
Proceedings of the 1st Workshop on Confabulation, Hallucinations and Overgeneration in Multilingual and Practical Settings (CHOMPS 2025), pages 81–89
December 23, 2025 ©2025 Association for Computational Linguistics

SmurfCat at SHROOM-CAP: Factual but Awkward? Fluent but Wrong?
Tackling Both in LLM Scientific QA

Timur Ionov3,5 Evgenii Nikolaev5 Artem Vazhentsev1,2

Mikhail Chaichuk1,4 Anton Korznikov1,2,4 Elena Tutubalina1,7

Alexander Panchenko2,1 Vasily Konovalov1,2,6 Elisei Rykov2

1AIRI 2Skoltech 3MWS AI 4HSE University
5AI Talent Hub, ITMO University, Saint Petersburg, Russia

6Moscow Independent Research Institute of Artificial Intelligence
7Kazan Federal University

t.ionov@mts.ai elisei.rykov@skol.tech
Abstract

Large Language Models (LLMs) often gen-
erate hallucinations, a critical issue in do-
mains like scientific communication where fac-
tual accuracy and fluency are essential. The
SHROOM-CAP shared task addresses this chal-
lenge by evaluating Factual Mistakes and Flu-
ency Mistakes across diverse languages, ex-
tending earlier SHROOM editions to the sci-
entific domain. We present Smurfcat, our sys-
tem for SHROOM-CAP, which integrates three
complementary approaches: uncertainty es-
timation (white-box and black-box signals),
encoder-based classifiers (Multilingual Modern
BERT), and decoder-based judges (instruction-
tuned LLMs with classification heads). Re-
sults show that decoder-based judges achieve
the strongest overall performance, while un-
certainty methods and encoders provide com-
plementary strengths. Our findings highlight
the value of combining uncertainty signals with
encoder and decoder architectures for robust,
multilingual detection of hallucinations and re-
lated errors in scientific publications.

1 Introduction

Large Language Models (LLMs) have achieved
remarkable success across a wide range of natu-
ral language processing (NLP) tasks. However,
their tendency to produce hallucinations-outputs
containing factually unsupported, unverifiable, or
fabricated information-remains a critical barrier to
their safe deployment in real-world applications.
The risks posed by hallucinations are particularly
severe in domains where factual precision is es-
sential, such as scientific communication, health-
care, and legal contexts. Moreover, multilingual
and cross-lingual scenarios exacerbate these chal-
lenges, as disparities in linguistic resources hinder
the development and evaluation of robust factuality
assessment systems.

To systematically address these concerns, the
SHROOM (Shared-task on Hallucinations and Re-

lated Observable Overgeneration Mistakes) series
has emerged as the first dedicated benchmark initia-
tive for hallucination detection and mitigation. The
inaugural SHROOM 2024 (Mickus et al., 2024)
established a foundation by creating multilingual
benchmarks and evaluation protocols for hallucina-
tion detection in LLMs, with a focus on relatively
controlled, general-purpose text settings. Build-
ing on this, Mu-SHROOM 2025 (Vazquez et al.,
2025) expanded both the scale and scope, intro-
ducing broader evaluation methodologies and more
linguistically diverse datasets, pushing the commu-
nity toward developing cross-lingual methods for
hallucination analysis.

However, both of these earlier shared tasks-
despite their significant contributions–did not fully
capture the unique demands of scientific commu-
nication. In scientific publications, hallucinations
are not merely stylistic or semantic errors but can
result in fabricated citations, unsupported claims,
or distortions of technical content. Such errors
undermine trust and reproducibility, yet existing
SHROOM tasks did not explicitly evaluate mod-
els in these high-stakes, domain-specific contexts.
Furthermore, while multilinguality was central to
the earlier SHROOM editions, the emphasis re-
mained on relatively high-resource languages, leav-
ing persistent gaps in evaluating hallucinations in
low-resource languages where scientific material is
scarce and ground truth is more difficult to estab-
lish.

To address these shortcomings, SHROOM-CAP
(Shared-task on Hallucinations and Related Observ-
able Overgeneration Mistakes in Crosslingual Anal-
yses of Publications)1 (Sinha et al., 2025; Gamba
et al., 2025) was introduced as the third installment
in the SHROOM series. SHROOM-CAP specifi-
cally targets the domain of scientific publications
and extends the challenge to both high-resource

1https://helsinki-nlp.github.io/shroom/2025a
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and low-resource languages. In addition to hallu-
cinations, SHROOM-CAP introduces a dual focus
on evaluating Factual Mistakes (e.g., unsupported
claims, fabricated references, and misleading scien-
tific assertions) and Fluency Mistakes (e.g., gram-
matical errors, disfluencies, and unnatural style
that hinders scientific readability). Participants are
tasked with detecting and analyzing these errors in
LLM outputs conditioned on scientific input mate-
rial, bridging the methodological advances of prior
SHROOM editions with the real-world demands of
multilingual scientific communication.

By providing a unified benchmark for hallucina-
tion detection in scientific publishing-augmented
with explicit evaluation of both factual and fluency
mistakes-SHROOM-CAP aims to catalyze research
into reliable evaluation metrics and practical mit-
igation strategies. It places special emphasis on
low-resource and linguistically diverse scenarios,
thereby encouraging the development of more in-
clusive, transparent, and trustworthy language tech-
nologies. In doing so, SHROOM-CAP not only
continues the trajectory established by previous
SHROOM competitions, but also addresses critical
gaps that remain at the intersection of factuality,
fluency, multilingualism, and domain specificity.

2 Related Work

2.1 Factual Mistakes

Hallucinations in scientific discourse. Within the
scientific domain, prior work frames factuality as
claim verification and reference reliability. Early
efforts such as SciFact (Wadden et al., 2020) study
whether research claims are supported by evidence
from the literature, establishing a foundation for
evidence-grounded evaluation over scholarly text
and inspiring later open-domain variants; this line
underlines the need to ground generations in pri-
mary sources when judging factuality in publica-
tions.
Uncertainty estimation (UQ) for factuality.
Model-centric UQ signals are widely leveraged
to detect hallucinations without heavy supervi-
sion inluding both white-box and black-box UQ
families: probability/entropy-based measures (Se-
quence Probability, Perplexity, Mean Token En-
tropy), CCP (Fadeeva et al., 2024) calibration, and
RAUQ (Vazhentsev et al., 2025) (uncertainty-aware
attention) on the white-box side. In addition, UQ-
based methods that increase the faithfulness of
generation have been widely used in many appli-

cations, including adaptive RAG (Moskvoretskii
et al., 2025; Marina et al., 2025) and the develop-
ment of QA systems across various domains (Au-
shev et al., 2025; Belikova et al., 2024).

The black-box methods methods provide
sequence-level scores that correlate with factual
errors amnog them should be mentioned Seman-
tic Entropy (Kuhn et al., 2023), SAR (Duan et al.,
2024), KLE, Semantic Density, CoCoA (Vashurin
et al., 2025b). The combination of white-box
and back-box methods was effective in detecting
span-level hallucination in SHROOM-2025 (Rykov
et al., 2025a).
Encoder classifiers. Encoder-based models re-
main a strong baseline for factuality judgments
when inputs can be structured. In our setup, a mul-
tilingual BERT-family encoder (mmBERT-base2)
receives concatenated question–answer–context se-
quences and is fine-tuned with weighted loss for
class imbalance; per-language thresholding and
macro-F1 selection improve robustness across high-
and low-resource languages (Rykov et al., 2025b).

2.2 Fluency Mistakes

Fluency mistakes-grammatical ill-formedness, dis-
fluencies, awkward phrasing, and incoherent
structure-degrade readability and can obscure fac-
tual content, especially in multilingual scientific
writing. SHROOM-CAP evaluates fluency sepa-
rately from factuality, mirroring editorial practice
in scholarly communication.

Instruction-tuned decoder LLMs can be repur-
posed as fluency judges by prompting them to ig-
nore factuality and return compact decisions (e.g.,
y/n) (Gu et al., 2024).

Grammatical Error Correction (GEC) pipelines-
sequence-to-sequence correctors and grammatical-
ity classifiers (e.g., CoLA-style)-remain comple-
mentary: they can produce silver labels for fluency
supervision and serve as automatic critics (Qorib
et al., 2024).

3 Data

The dataset comprises a total of 7,078 examples,
initially split into 1,752 for training, 1,200 for vali-
dation, and 4,126 for testing.These examples cover
9 languages: English (EN), Spanish (ES), French
(FR), Hindi (HU), Italian (IT), Bengali (BN), Gu-
jarati (GU), Malayalam (ML), and Telugu (TE).

2https://hf.co/jhu-clsp/mmBERT-base
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Five of these languages (EN, ES, FR, HI, IT)
are present in the training and validation sets. The
remaining four languages (BN, GU, ML, TE) are
exclusively available in the test set, facilitating eval-
uation in a zero-shot cross-lingual setting.

Each instance in the dataset is represented by
the following fields: abstract, link, model_id,
model_config, question, prompt, output_text, out-
put_tokens, output_logits.

Furthermore, examples in the training and
validation splits are annotated with two bi-
nary labels: has_fluency_mistakes and
has_factual_mistakes.

3.1 Retrieval

To augment the data with relevant context from the
parsed papers, we used OpenAI’s Vector Store3.
First, we downloaded all PDF files mentioned in
the dataset and uploaded them to the Vector Store.
Next, to retrieve passages, we performed a search
requests to the Vector Store using the question from
the dataset. Since each question is followed by
the corresponding PDF file, we applied a filter to
search for relevant passages within the file, instead
searching the entire Vector Store collection.

3.2 Translations

Additionally, we utilized the Yandex Translate API
to translate questions and answers into other lan-
guages. As a result of this translation, 8,735 ex-
amples were added to the training set. The full
language distribution of training data is shown in
Figure 1.

4 Methods

4.1 Baseline

As a baseline, we report the performance of GPT-
5 on the test set. As in all subsequent cases, we
used contexts retrieved via OpenAI’s Vector Store
with a specific prompt that asks GPT-5 to analyze
an input question, relevant context, paper abstract,
and LLM answer, and then identify any factual or
fluency errors in the answer. The prompt is shown
in Figure 2.

4.2 Uncertainty Quantification

Uncertainty quantification (UQ) (Gal and Ghahra-
mani, 2016; Baan et al., 2023) is a prominent ap-
proach for hallucination detection and low-quality

3https://platform.openai.com/docs/
api-reference/vector-stores
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Figure 1: Training data with translation augmentation
distribution.

output (Malinin and Gales, 2021; Farquhar et al.,
2024), particularly in sequence-level tasks, which
represent the most standard and suitable settings
for UQ (Vashurin et al., 2025a). We consider a vari-
ety of state-of-the-art methods from both white-box
and black-box categories (Fadeeva et al., 2023).

For the white-box methods, we employ
probability-based approaches such as Se-
quence Probability, Perplexity, Mean Token
Entropy (Fomicheva et al., 2020), CCP (Fadeeva
et al., 2024), and RAUQ (Vazhentsev et al.,
2025). These methods analyze the predicted
token-level probability distributions to produce a
single sequence-level uncertainty score. Notably,
RAUQ combines token probabilities with atten-
tion weights from specific “uncertainty-aware”
attention heads of the LLM.

We also include sampling-based white-box meth-
ods such as Semantic Entropy (Kuhn et al., 2023),
SAR (Duan et al., 2024), KLE (Nikitin et al., 2024),
Semantic Density (Qiu and Miikkulainen, 2024),
and CoCoA (Vashurin et al., 2025b). These tech-
niques assess the diversity among multiple answers
generated by an LLM for the same input using an
auxiliary Natural Language Inference (NLI) model.
Semantic Entropy clusters responses into distinct
groups and computes the entropy of the cluster
probabilities. SAR, KLE, and Semantic Density
reweight sequence probabilities in various ways,
while CoCoA simplifies this concept by combining
diversity and probability scores multiplicatively.

For the black-box methods, we include Lexical
Similarity (Fomicheva et al., 2020), DegMat and
Eccentricity (Lin et al., 2024), and LUQ (Zhang
et al., 2024). DegMat and Eccentricity model the
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set of predictions as a weighted adjacency matrix
of a graph to analyze their diversity. Lexical Simi-
larity measures diversity through n-gram similarity
scores, whereas LUQ evaluates long-form genera-
tion consistency using an NLI model.

4.3 Encoder

We use a multilingual BERT-based encoder ap-
proach for binary classification of factual mistakes.
Our implementation uses mmBERT-base (Marone
et al., 2025), which provides strong multilingual
capabilities across the different languages in the
SHROOM-CAP dataset. Each training example
is formatted as a structured sequence that com-
bines question, answer, and context information.
We use the template “[Q] <question>\n[A]
<answer>\n[C] <context>” to help the model
understand the relationship between the generated
answer and the supporting context.

We fine-tune the model for factual mistake detec-
tion using binary classification. We apply weighted
binary cross-entropy loss to handle the imbalanced
dataset. The [CLS] token representation is passed
through a classification head to predict the target
label. We fine-tune our encoder model on both the
original training dataset and the augmented train-
ing data that includes translations to increase data
diversity. Model selection is based on macro F1-
score on the validation set. We also implement
per-language threshold optimization to maximize
performance for each target language.

4.4 Decoder

We fine-tune large decoder-based language mod-
els in a binary classification setup. We lever-
age 4 different decoders: Qwen3-Reranker-8B4,
Qwen3-14B5, Qwen3-32B6, Qwen3-30A3B7, and
sarvamai/sarvam-18, optimized for Indic lan-
guages (Bengali, Hindi, Tamil, Telugu, etc.).

For Decoder-based approach, we format each
sample as a structured dialog to align with the com-
mon decoder instruction-followed format. As in-
puts, we pass the retrieved context, the original
question, and the LLM’s answer. To perform clas-
sification, we add two MLP heads. For evaluation,
per-language thresholds are optimized on the vali-
dation set to maximize Macro F1.

4https://hf.co/Qwen/Qwen3-Reranker-8B
5https://hf.co/Qwen/Qwen3-14B
6https://hf.co/Qwen/Qwen3-32B
7https://hf.co/Qwen/Qwen3-30B-A3B
8https://hf.co/sarvamai/sarvam-1

5 Results

Table 1 shows the overall performance of our meth-
ods compared to other top-performing teams at
the SHROOM-CAP. The Decoder-based approach
is the clear winner in both factuality and fluency
metrics, performing well in English and Hindi for
factuality and in Telugu for fluency. Although the
decoder-based model has a gap in factuality for the
English language in the macro F1 score, it demon-
strates strong multilingual capabilities.

GPT-5 achieved top results in factuality for Ben-
gali, Spanish, French, and Telugu, as well as the
top result for Hindi. In terms of fluency, GPT-5
performed well, achieving the second-best score
in English and Hindi and the best score in Telugu.
However, it lags behind other teams’ approaches in
other languages.

Table 2 shows the ablation of the Encoder-based
approach. Adding translations significantly im-
proved scores for English, Spanish, Guam, Hindi,
Italian, Malayalam, and Telugu, and decreased
for French and Bengali. However, compared to
other approaches, Encoder-based method yields
to other methods methods in most languages, ex-
cluding French and Italian for factuality, where
Encoder-based method is the third best-performing
approach.

Table 3 shows the results on fine-tuning dif-
ferent decoder-based LLMs on SHROOM-CAP
train data. Across all languages, the top performer
is Qwen3-32B, demonstrating the best scores for
Bengali, Spanish, French, Gujarati, and Hindi,
as well as second-best performance for English,
Italian, and Malayalam. Interestingly, sarvam-1
shows competitive results for English in the fac-
tuality metric, while maintaining balanced perfor-
mance across several other languages. The smaller
Qwen3-Reranker-8B model also performs surpris-
ingly well, especially in Hindi and Italian, indicat-
ing that reranker-style fine-tuning can be beneficial
even with reduced model capacity. For fluency,
Qwen3-32B and Qwen3-30B-A3B-Instruct yield
the highest scores across most languages, confirm-
ing the correlation between model size and linguis-
tic smoothness. Overall, these results suggest that
large-scale Qwen3 models are the most effective
backbone for multilingual hallucination detection
in the decoder-based setup.

Table 6 presents the detailed results obtained
using various uncertainty quantification methods.
Although the performance of each method varies
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Method Mode BN EN ES FR GU HI IT ML TE

factuality

Decoder FT 0.69 0.86 0.75 0.86 0.82 0.75 0.87 0.64 0.72
GPT-5 ZS 0.64 0.85 0.72 0.75 0.36 0.83 0.48 0.53 0.65
nsu-ai - 0.52 0.51 0.53 0.66 0.50 0.47 0.74 0.52 0.50
CUET_Goodfellas - - 0.64 0.72 - - - - - -
medusa - - 0.91 - - - - - - -
Uncertainty - 0.5 0.6 0.58 0.56 0.54 0.65 0.71 0.55 0.57
Encoder FT 0.49 0.57 0.5 0.67 0.45 0.51 0.8 0.5 0.44

fluency

Decoder FT 0.74 0.7 0.64 0.85 0.67 0.88 0.63 0.74 0.83
GPT-5 ZS 0.67 0.64 0.42 0.63 0.60 0.58 0.50 0.52 0.89
nsu-ai - 0.70 0.61 0.52 0.52 0.55 0.75 0.59 0.69 0.40
CUET_Goodfellas - 0.54 0.59 - - - - - - -
medusa - 0.62 - - - - - - - -
Uncertainty - 0.57 0.35 0.43 0.66 0.57 0.49 0.51 0.60 0.46

Table 1: Comparison of factuality and fluency macro-F1 scores across multilingual settings. Results are reported
for our proposed methods and the top three participating teams in the shared task. The highest and second-highest
scores for each language are highlighted. Our fine-tuned decoder model achieves state-of-the-art performance in
most languages.

Data BN EN ES FR GU HI IT ML TE

train 0.49 0.51 0.48 0.67 0.34 0.45 0.74 0.36 0.35
+ translations 0.47 0.57 0.50 0.61 0.45 0.51 0.8 0.50 0.44

Table 2: Evaluation of the MMBert fine-tuned with
and without translated data for factuality test on the
SHROOM-CAP. Macro F1 is the evaluation metric.
Translations significantly improved the final score for
seven languages.

Model BN EN ES FR GU HI IT ML TE

factuality

Qwen3-Reranker-8B 0.31 0.74 0.72 0.79 0.63 0.72 0.86 0.64 0.62
Qwen3-14B 0.70 0.76 0.71 0.76 0.62 0.65 0.87 0.64 0.53
Qwen3-30B-A3B-Instruct 0.22 0.83 0.67 0.78 0.60 0.37 0.79 0.45 0.70
Qwen3-32B 0.69 0.83 0.75 0.86 0.82 0.72 0.86 0.63 0.66
sarvam-1 0.50 0.86 0.72 0.76 0.46 0.71 0.86 0.61 0.69

fluency

Qwen3-Reranker-8B 0.62 0.65 0.58 0.79 0.55 0.88 0.55 0.67 0.80
Qwen3-14B 0.59 0.57 0.63 0.79 0.67 0.83 0.57 0.66 0.72
Qwen3-30B-A3B-Instruct 0.74 0.59 0.53 0.80 0.64 0.87 0.58 0.72 0.83
Qwen3-32B 0.74 0.68 0.53 0.82 0.64 0.87 0.60 0.72 0.83
sarvam-1 0.60 0.64 0.64 0.84 0.28 0.83 0.54 0.74 0.15

Table 3: Evaluation of the Decoder-based approach
with different base models. The training performed on
SHROOM-CAP train part. Macro F1 is the evaluation
metric.

across languages, sampling-based approaches gen-
erally outperform the others, as expected. For in-
stance, the SentenceSAR method performs best for
English, while Eccentricity yields the highest per-
formance for Guam, and LUQ performs best for
Hindi. However, the DegMat method achieves the
best average performance in factuality across all
languages.

6 Conclusion

In this work, we present our systems for the
SHROOM-CAP shared task. We explore three
approaches: decoder-based, encoder-based, and
uncertainty quantification. Decoder-based mod-
els achieved the strongest overall performance
across both factuality and fluency tracks, confirm-
ing the advantage of large multilingual decoders
when fine-tuned for error detection. Encoder-based
models benefited from translation-based augmen-
tation, improving robustness in low-resource set-
tings. Uncertainty-based methods provided effi-
cient, model-agnostic indicators that correlated
with factuality errors.

Our findings suggest that reliable hallucination
detection in scientific communication requires in-
tegrating generative reasoning, multilingual super-
vision, and uncertainty estimation. Future work
may explore large-scale synthetic data augmenta-
tion, where the primary challenge lies in generating
diverse and realistic negative multilingual samples
for factual and fluency errors. This could help im-
prove model robustness and generalization, espe-
cially in low-resource languages and domains. An-
other key area is developing adaptive multilingual
models that better handle cross-lingual transfer and
zero-shot settings with domain-specific knowledge
incorporation.
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A Hyperparameters

Hyperparameter Value

Training max sequence length 4096
Ratio (context / prompt / output) 0.5 / 0.2 / 0.3
Batch size 14
Learning rate 1 × 10−4

Weight decay 0.1
Optimizer AdamW
Precision bfloat16
LoRA rank / alpha 16 / 32
LoRA target all-linear
Gradient checkpointing Enabled
Max epochs 3
Validation metric Macro-F1
Best model selection criterion Validation loss

Table 4: Decoder training hyperparameters for factuality
and fluency classification.

Hyperparameter Value

Training max sequence length 8,092
Ratio (context / prompt / output) 0.5 / 0.2 / 0.3
Batch size 16
Learning rate 5 × 10−5

Weight decay 0.1
Optimizer AdamW
Precision bfloat16
LoRA rank / alpha Enabled
LoRA target Enabled
Gradient checkpointing Enabled
Max epochs 5
Validation metric Macro-F1
Best model selection criterion Macro-F1

Table 5: Encoder training hyperparameters for factual
mistake classification.

B GPT-5 prompt

System:
Analyze a question about a scientific paper, the pa-
per’s abstract, the context retrieved from the paper,
and an LLM answer.
Determine:
1. FACTUAL — whether the LLM answer is factual.
If it contains any inconsistency with the abstract or
context, mark it as False.
2. FLUENCY — whether the LLM answer has no
fluency/language mistakes. If any such mistakes are
present, mark it as False.
The abstract and relevant context are in English. The
question and the LLM answer may be in any language.
Return the result strictly in this format:
FACTUAL: True|False
FLUENCY: True|False

User:
QUESTION: <question>
ABSTRACT: <abstract>
CONTEXT: <context>
LLM ANSWER: <llm_answer>

Figure 2: Prompt template for GPT-5.

C Decoder prompts

System:
You are a multilingual factuality judge. Your task is to
determine whether the MODEL ANSWER contains
ANY FACTUAL MISTAKES with respect to the pro-
vided RETRIEVED CONTEXT.
Factual mistakes = hallucinations, incorrect claims,
information not supported or contradicted by the con-
text. Ignore grammar, fluency, or style. Focus ONLY
on factual consistency between answer and context.
The text may be in ANY language. Your answer must
be language-agnostic.
Reply strictly with: ’y’ — if the model answer con-
tains any factual mistakes. ’n’ — if the model answer
is fully supported by or consistent with the retrieved
context.
Do not explain your answer.

User:
Retrieved context: <context>
Prompt: <prompt>
Model answer to evaluate: <output_text>
Remember: reply ONLY with ’y’ or ’n’.

Figure 3: Prompt template for factual consistency clas-
sification.

System:
You are a precise multilingual judge. Your task is to
assess ONLY FLUENCY of a given LLM answer. Flu-
ency = grammatical well-formedness, natural phras-
ing, coherent structure, sensible punctuation, and com-
pleteness. Ignore factual correctness and topic rele-
vance entirely.
Reply strictly with: ’y’ — if the text contains ANY
fluency mistakes. ’n’ — if the text has NO fluency
mistakes.
Do not explain your answer.

User:
Generated answer to evaluate: <output_text>
Prompt for previous generation: <prompt>
Remember: reply ONLY with ’y’ or ’n’.

Figure 4: Prompt template for fluency classification.
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D Uncertainty Quantification Methods

Method BN EN ES FR GU HI IT ML TE

factuality

SP 0.44 0.50 0.47 0.56 0.41 0.52 0.69 0.54 0.49
Perplexity 0.44 0.53 0.45 0.50 0.40 0.53 0.67 0.38 0.52
MTE 0.47 0.51 0.47 0.56 0.34 0.50 0.71 0.36 0.57
CCP 0.29 0.53 0.43 0.54 0.47 0.59 0.63 0.55 0.43
Token SAR 0.42 0.52 0.47 0.49 0.42 0.48 0.67 0.38 0.50
RAUQ 0.34 0.56 0.46 0.55 0.38 0.55 0.60 0.41 0.53

Lexical Similarity 0.42 0.53 0.40 0.49 0.35 0.47 0.56 0.50 0.38
DegMat 0.48 0.56 0.58 0.56 0.36 0.62 0.59 0.55 0.46
Eccentricity 0.34 0.57 0.52 0.52 0.54 0.54 0.58 0.41 0.47
LUQ 0.49 0.55 0.55 0.55 0.34 0.65 0.62 0.45 0.39

Semantic Entropy 0.49 0.50 0.49 0.55 0.34 0.46 0.67 0.49 0.54
Sentence SAR 0.47 0.60 0.44 0.56 0.38 0.58 0.60 0.54 0.54
SAR 0.39 0.59 0.48 0.49 0.34 0.62 0.61 0.39 0.56
KLE 0.50 0.45 0.44 0.53 0.34 0.61 0.65 0.36 0.35
Semantic Density 0.49 0.56 0.55 0.50 0.37 0.57 0.65 0.38 0.36
CoCoA 0.42 0.54 0.44 0.54 0.40 0.59 0.64 0.52 0.48

fluency

SP 0.48 0.18 0.24 0.52 0.56 0.46 0.46 0.59 0.39
Perplexity 0.37 0.30 0.24 0.52 0.50 0.38 0.47 0.33 0.38
MTE 0.38 0.29 0.27 0.49 0.45 0.30 0.51 0.31 0.37
CCP 0.45 0.29 0.27 0.51 0.57 0.40 0.48 0.60 0.27
Token SAR 0.35 0.32 0.27 0.51 0.53 0.24 0.46 0.33 0.36
RAUQ 0.25 0.32 0.25 0.50 0.51 0.38 0.41 0.39 0.39

Lexical Similarity 0.34 0.23 0.26 0.52 0.45 0.35 0.50 0.56 0.45
DegMat 0.43 0.33 0.32 0.46 0.49 0.27 0.45 0.59 0.44
Eccentricity 0.27 0.32 0.25 0.44 0.49 0.29 0.46 0.48 0.32
LUQ 0.44 0.35 0.43 0.47 0.47 0.34 0.48 0.49 0.46

Semantic Entropy 0.41 0.31 0.26 0.55 0.45 0.48 0.48 0.56 0.37
Sentence SAR 0.57 0.30 0.20 0.66 0.50 0.49 0.41 0.60 0.38
SAR 0.30 0.32 0.25 0.51 0.45 0.40 0.46 0.35 0.37
KLE 0.40 0.28 0.28 0.53 0.45 0.27 0.51 0.31 0.45
Semantic Density 0.41 0.25 0.35 0.44 0.46 0.26 0.45 0.33 0.46
CoCoA 0.42 0.32 0.23 0.59 0.56 0.45 0.48 0.57 0.38

Table 6: Detailed evaluation of selected uncertainty quantification methods. The best method is shown in bold, and
the second-best is shown in underline.
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