuning for generative foundation
model alignment. Trans. Mach. Learn. Res., 2023.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pages 2368-2378.
Association for Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, and et al. 2024.
The llama 3 herd of models. CoRR, abs/2407.21783.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2023. Complexity-based prompting for
multi-step reasoning. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2023. Retrieval-
augmented generation for large language models: A
survey. CoRR, abs/2312.10997.

Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu,
Hongzhang Liu, Aiwei Liu, Xuming Hu, and Lijie
Wen. 2024. Interpretable contrastive monte carlo tree
search reasoning. CoRR, abs/2410.01707.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan
Liu, and Maosong Sun. 2024a. Olympiadbench:
A challenging benchmark for promoting AGI with
olympiad-level bilingual multimodal scientific prob-
lems. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, pages 3828-3850. Association
for Computational Linguistics.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan
Liu, and Maosong Sun. 2024b. Olympiadbench:
A challenging benchmark for promoting AGI with
olympiad-level bilingual multimodal scientific prob-
lems. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, pages 3828-3850. Association
for Computational Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021a. Measuring massive multitask language
understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the MATH dataset. In Pro-
ceedings of the Neural Information Processing Sys-
tems Track on Datasets and Benchmarks 1, NeurIPS
Datasets and Benchmarks 2021, December 2021, vir-
tual.

21110

https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://doi.org/10.18653/V1/2021.NAACL-MAIN.22
https://doi.org/10.18653/V1/2021.NAACL-MAIN.22
https://doi.org/10.18653/V1/2021.NAACL-MAIN.22
https://aclanthology.org/2024.lrec-main.265
https://aclanthology.org/2024.lrec-main.265
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=m7p5O7zblY
https://openreview.net/forum?id=m7p5O7zblY
https://openreview.net/forum?id=m7p5O7zblY
https://doi.org/10.18653/V1/N19-1246
https://doi.org/10.18653/V1/N19-1246
https://doi.org/10.48550/ARXIV.2407.21783
https://openreview.net/forum?id=yf1icZHC-l9
https://openreview.net/forum?id=yf1icZHC-l9
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2410.01707
https://doi.org/10.48550/ARXIV.2410.01707
https://doi.org/10.18653/V1/2024.ACL-LONG.211
https://doi.org/10.18653/V1/2024.ACL-LONG.211
https://doi.org/10.18653/V1/2024.ACL-LONG.211
https://doi.org/10.18653/V1/2024.ACL-LONG.211
https://doi.org/10.18653/V1/2024.ACL-LONG.211
https://doi.org/10.18653/V1/2024.ACL-LONG.211
https://doi.org/10.18653/V1/2024.ACL-LONG.211
https://doi.org/10.18653/V1/2024.ACL-LONG.211
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models. CoRR, abs/2203.15556.

Ali Jarrahi, Ramin Mousa, and Leila Safari. 2023.
SLCNN: sentence-level convolutional neural network
for text classification. CoRR, abs/2301.11696.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth In-
ternational Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Maxwell I. Nye, Anders Johan Andreassen, Guy Gur-
Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten
Bosma, David Luan, Charles Sutton, and Augustus
Odena. 2021. Show your work: Scratchpads for inter-
mediate computation with language models. CoRR,
abs/2112.00114.

OpenAl. 2023. Gpt-4o: Contributions. https://
openai.com/gpt-4o-contributions/. Accessed:
2025-01-21.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, Red Avila, and et al. 2024. Gpt-4
technical report. Preprint, arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha,
Vinija Jain, Samrat Mondal, and Aman Chadha.
2024. A systematic survey of prompt engineering in
large language models: Techniques and applications.
CoRR, abs/2402.07927.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters.
CoRR, abs/2408.03314.

Andrea Sottana, Bin Liang, Kai Zou, and Zheng Yuan.
2023. Evaluation metrics in the era of GPT-4: reli-
ably evaluating large language models on sequence
to sequence tasks. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2023, Singapore, December 6-
10, 2023, pages 8776-8788. Association for Compu-
tational Linguistics.

Qwen Team. 2024. Qwq: Reflect deeply on the bound-
aries of the unknown.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, and et al.
2023. Llama 2: Open foundation and fine-tuned chat
models. CoRR, abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998—6008.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Jason Wei, Nguyen Karina, Hyung Won Chung,
Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
John Schulman, and William Fedus. 2024. Mea-
suring short-form factuality in large language models.
CoRR, abs/2411.04368.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, and et al. 2024a. Qwen?2 technical
report. CoRR, abs/2407.10671.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang
Ren, and Zhenru Zhang. 2024b. Qwen2.5-math tech-
nical report: Toward mathematical expert model via
self-improvement. CoRR, abs/2409.12122.

Haomiao Yang, Kunlan Xiang, Mengyu Ge, Hongwei
Li, Rongxing Lu, and Shui Yu. 2024c. A com-
prehensive overview of backdoor attacks in large

21111

https://doi.org/10.48550/ARXIV.2203.15556
https://doi.org/10.48550/ARXIV.2203.15556
https://doi.org/10.48550/ARXIV.2301.11696
https://doi.org/10.48550/ARXIV.2301.11696
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://openai.com/gpt-4o-contributions/
https://openai.com/gpt-4o-contributions/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2402.07927
https://doi.org/10.48550/ARXIV.2402.07927
https://doi.org/10.48550/ARXIV.2408.03314
https://doi.org/10.48550/ARXIV.2408.03314
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.543
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.543
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.543
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.48550/ARXIV.2411.04368
https://doi.org/10.48550/ARXIV.2411.04368
https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.1109/MNET.2024.3367788
https://doi.org/10.1109/MNET.2024.3367788

language models within communication networks.
IEEE Netw., 38(6):211-218.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna
Jayasiri, Nick Haber, and Noah D. Goodman. 2024.
Quiet-star: Language models can teach themselves
to think before speaking. CoRR, abs/2403.09629.

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao
Dong, and Jie Tang. 2024. Rest-mcts*: LLM self-
training via process reward guided tree search. CoRR,
abs/2406.03816.

Qinglin Zhang, Qian Chen, Yali Li, Jiaging Liu, and
Wen Wang. 2021. Sequence model with self-adaptive
sliding window for efficient spoken document seg-
mentation. In IEEE Automatic Speech Recognition
and Understanding Workshop, ASRU 2021, Carta-
gena, Colombia, December 13-17, 2021, pages 411—
418. IEEE.

Yifan Zhang, Jingqgin Yang, Yang Yuan, and An-
drew Chi-Chih Yao. 2023. Cumulative reasoning
with large language models. CoRR, abs/2308.04371.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. CoRR,
abs/2303.18223.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen,
Heng-Tze Cheng, Ed H. Chi, Quoc V Le, and Denny
Zhou. 2024. Take a step back: Evoking reasoning via
abstraction in large language models. In The Tivelfth
International Conference on Learning Representa-
tions.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations.

21112

https://doi.org/10.1109/MNET.2024.3367788
https://doi.org/10.48550/ARXIV.2403.09629
https://doi.org/10.48550/ARXIV.2403.09629
https://doi.org/10.48550/ARXIV.2406.03816
https://doi.org/10.48550/ARXIV.2406.03816
https://doi.org/10.1109/ASRU51503.2021.9688078
https://doi.org/10.1109/ASRU51503.2021.9688078
https://doi.org/10.1109/ASRU51503.2021.9688078
https://doi.org/10.48550/ARXIV.2308.04371
https://doi.org/10.48550/ARXIV.2308.04371
https://doi.org/10.48550/ARXIV.2303.18223
https://openreview.net/forum?id=3bq3jsvcQ1
https://openreview.net/forum?id=3bq3jsvcQ1
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

A Appendix

A.1 Prompt

Prompt 1:

«question»

If you need to solve a current problem for a current
problem, what relevant knowledge do you need?
Ask a question about relevant knowledge. Please
note: You only need to ask the question, you do
not need to answer it.

Prompt 2:

The answers should be short, but organized and
informative.

«Step Guider Question»

Prompt 3:

If you need to solve the current problem for the
current step, what relevant knowledge will be
needed in the future?

Prompt 4:

Next for the current topic to continue the next step
of the answer, be sure not to repeat the previous
content, to answer according to the previous
content.

«Step Guidance»

A.2 Comparison

As shown in Table 5 and Table 6, we show full
comparison of State-Of-The-Art (SOTA) across
different model architectures and datasets.

Standard MATH benchmark: SGR achieves sub-
stantial improvements over baseline methods on
MATH datasets. For Qwen2-7b-inst, SGR deliv-
ers a remarkable +9.2% improvement over CoT
(36.3% vs 27.1%), while for the larger Qwen2-72b-
inst model, SGR achieves +10.9% improvement
(47.4% vs 36.5%). The most significant gains are
observed with LLaMA?3.1-8b-inst, where SGR out-
performs CoT by +7.7% (29.2% vs 21.5%). No-
tably, SGR consistently surpasses SBP across all
model configurations, demonstrating its superior
reasoning capabilities.

Competition-Level Mathematics: On presti-
gious mathematical competitions (MATH (level-
5), AMC23, AIME24, OLY), our method shows
competitive performance. While the QwQ-32B-
Preview thinking model achieves the highest scores
(73.7% average), our SGR method with Qwen2-
72b-inst reaches 47.4%, significantly outperform-
ing traditional CoT approaches and demonstrating

strong reasoning abilities on expert-level problems.

Beyond MATH dataset (Table 6): Across di-
verse STEM subjects (Physics, Chemistry, Biology,
Computer Science, Math, Engineering), SGR main-
tains consistent advantages . For Qwen2-7b-inst,
SGR achieves 82.3% accuracy (+17.4% over CoT),
while Qwen2-72b-inst reaches 90.9% (+5.6% im-
provement). The method shows particular strength
in mathematical reasoning tasks, where SGR with
LLaMA3.1-8b-inst achieves 85.9% accuracy.

The results reveal that SGR benefits scale ef-
fectively with model size. Larger models (72B
parameters) show more substantial absolute im-
provements, while smaller models (7B-8B parame-
ters) demonstrate higher relative gains, indicating
the method’s broad applicability across different
computational budgets.

A.3 Dataset

* MATH: The MATH dataset comprises a sub-
stantial collection of 12,500 high school-level
mathematical problems, meticulously curated
to cover a wide range of topics and difficulty
levels. In our study, we selected the MATH
dataset’s test data (5,000 problems) to evaluate
our model’s performance across diverse math-
ematical topics and difficulty levels, ensuring
a robust assessment of its generalization and
problem-solving capabilities.

e AMC23: It contains 40 data items, each in-
cluding a question and an answer.

* AIME24: The AIME24 test set is from the
2024 American Invitational Mathematics Ex-
amination. It has 30 questions, each with an
answer. Among all our test sets, AIME24 is
the most difficult.

e MMLU-STEM: MMLU, or Massive Mul-
titask Language Understanding, is a crucial
benchmark for evaluating large language mod-
els. We have selected a test set with the
MMLU-STEM label, which consists of a total
of 3,018 problems.

* Olympiadbench: OlympiadBench is a bilin-
gual and multimodal scientific evaluation
dataset at the Olympiad level jointly, which
contains 8,952 math and physics ques-
tions from international Olympiads, Chinese
Olympiads, Chinese college entrance exami-
nations, and mock exams. We have selected a

21113

MATH

Method AMC23 AIME24 OLY Average
L1 L2 L3 L4 L5 Average
Thinking Model
QwQ-32B-Preview 97.5 96.4 95.4 91.8 84.9 92.2 85.0 50.0 67.4 73.7
Math-Specific Models
Qwen2-Math-7b-inst 93.1 872 82,6 724 520 73.8 62.5 133 34.1 45.9
Qwen2-Math-72b-inst 95.0 941 905 837 677 83.9 60.0 20.0 42.5 51.7
Qwen2.5-Math-7b-inst 954 930 897 827 674 83.2 62.5 333 37.3 54.1
Qwen2.5-Math-72b-inst 963 935 909 849 733 85.7 70.0 43.3 60.6 65.5
General Models
GPT-4o CoT 95.0 917 860 749 538 76.6 15.0 10.0 43.3 36.2
SBP 913 883 8l1.1 715 512 73.0 15.0 6.7 43.3 344 (-1.8)
CoT 85.1 734 652 524 371 57.8 28.8 L5 20.1 27.1
SBP 842 71.8 64.1 521 384 57.5 22.5 0.0 27.3 26.8 (-0.3)
Qwen2-7b-inst L2M 829 714 626 499 337 552 15.0 34 347 26.1(-1.0)
SGR 90.2 813 746 683 58.6 71.4 38.8 1.5 333 36.3 (+9.2)
BoN@16 915 846 764 627 403 66.4 46.3 5.0 31.7 374 (+10.3)
BoN@32 928 855 79.7 668 445 69.4 52.5 10.0 344 41.6 (+14.5)
CoT 914 853 773 669 46.1 69.2 35.0 6.0 35.8 36.5
Qwen2-72b-inst SBP 886 822 72.1 602 387 63.6 36.3 1.7 32.7 33.6 (-2.9)
L2M 929 90.8 837 748 548 75.9 41.3 6.7 44.0 42.0 (+5.5)
SGR 939 893 837 769 65.6 79.2 61.3 8.0 412 474 (+10.9)
CoT 762 612 508 366 212 43.7 20.0 8.0 14.4 21.5
LLaMA3.1-8b-inst SBP 753 593 481 364 212 42.5 11.3 5.0 18.5 19.3 (-2.2)
L2M 852 724 624 487 316 54.7 17.5 5.0 27.1 26.1 (+4.6)
SGR 817 768 715 668 61.2 69.5 18.8 6.0 22.7 29.2 (+7.7)
CoT 445 254 158 9.6 5.2 15.7 4.0 0.0 2.3 5.5
LLaMA2-70b-inst SBP 39.8 261 191 148 147 19.9 6.3 0.0 51 7.8 (+2.3)
SGR 387 253 168 113 7.1 16.3 5.0 33 2.7 6.8 (+1.3)

Table 5: Accuracy comparison (%) of CoT, SBP(5-shot) and our SGR methods with the SOTA on MMLU-STEM
dataset. We also report the results of open-sourced SOTA math-specific models - the QwQ, Qwen-Math models and
GPT-40. The best results are in Bold for each base and Red denotes the highest score in the current test set. Red

indicates lower results compared to CoT, while Green denotes higher results.

dataset with the "OE_TO_maths_en_ COMP"
tag, and there are a total of 675 problems in
this dataset.

A4 A full Context of Example

Question: Paul is at a train station and is waiting
for his train. He isn’t sure how long he needs to
wait, but he knows that the fourth train scheduled
to arrive at the station is the one he needs to get on.
The first train is scheduled to arrive in 10 minutes,
and this train will stay in the station for 20 minutes.
The second train is to arrive half an hour after the
first train leaves the station, and this second train
will stay in the station for a quarter of the amount
of time that the first train stayed in the station. The
third train is to arrive an hour after the second train
leaves the station, and this third train is to leave the
station immediately after it arrives. The fourth train
will arrive 20 minutes after the third train leaves,
and this is the train Paul will board. In total, how
long, in minutes, will Paul wait for his train?

1-st iteration:
» Step Guidance Question
What is the schedule and duration of stay for
each train arriving at the station before Paul’s

train, and how does this affect the total waiting
time for Paul’s train?

To answer your question, I would need more
specific information about which station and
which trains you are referring to. However,
I can provide a general explanation of how
train schedules and durations of stay can affect
waiting times.

The schedule of each train arriving at a station
is typically determined by the train operator
and can be found on their website or at the
station. The duration of stay for each train,
also known as the dwell time, is the time the
train spends at the station for passengers to

21114

MMLU-STEM

Method
Physics Chemistry Biology Computer Science Math Engineer Average
Thinking Model
QwQ-32B-Preview 93.9 83.1 94.0 88.8 95.1 86.1 91.8
Math-Specific Models
Qwen2-Math-7b-inst 69.1 57.5 64.4 65.3 84.3 62.5 71.5
Qwen2-Math-72b-inst 87.3 78.1 88.1 81.9 90.7 79.9 86.2
Qwen2.5-Math-7b-inst 71.3 61.1 61.9 66.7 86.8 61.1 73.0
Qwen2.5-Math-72b-inst 88.2 78.7 86.9 83.9 92.6 81.2 87.3
General Models
GPT-40 CoT 90.0 64.8 94.7 85.3 87.8 83.3 86.1
SBP 89.6 82.1 95.1 87.0 87.9 77.8 87.8 (+1.7)
CoT 65.9 56.0 79.5 64.7 73.2 62.2 64.9
SBP 65.4 54.7 76.2 65.2 70.6 65.3 67.5 (+2.9)
Qwen2-7b-inst L2M 62.8 51.9 77.3 69.0 72.8 66.7 68.2 (+3.3)
SGR 79.2 723 88.9 85.2 84.1 74.0 82.3 (+17.4)
BoN@16 67.9 56.1 80.0 66.1 82.1 59.7 73.0 (+8.1)
BoN@32 71.2 60.8 82.2 67.2 83.9 61.5 75.4 (+10.5)
CoT 86.3 74.9 93.8 81.8 86.5 75.3 85.3
Qwen2-72b-inst SBP 81.8 70.6 91.4 80.3 82.7 71.9 81.5 (-3.8)
L2M 80.8 71.9 89.7 82.8 86.5 76.8 83.0 (-2.3)
SGR 90.7 83.2 95.1 91.3 92.7 78.8 90.9 (+5.6)
CoT 59.4 62.4 56.1 78.4 61.2 64.9 69.2
LLaMAS3.1-8b-inst SBP 62.7 57.7 77.6 60.2 65.4 65.7 64.9 (-4.3)
L2M 64.0 52.4 75.8 65.0 69.2 64.6 66.4 (-2.8)
SGR 71.7 82.1 78.6 89.2 85.9 81.1 82.4 (+13.2)
CoT 46.0 39.4 72.0 559 38.7 51.8 48.1
LLaMA2-70b-inst SBP 63.4 58.7 75.3 63.2 52.1 61.5 60.3 (+12.2)
SGR 69.3 62.3 83.1 75.3 57.9 71.5 67.3 (+19.2)

Table 6: Accuracy comparison (%) of CoT, SBP(5-shot) and our SGR methods with the SOTA over MATH (Level 1
to Level 5), AMC23, AIME24 and OLY datasets. We also report the results of open-sourced SOTA math-specific
models - the QwQ, Qwen-Math models and GPT-40. The best results are in Bold for each base and Red denotes the
highest score in the current test set. Red indicates lower results compared to CoT, while Green denotes higher
results.

board and disembark. This can vary depend-
ing on the number of passengers and the type
of train.

If Paul’s train is scheduled to arrive after sev-
eral other trains, the total waiting time for
his train may be affected by the dwell times
of the previous trains. If the previous trains
have longer dwell times, this can cause delays
for subsequent trains, including Paul’s train.
However, if the previous trains have shorter
dwell times and are on schedule, Paul’s train
may arrive on time or even early.

Overall, the schedule and duration of stay for
each train can have a significant impact on
the waiting time for subsequent trains, and it’s
important for train operators to manage these
factors to minimize delays and ensure on-time
performance.

» Response for the First iteration

To calculate the total waiting time for Paul,
we need to consider the arrival and departure
times of each train and the duration of stay for
each train.

1. The first train arrives in 10 minutes and
stays for 20 minutes. Therefore, it will depart
30 minutes after its arrival.

2. The second train arrives 30 minutes after
the first train leaves. Since the first train leaves
30 minutes after its arrival, the second train
arrives 60 minutes after the first train’s arrival.
The second train stays for a quarter of the time
the first train stayed, which is 5 minutes (20
minutes / 4). Therefore, the second train will
depart 65 minutes after the first train’s arrival.

2-nd iteration

21115

3. The third train arrives an hour after the sec-

ond train leaves. Since the second train leaves
65 minutes after the first train’s arrival, the
third train arrives 125 minutes after the first
train’s arrival (65 minutes + 60 minutes). The
third train leaves immediately after it arrives,
so it doesn’t add any additional waiting time
for Paul.

4. The fourth train, which is Paul’s train, ar-
rives 20 minutes after the third train leaves.
Since the third train leaves immediately after
it arrives, the fourth train arrives 145 minutes
after the first train’s arrival (125 minutes + 20
minutes).

To find out how long Paul waits for his train,
we need to calculate the time from when he
arrives at the station to when the fourth train
arrives. Since the first train arrives in 10 min-
utes, Paul arrives at the station at this time.
Therefore, Paul waits for his train for 135 min-
utes (145 minutes - 10 minutes).

In the future, to solve similar problems, you
will need to know: - The schedule of the trains,
including arrival and departure times. - The
duration of stay for each train. - The sequence
of the trains that Paul needs to board. - The
time Paul arrives at the station.

With this information, you can calculate the
total waiting time by determining the arrival
time of the required train and subtracting the
time Paul arrives at the station.

Response for the Second iteration Given the
information provided:

1. The first train arrives in 10 minutes and
stays for 20 minutes, so it departs 30 minutes
after its arrival.

2. The second train arrives 30 minutes after
the first train leaves, which is 60 minutes after
the first train’s arrival. It stays for 5 minutes
(a quarter of the first train’s stay), so it departs
65 minutes after the first train’s arrival.

3-rd iteration

3. The third train arrives an hour after the
second train leaves. Since the second train de-
parts 65 minutes after the first train’s arrival,
the third train arrives 125 minutes after the
first train’s arrival (65 minutes + 60 minutes).

21116

The third train leaves immediately after it ar-
rives, so it doesn’t add any additional waiting
time for Paul.

4. The fourth train, which is Paul’s train, ar-
rives 20 minutes after the third train leaves.
Since the third train arrives and leaves imme-
diately, the fourth train arrives 145 minutes
after the first train’s arrival (125 minutes + 20
minutes).

To find out how long Paul waits for his train,
we need to calculate the time from when Paul
arrives at the station to when the fourth train
arrives. Since Paul arrives at the station at the
same time the first train is scheduled to arrive
(10 minutes from now), we can subtract the 10
minutes from the 145 minutes to find Paul’s
total waiting time.

Paul’s total waiting time = 145 minutes - 10
minutes = 135 minutes.

Therefore, Paul will wait for 135 minutes for
his train to arrive. The relevant knowledge
needed for future steps would be the ability
to calculate time intervals, understand sched-
ules, and perform basic arithmetic operations.
Additionally, understanding the concept of
elapsed time and how to calculate it based
on given schedules would be beneficial.

Response for the third iteration
Continuing from the previous steps:

3. The third train arrives an hour after the
second train leaves. Since the second train de-
parts 65 minutes after the first train’s arrival,
the third train arrives 125 minutes after the
first train’s arrival (65 minutes + 60 minutes).
The third train leaves immediately after it ar-
rives, so it doesn’t add any additional waiting
time for Paul.

4-th iteration

4. The fourth train, which is Paul’s train, ar-
rives 20 minutes after the third train leaves.
Since the third train arrives and leaves at the
same time, which is 125 minutes after the first
train’s arrival, the fourth train arrives 145 min-
utes after the first train’s arrival.

To find out how long Paul waits for his train,
we need to consider when he arrives at the

station. Since the problem doesn’t specify
when Paul arrives, we can assume he arrives
just before the first train is scheduled to arrive,
which is at the 10-minute mark. Therefore,
Paul’s waiting time is the time from his arrival
until the fourth train arrives.

Given that Paul arrives just before the first
train arrives (at the 10-minute mark) and the
fourth train arrives 145 minutes after the first
train’s arrival, Paul’s total waiting time is 145
minutes.

However, since Paul arrives 10 minutes be-
fore the first train, we need to subtract those
10 minutes from the 145 minutes to find the
total time Paul actually waits from his arrival.
Therefore, Paul’s total waiting time is 135
minutes (145 minutes - 10 minutes).

In summary, the relevant knowledge needed to
solve this problem includes understanding the
schedule of each train, calculating the depar-
ture times based on arrival and stay times, and
determining the total waiting time for Paul
based on his arrival time and the arrival time
of his train.

Response for the Fourth iteration

Given the sequence of events and the timing
for each train’s arrival and departure:

1. The first train arrives 10 minutes after
Paul’s arrival and stays for 20 minutes, de-
parting 30 minutes after Paul’s arrival. 2. The
second train arrives 30 minutes after the first
train leaves, which is 60 minutes after Paul’s
arrival, and stays for 5 minutes, departing 65
minutes after Paul’s arrival. 3. The third train
arrives an hour after the second train leaves,
which is 125 minutes after Paul’s arrival, and
departs immediately.

5-th iteration

To find out how long Paul will wait for his
train, we need to calculate the arrival time of
the fourth train and compare it to the time Paul
arrived at the station. Here’s the breakdown:

1. **First Train:** - Arrives 10 minutes af-
ter Paul’s arrival. - Stays for 20 minutes. -
Departs 30 minutes after Paul’s arrival.

2. **Second Train:** - Arrives 30 minutes
after the first train leaves, which is 60 minutes

AS

21117

after Paul’s arrival. - Stays for 5 minutes (a
quarter of the first train’s stay). - Departs 65
minutes after Paul’s arrival.

3. **Third Train:** - Arrives an hour after
the second train leaves. - Since the second
train departs 65 minutes after Paul’s arrival,
the third train arrives 125 minutes after Paul’s
arrival (65 minutes + 60 minutes). - Leaves
immediately after it arrives.

4. **Fourth Train:** - Arrives 20 minutes af-
ter the third train leaves. - Since the third train
arrives 125 minutes after Paul’s arrival and
leaves immediately, the fourth train arrives
145 minutes after Paul’s arrival.

Given that Paul arrived at the station at time
0, the total waiting time for Paul is the time
the fourth train arrives, which is 145 minutes.
Therefore, Paul will wait for 145 minutes for
his train to arrive.

This calculation takes into account the arrival
and departure times of each train and the du-
ration of stay for each train, as well as the
time between the departure of one train and
the arrival of the next. This information is
necessary to determine the exact waiting time
for Paul.

Response for the Fifth iteration
Continuing from the established sequence:

4. The fourth train, which is the one Paul is
waiting for, arrives 20 minutes after the third
train leaves. Since the third train arrives 125
minutes after Paul’s arrival and departs imme-
diately, the fourth train arrives 145 minutes
after Paul’s arrival.

Therefore, Paul’s total waiting time is 145
minutes, which is the time it takes for the
fourth train to arrive after he initially arrives
at the station. This total includes the wait-
ing times for all the preceding trains to arrive,
depart, and the intervals between their depar-
tures and the arrivals of the subsequent trains.

Comparison with CoT and SGR

CoT

Question

Paul is at a train station and is waiting for his train. He isn't sure how long he needs to wait, but he
knows that the fourth train scheduled to arrive at the station is the one he needs to get on. The
first train is scheduled to arrive in 10 minutes, and this train will stay in the station for 20 minutes.
The second train is to arrive half an hour after the first train leaves the station, and this second
train will stay in the station for a quarter of the amount of time that the first train stayed in the
station. The third train is to arrive an hour after the second train leaves the station, and this third
train is to leave the station immediately after it arrives. The fourth train will arrive 20 minutes after
the third train leaves, and this is the train Paul will board. In total, how long, in minutes, will Paul
2. **Second Train:**

wait for his train?
- Arrives half an hour (30 minutes) after the first train leaves.

- Since the first train departs at 30 minutes after it arrives (at minute 40), the second train
arrives at 70 minutes.

- It stays for a quarter of the 20-minute duration the first train stayed, which is 5 minutes.

- So, it departs at 75 minutes.

Model directly Answer
Let's break down the schedule to determine how long Paul will have to wait.

1. **First Train:**
- Arrives in 10 minutes and stays for 20 minutes.
- Departs after 30 minutes since it arrived.

3. **Third Train:**

- Arrives an hour after the second train leaves, which is at 60 minutes + 75 minutes = 135
minutes.

- It leaves immediately after it arrives (0 minute wait).

- Therefore, it departs at 135 minutes.

4. **Fourth Train (Paul's Train):**
- Arrives 20 minutes after the third train leaves, which is 135 minutes + 20 minutes = 155
minutes.

Since the fourth train arrives at minute 155 and Paul starts waiting at minute 0 (when the first train
is scheduled to arrive in 10 minutes):

- Paul has to wait for the fourth train to arrive.
- The total time Paul will wait is 155 minutes.

Hence, Paul will wait for a total of **155 minutes** before his train arrives.

SGR

L i i

Ste

Ste§5

To calculate the total waiting time for Paul, we need to consider the arrival and departure times of each
train and the duration of stay for each train.

1. The first train arrives in 10 minutes and stays for 20 minutes. Therefore, it will depart 30 minutes after
its arrival.

2. The second train arrives 30 minutes after the first train leaves. Since the first train leaves 30 minutes
after its arrival, the second train arrives 60 minutes after the first train's arrival. The second train stays
for a quarter of the time the first train stayed, which is 5 minutes (20 minutes / 4). Therefore, the second

Given the information provided:

train will depart 65 minutes after the first train's arrival

1. The first train arrives in 10 minutes and stays for 20 minutes, so it departs 30 minutes after its arrival.

2. The second train arrives 30 minutes after the first train leaves, which is 60 minutes after the first
train's arrival. It stays for 5 minutes (a quarter of the first train's stay), so it departs 65 minutes after the
first train's arrival.

Continuing from the previous steps:

3. The third train arrives an hour after the second train leaves. Since the second train departs 65
minutes after the first train's arrival, the third train arrives 125 minutes after the first train's arrival (65
minutes + 60 minutes). The third train leaves immediately after it arrives, so it doesn't add any additional
waiting time for Paul.

Given the sequence of events and the timing for each train's arrival and departure:

1. The first train arrives 10 minutes after Paul's arrival and stays for 20 minutes, departing 30 minutes
after Paul's arrival.

2. The second train arrives 30 minutes after the first train leaves, which is 60 minutes after Paul's arrival,
and stays for 5 minutes, departing 65 minutes after Paul's arrival.

3. The third train arrives an hour after the second train leaves, which is 125 minutes after Paul's arrival,
and departs immediately.

Continuing from the established sequence:

4. The fourth train, which is the one Paul is waiting for, arrives 20 minutes after the third train leaves.
Since the third train arrives 125 minutes after Paul's arrival and departs immediately, the fourth train
arrives 145 minutes after Paul's arrival.

Therefore, Paul's total waiting time is 145 minutes, which is the time it takes for the fourth train to arrive
after he initially arrives at the station. This total includes the waiting times for all the preceding trains to
arrive, depart, and the intervals between their departures and the arrivals of the subsequent trains.

Figure 6: The comparison above shows the results of models using direct answering versus the SGR approach. The
red sections in the direct answers indicate errors, while the corresponding red sections in the SGR answers are
correct. Each step of the SGR-generated answer is enclosed in a box.

21118

