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Abstract

Retrieval-Augmented Generation (RAG) has
emerged as an effective strategy to ground
Large Language Models (LLMs) with reliable,
real-time information. This paper investigates
the trade-off between cost and performance by
evaluating 13 LLMs within a RAG pipeline
for the Question Answering (Q&A) task under
noisy retrieval conditions. We assess four ex-
tractive and nine generative models—spanning
both open- and closed-source ones of varying
sizes—on a journalistic benchmark specifically
designed for RAG. By systematically varying
the level of noise injected into the retrieved
context, we analyze not only which models per-
form best, but also their robustness to noisy in-
put. Results show that large open-source gener-
ative models (approx. 70B parameters) achieve
performance and noise tolerance on par with
top-tier closed-source models. However, their
computational demands limit their practical-
ity in resource-constrained settings. In contrast,
medium-sized open-source models (approx. 7B
parameters) emerge as a compelling compro-
mise, balancing efficiency, robustness, and ac-
cessibility.!

1 Introduction

Large Language Models (LLMs) have experienced
a notable surge in development and adoption in
recent years. They have been achieving excep-
tional results across a wide range of tasks, espe-
cially in natural language generation tasks such
as summarization, conversation, and translation,
but also in natural language understanding tasks
such as sentiment analysis, text classification, and
linguistic inference, among others (Chang et al.,
2024). For tasks like question answering, two pri-
mary approaches have been established. The first
is extractive, where models operate with precision

'The source code for this study is publicly available:

https://github.com/josuecaldasv/A_Comprehensive_
Evaluation_of_LLMs.
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by identifying and returning exact spans of text
from a given context (Ai et al., 2024). The second
is generative, where LL.Ms are leveraged for their
capability to produce novel text based on input
prompts (Sun et al., 2023).

Although LLMs encode substantial parametric
knowledge—acquired through the optimization of
transformer-based neural networks—this knowl-
edge is typically sufficient only for answering open-
domain questions whose answers were present dur-
ing training. In closed-domain settings, where the
required information is domain-specific and often
absent from the training data, parametric knowl-
edge alone is often insufficient (Tonmoy et al.,
2024). To bridge this gap, Retrieval-Augmented
Generation (RAG) systems have emerged as a
promising and effective architecture. RAG strate-
gies enhance LLMs by integrating external docu-
ment retrieval into the generation process, enabling
models to produce more grounded and factual out-
puts based on up-to-date or domain-specific infor-
mation (Gao et al., 2023).

The primary motivation for RAG is to address
one of the key challenges in deploying LLMs in
real-world applications: the issue of hallucination.
This issue becomes particularly pressing in cor-
porate environments, where language models of-
ten handle sensitive information and tend to gen-
erate non-factual content (Gao et al., 2023). In
this context, RAG systems are especially suitable
for the Question Answering (Q&A) task, as they
operate under the assumption that reliable informa-
tion resides in external databases. Consequently,
the generative model is instructed to rely solely on
retrieved documents as the source of truth, bypass-
ing its internal parametric knowledge on the target
topic (Lin et al., 2023; Tonmoy et al., 2024).

Generative LLMs are frequently employed in
RAG systems due to their high accuracy and their
ability to abstain from answering when the pro-
vided context is insufficient. However, these mod-
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els often entail substantial computational and finan-
cial costs, and retrieval components seldom achieve
perfect accuracy. This underscores the importance
of evaluating how varying levels of noise in the
retrieved context affect the performance of LLMs
in RAG settings.

In this study, we conduct a comprehensive eval-
uation of LLMs for Retrieval-Augmented Genera-
tion (RAG) by:

1. assessing the Accuracy, F1-Score, Response
Relevancy and Faithfulness of language mod-
els under varying levels of noise in the re-
trieved context;

analyzing the associated costs, including the
computational demands of open-source mod-
els and the financial implications of closed-
source commercial alternatives;

. and examining how model size impacts the
trade-off between robustness, hallucination,
and resource efficiency.

We compare the performance of four extractive
and six generative open-source models of varying
sizes (ranging from 3.8 billion to 70 billion param-
eters), and three closed-source generative models,
using the Retrieval-Augmented Generation Bench-
mark (RGB) dataset (Chen et al., 2024). Our results
show that it is possible to replace generative mod-
els with smaller extractive ones when the retrieval
procedure is sufficiently accurate. Additionally,
we show that replacing closed-source models with
open-source alternatives—when computational re-
sources allow for 70B parameter models—yields
comparable accuracy and noise robustness. In sce-
narios with more limited resources, 7B parameter
models emerge as a promising alternative, offer-
ing competitive accuracy at the expense of reduced
robustness to noise.

2 Related Work

The quality of retrieved documents is an impor-
tant factor in the performance of RAG systems. As
demonstrated by Percin et al. (2025), if the retriever
fails to locate correct information, the LLM lacks
relevant context, likely resulting in an incorrect
answer. The effect of noise—defined as passages
that are superficially relevant but lack the correct
answer (Fang et al., 2024)—is particularly signif-
icant.” Recent work shows that RAG systems are

2Fang et al. (2024) distinguish between three types of noise:
relevant noise, where passages are superficially relevant but
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vulnerable to the effects of distraction from noisy
contexts, where the LLM component can be easily
misled into generating an incorrect answer (Amiraz
et al., 2025).

In response, several benchmark datasets have
been developed to introduce realistic, noisy scenar-
ios for evaluating RAG systems. Notable examples
include CRAG (Comprehensive RAG Benchmark)
(Yang et al., 2024), MIRAGE (Metric-Intensive
Benchmark for Retrieval-Augmented Generation
Evaluation) (Park et al., 2025), and RGB (Retrieval-
Augmented Generation Benchmark) (Chen et al.,
2024).

Among these, the RGB dataset is distinguished
by its inclusion of questions, one or more gold-
standard answers, and a collection of documents
categorized as either positive (containing relevant
information) or negative (containing distractors or
unrelated content). Consequently, the RGB dataset
not only allows for the evaluation of RAG systems
in the presence of noise but also enables control
over the level of noise introduced to the model
by altering the proportion of positive and negative
documents provided.

The choice of evaluation metrics is particularly
critical when assessing RAG performance in noisy
settings. RAG systems are typically evaluated us-
ing metrics such as accuracy and F1-score. How-
ever, in noisy contexts, it is important to include
metrics that can quantify the performance degrada-
tion caused by noise. Park et al. (2025) propose a
custom metric, Noise Vulnerability, to measure the
performance difference of the entire RAG system
between noisy and noise-free contexts.

Furthermore, metrics from the RAGAS
(Retrieval-Augmented Generation Assessment)
framework are well-suited for evaluating perfor-
mance in noisy environments. Unlike traditional
methods that rely on gold-standard answers,
RAGAS leverages large language models to
evaluate generated responses based on criteria
such as Response Relevancy—how thoroughly
the answer addresses the user’s question—and
Faithfulness—how well the answer remains
grounded in the retrieved context (Es et al., 2024;
Roychowdhury et al., 2024).

These dimensions are especially important in
noisy settings, where different failure modes can

lack the correct answer; irrelevant noise, where passages are
on entirely different topics; and counterfactual noise, where
passages contain misleading information. In this study, we
focus on relevant noise.



emerge. For example, responses may seem topi-
cally appropriate but lack grounding in the retrieved
evidence, indicating that the model is relying on
its internal, parametric knowledge rather than the
provided documents (Zhang et al., 2024; Longpre
et al., 2022). In other cases, a model might gen-
erate responses that are faithful to the retrieved
context but fail to answer the question because the
retrieved passages themselves are irrelevant or off-
topic (Amiraz et al., 2025). By capturing both the
alignment with context (Faithfulness) and the rel-
evance to the user’s query (Response Relevancy),
RAGAS makes these distinct failure patterns visi-
ble, offering a nuanced picture of system behavior
under noisy retrieval.

Many studies have explored the comparative per-
formance of extractive models, open-source gener-
ative models, and closed-source generative models
in Q&A (Pearce et al., 2021; Gaikwad et al., 2022;
Luo et al., 2022; Mallick et al., 2023; Jayakumar
et al., 2023; Cadena et al.; Tan et al., 2023; Ai
et al., 2024). However, these studies typically rely
on standard Q&A benchmark datasets such as the
Stanford Question Answering Dataset (SQuAD),
MultiSpanQA, or domain-specific datasets like
COVIDQA. Consequently, they do not account for
the effect of noise in their performance evaluations.

While a body of recent literature does address
the effect of noise within RAG systems (Park et al.,
2025; Liang et al., 2025; Fang et al., 2024; Yang
et al., 2024), these studies often have a narrow
scope, evaluating a limited number of language
models—predominantly closed-source generative
models—and treating noise as a dichotomous vari-
able instead of a graded factor. This limitation is a
direct consequence of using datasets such as CRAG
or MIRAGE, which, unlike RGB, do not permit
granular control over noise levels.

Additionally, the choice of metrics presents a
similar limitation, as most studies rely on tradi-
tional or task-specific scores (e.g., RAGQuestEval
from Lyu et al. (2024)) that are not designed to
capture the nuanced effects of noise on genera-
tion.> Metrics from the RAGAS framework, such
as Faithfulness and Response Relevancy, offer a
more fine-grained evaluation by using LLMs to
assess the relevance and consistency of generated
responses in noisy contexts.

Finally, a critical gap in the existing literature

3The Noise Vulnerability metric from Park et al. (2025) is a
notable exception, though it focuses on binary noise presence
at the system level.
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is the lack of analysis of computational costs asso-
ciated with varying model sizes in RAG systems
under noisy conditions. Prior studies fail to assess
the computational resources required to process
noisy contexts across different model architectures.
This omission hinders a comprehensive understand-
ing of the practical trade-offs for deploying RAG
systems in resource-constrained settings.

3 Experimental Setup

Models: This study evaluates a diverse set of
models for question answering, including extrac-
tive (all of them open-source), open-source genera-
tive models, and closed-source generative models,
as detailed in Table 1. Model sizes are shown in
millions (M) or billions (B) of parameters. The
size of the closed-source models is not publicly
disclosed.

Model Type Size Reference
DistilBERT Extractive 65 M (Sanh et al., 2019)
BERT Multicased Extractive 178 M (Romero, 2020)
BERT Uncased Extractive 335M (Devlin et al., 2018)
RoBERTa Extractive 560 M (Pietsch et al., 2019)
Phi-3 Mini Gen. Open 3.8B (Microsoft, 2024)
GPT4All Gen. Open 13B (Anand et al., 2023)
Nous Hermes 2 Gen. Open 7B (NousResearch, 2024)
Nous Hermes 3 Gen. Open 70 B (Teknium et al., 2024)
Meta LLaMA 3 Gen. Open 8B (Meta, 2024a)

Meta LLaMA 3.1 Gen. Open 70 B (Meta, 2024b)
GPT-3.5 Turbo Gen. Closed N/A -

GPT-40 Mini Gen. Closed N/A -

GPT-40 Gen. Closed N/A

Table 1: Models evaluated in this study. Gen. = Genera-
tive. Size in parameters (M = million, B = billion).

This selection of closed-source models was
based on those currently made available by our
company, reflecting the options effectively accessi-
ble within our institutional environment.

Dataset: To evaluate performance, we utilized
the Retrieval-Augmented Generation Benchmark
(RGB) dataset (Chen et al., 2024), which comprises
300 questions, each accompanied by a list of cor-
rect answers and a set of positive (relevant) and
negative (irrelevant) context documents. As stated
in Section 2, this dataset allows for the assessment
of model robustness under varying levels of noise,
where noise is defined as the proportion of nega-
tive documents included in the context. Five noise
levels were tested: 0%, 20%, 40%, 60%, and 80%.

Since some open-source models accept a max-
imum of 1,500 tokens as context, this limit was
imposed across all models to ensure fairness. Doc-
ument ordering within each context was random-



ized using a fixed, reproducible seed. Each model
was evaluated across five independent runs, with
different randomized distributions of positive and
negative documents in each run. Within a single
run, all models shared the same randomized con-
text. Final performance values are reported as the
mean across these five runs, along with standard
deviation values to reflect variability.

Hardware: The models were evaluated using dif-
ferent hardware configurations based on their com-
putational requirements. The extractive models
and smaller generative models were tested using
a single NVIDIA V100 GPU (32 GB RAM). The
larger generative models (Meta LLaMA 3.1 70B
and Nous Hermes 3 70B) were evaluated using
eight NVIDIA V100 GPUs (32 GB RAM each) to
accommodate their higher computational demands.
In contrast, the closed-source models (GPT-3.5
Turbo, GPT-40 Mini, and GPT-40) were accessed
via an external Azure endpoint provided by our
company, whose specifications are undisclosed. It
is important to note that the inference times of these
closed-source models may be affected by external
factors, such as Azure’s rate limits and network
latency.

Metrics: We evaluated model performance using
a combination of traditional and modern Question-
Answering (Q&A) metrics. To assess basic correct-
ness, we employed Accuracy and F1-score. Accu-
racy is computed at the answer level by normalizing
the predicted and gold responses—removing punc-
tuation, lowercasing, and tokenizing on whitespace.
A prediction is marked as correct only if it contains
all substrings that are required given the dataset
correct answer, regardless of order, following the
method described in (Mallen et al., 2023). F1-score
captures partial correctness by computing the har-
monic mean of precision (the proportion of relevant
tokens in the prediction) and recall (the proportion
of relevant tokens recovered from the gold answer),
as defined in (Chhablani et al., 2021). In this case,
tokens are the substrings required to make a correct
answer given the dataset reference answer.

For a more nuanced assessment, we incorporated
the Response Relevancy and Faithfulness metrics
from the RAGAS framework (Es et al., 2024; Ami-
raz et al., 2025). These metrics are particularly
crucial in noisy contexts, as they can distinguish
between answers that are relevant but not factually
grounded in the source context and those that are
faithful to the context but fail to fully address the

question. The RAGAS metrics require a complete
gold-standard answer for comparison. However,
the RGB dataset provides only a list of required
strings rather than a full reference answer. To over-
come this limitation, we adopted an LLM-as-a-
judge approach (Snell et al., 2022; Wang et al.,
2023; Muller et al., 2025) and used the answers
generated by GPT-4o as the reference for each ques-
tion. Consequently, all other models were evalu-
ated against the GPT-40 responses. A necessary
implication of this methodology is that GPT-40’s
own performance on these specific metrics could
not be assessed. The RAGAS scores were com-
puted using GPT-40 Mini as the evaluator model,
which judged the quality and factual alignment of
each generated output against the GPT-40 refer-
ence.

To quantify the impact of noise on LLM per-
formance, we introduce the A Accuracy metric,
inspired by prior work on noise sensitivity in Q&A
models (Havrilla and Iyer, 2024). This metric mea-
sures performance degradation by calculating the
difference in accuracy between the baseline (0%
noise) and maximum (80% noise) conditions. A
smaller A Accuracy value signifies greater robust-
ness against contextual noise.

Prompt: For generative models, a standardized
prompt was employed to guide responses during
inference. The prompt instructed the model to read
the provided context carefully and generate the
most accurate and concise answer to the given ques-
tion:

You are an AI assistant specializing in Question
Answering. Your task is to read the
provided context carefully and then generate
the most accurate and concise answer to the
question based on the context.

Context: {context}
Question: {question}

Answer:
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4 Results

Table 2 and Figure 1 report the accuracy ob-
tained by the three groups of models—extractive,
open-source generative, and closed-source gener-
ative—under five noise conditions (0, 20, 40, 60
and 80%). Standard deviations, shown in parenthe-
ses, are consistently small, indicating that random
re-samplings of positive and negative documents
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Figure 1: Accuracy across different noise levels

have little impact on the measurements. Figure 2
depicts the F1-score metric.

Figure 3 plots the two RAGAS met-
rics—Response  Relevancy and  Faithful-
ness—across the same noise spectrum.* Finally,
Table 3 presents the average inference time for
each model.

5 Discussion

A clear pattern emerges when comparing results for
accuracy (Figure 1): closed-source generative mod-
els achieve the highest accuracy and are the most
resilient to noise, followed by open-source genera-
tive models and, finally, extractive models. Within
each group, a secondary but not universal trend
is visible—larger parameter counts generally lead
to higher accuracy. Among closed-source models,
GPT-40 stands out, while Meta LLaMA 3.1 (70B)
and Nous Hermes 3 (70B) lead the open-source
group, and RoBERTa is the strongest among ex-
tractive baselines. Notably, the large open-source
models, such as Hermes 3 (70B) and Meta LLaMA
3.1 (70B), exhibit accuracy and noise resistance
comparable to the best-performing closed-source
models (GPT-40 and GPT-40 Mini).

The size—performance correlation is not abso-
lute. GPT4All (13B) performs consistently worse,
and degrades faster under noise, than smaller mod-
els such as Phi-3Mini (3.8B), Meta LLaMA-3
(8B) and Nous Hermes-2 (7B). Likewise, Meta

*The figure reports scores for every model we tested except

GPT-40, because the models answers are evaluated against
GPT-40’s answers as reference.
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LLaMA-3 (8B) exhibits lower robustness to noise
than the lighter Phi-3 Mini and Nous Hermes-2
despite its larger size.

Extractive models earn higher F1-scores (Fig-
ure 2) at low noise but erode faster than gen-
eratives as noise increases. Because F1 is
token-overlap-based, the longer outputs typical
of generative models share fewer exact tokens
with the reference answers, leading to lower val-
ues—even when their semantic content is correct.
However, while the F1 metric may under-represent
the performance of generative models, particularly
in noisy contexts, it is notable that open-source
generative models—specifically Meta LLaMA 3.1
(70B)—demonstrate performance and noise robust-
ness comparable to that of closed-source models
like GPT-40 and GPT-40 Mini.

For Response Relevancy (Figure 3), extractive
models hover around 0.80 throughout, with a barely
perceptible downward slope; RoBERTa is the low-
est but follows the same flat profile. This behaviour
is expected: span-prediction models return a literal
substring, so as long as the gold answer remains in
the passage, topical relevance is preserved.

Open-source generative models display a more
heterogeneous pattern when using the Response
Relevancy and Faithfulness metrics. They start
above (.80 but decline more sharply with noise;
Meta LLaMA-3 (8B) and Phi-3 Mini (3.8B) fall
to about 0.60 at 80% noise. Larger models
(70B) mitigate this drop thanks to greater capacity
for instruction-following and distraction filtering,
whereas smaller models are prone to copying irrel-



Noise Levels

Model Size 0% 20% 40% 60% 80% A acc.
Extractive Models

DistilBERT 65M 0.743+£0.012  0.641+0.009  0.5434+0.034  0.470£0.022  0.377+0.015 0.367
BERT Multicased 178M  0.82440.009  0.723£0.016  0.635+£0.014  0.557+0.025  0.46240.025 0.362
BERT Uncased 335M  0.8234+0.020  0.746£0.016  0.659+0.019  0.583+0.022  0.483+0.011 0.341
RoBERTa 560M  0.839+0.006  0.77740.030  0.702+0.012  0.634+0.019  0.533+0.030 0.306
Open-Source Generative Models

Phi-3 Mini 3.8B 0.916+0.009  0.7814+0.017  0.72740.006  0.700£0.017  0.602+0.039 0.314
GPT4All 13B 0.865+0.008  0.7174+0.012  0.68240.012  0.633£0.015  0.578+0.051 0.287
Nous Hermes 2 7B 0.958+0.008  0.858+0.018  0.8034+0.025  0.772£0.020  0.742+0.019 0.216
Nous Hermes 3 70B 0.965+0.006  0.933+0.008  0.88240.009  0.838+0.016  0.779+0.010 0.186
Meta LLaMA 3 8B 0.933+0.014  0.886+0.017  0.8164+0.018  0.689+0.018  0.605+0.033 0.329
Meta LLaMA 3.1 70B 0.953+0.006  0.93540.011 0.896+0.008  0.853+0.012  0.80440.014 0.149
Closed-Source Generative Models

GPT-3.5 Turbo N/A 0.884+0.013  0.7644+0.012  0.66640.032  0.573£0.028  0.456+0.026 0.427
GPT-40 Mini N/A 0.965+0.003  0.9384+0.004  0.9014+0.007  0.842+0.021  0.778+0.013 0.186
GPT-40 N/A 0.958+0.005  0.9431+0.007  0.90640.025  0.855+0.015  0.815+0.017 0.143

Table 2: Accuracy comparison across noise levels (mean + standard deviation).

Model Size Device Count Exec. Time (sec.)
Extractive Models

DistilBERT 65M GPU 1 0.08 (+ 0.01)
BERT Multicased 178M GPU 1 0.10 (£ 0.01)
BERT Uncased 335M GPU 1 0.20 (£ 0.01)
RoBERTa 560M GPU 1 0.23 (£ 0.01)
Open-Source Generative Models

Phi-3 Mini 3.8B GPU 1 4.52 (£ 0.09)
GPT4All 13B GPU 1 9.26 (£ 0.15)
Meta LLaMA 3 8B GPU 1 5.28 (£ 0.10)
Meta LLaMA 3.1 70B GPU 8 1.16 (£ 0.44)
Nous Hermes 2 7B GPU 1 5.64 (£0.12)
Nous Hermes 3 70B GPU 8 1.26 (£ 0.43)
Closed-Source Generative Models

GPT-3.5 Turbo N/A N/A N/A 0.67 (+ 3.24)
GPT-40 Mini N/A N/A N/A 0.67 (4 0.39)
GPT-40 N/A N/A N/A 0.86 (£ 0.69)

Table 3: Average Query Execution Time by Model
(mean =+ standard deviation). “Device” indicates CPU
or GPU and “Count” the number of units used.

evant fragments once attention is diluted.

Among the closed-source generative models that
do appear in the figure, two distinct trends can be
observed. On one hand, the GPT-40 Mini model
maintains the highest and most stable relevance
curve, consistently staying above 0.80. This perfor-
mance is very similar to that of large open-source
generative models (those with 70B parameters).
On the other hand, GPT-3.5 Turbo shows a sharp
decline, dropping to around 0.50, which reflects
its smaller effective context window and weaker
alignment.

Faithfulness reveals different group dynamics.
Extractive models decline steadily and homoge-
neously from about 0.80 to 0.50 as noise reaches
80%. Under heavy noise and multi-span questions,
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they can select spans that no longer correspond lex-
ically to the reference answer produced by GPT-4o,
hence the steeper loss.

Among open-source generators, the large 70B
variants (Meta LLaMA-3.1 and Nous Hermes 3)
are the most stable (from 0.80 to 0.70). Mid-sized
models such as Meta LLaMA-3 (8B) and GPT4All
(13B) trace similar slopes but start from lower base-
lines (from 0.55 to 0.40). Small models (Nous
Hermes 2 7B, Phi-3 Mini 3.8B) drop abruptly at
the first noise level (20%), then continue a gentler
decline—an effect also documented by Ming et al.
(2025), who show that smaller LLLMs hallucinate
more readily when confronted with distractors.

Among open-source generative models, the large
70B variants (Meta LLaMA 3.1 and Nous Her-
mes 3) demonstrate the greatest stability, with
their scores declining moderately from 0.80 to
0.70. Mid-sized models, such as Meta LLaMA 3
(8B) and GPT4All (13B), follow similar downward
trends but start from lower baseline scores, rang-
ing from 0.55 to 0.40. In contrast, small models
(Nous Hermes 2 7B and Phi-3 Mini 3.8B) expe-
rience a sharp initial drop at the 20% noise level,
followed by a more gradual decline. This behav-
ior is consistent with prior findings (Ming et al.,
2025), which indicate that smaller language mod-
els are more prone to hallucinations when exposed
to distractors.

Closed-source generative models exhibit a simi-
lar trend in the Faithfulness metric as they do in Re-
sponse Relevancy. GPT-40 Mini consistently main-
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Figure 2: Fl-score across different noise levels

tains a score above 0.70 across all scenarios, dis-
playing a pattern comparable to that of large open-
source generative models. In contrast, the Faith-
fulness score of GPT-3.5 Turbo declines rapidly,
dropping to approximately 0.40 when noise reaches
80% noise.

Regarding inference time (Table 3), our results
reveal three distinct resource profiles. Extractive
models, such as RoBERTa, achieved the fastest
inference times, requiring only a single GPU for ef-
ficient execution (e.g., 0.23 seconds for ROBERTa).
In contrast, medium-sized models, such as Meta
LLaMA 3 (8B) and Nous Hermes 2 (7B), operated
efficiently with a single GPU, achieving inference
times of 5.28 and 5.64 seconds, respectively. Fi-
nally, the largest open-source generative models,
Meta LLaMA 3.1 (70B) and Nous Hermes 3 (70B),
required eight GPUs to achieve competitive perfor-
mance, with reduced inference times of 1.16 and
1.26 seconds, respectively.’

6 Concluding Remarks

This study offers three key insights into the perfor-
mance, efficiency, and practical use of extractive
and generative language models for Question An-
swering (Q&A) in Retrieval-Augmented Genera-
tion (RAG) systems.

31t should be noted that, as mentioned in Section 3, the
closed-source generative models were executed via an external
Azure endpoint. As a result, their inference times are affected
by external factors such as network latency and Azure’s rate
limits, making them not directly comparable to the locally
executed models.
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First, regarding performance and noise robust-
ness, large open-source generative models such
as Meta LLaMA 3.1 (70B) and Nous Hermes 3
(70B) demonstrate performance comparable to the
best closed-source models, including GPT-40 and
GPT-40 Mini. These open-source models maintain
high accuracy across various noise levels, indicat-
ing their resilience even in challenging conditions.
This result highlights that open-source alternatives
can deliver competitive performance without the
constraints of proprietary solutions.

Second, achieving this performance with large
open-source models comes with significant hard-
ware requirements. In our environment, 70B-
parameter open-source models necessitated their
distribution across eight 32 GB NVIDIA V100
GPUs. In contrast, medium-sized open-source
models (Meta LLaMA 3 8B, Nous Hermes 2 7B)
can operate effectively on a single GPU, while
closed-source APIs offload computational demands
to external servers. This observation underscores
the trade-off between model size and operational
cost.

Third, the choice between large and medium-
sized generative models should be guided by
the available computational resources and budget.
Large open-source models are well-suited for envi-
ronments with ample computational infrastructure,
offering a cost-efficient alternative to closed-source
models. In contrast, medium-sized open-source
models present a practical solution for resource-
constrained settings, delivering strong accuracy
with significantly lower hardware consumption.
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Figure 3: Response Relevancy and Faithfulness across different noise levels
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Limitations

We acknowledge a few limitations in our study that
should be considered when interpreting the results.

Our evaluation, while covering diverse model
categories, was constrained in its selection of
closed-source models. We analyzed three propri-
etary models, as these were the only ones accessi-
ble through our organization’s internal model hub.
A direct consequence of this constraint is the in-
ability to conduct a financial cost analysis for these
models, as granular usage metrics and associated
pricing were not available to us. Therefore, our
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the computational demands of open-source models.

A second limitation arises from the potential for
data contamination in the benchmark dataset. The
dataset, published in 2024, is composed of general-
domain news articles. It is plausible that contem-
porary, continuously updated generative models
(such as the closed-source models evaluated) may
have encountered this data, or information related
to it, during their training cycles. This could confer
an unfair advantage, as this prior exposure might
influence generation despite the instruction to rely
solely on the provided context.

Finally, a specific methodological limitation per-
tains to the evaluation of the GPT-40 model on met-
rics of Response Relevancy and Faithfulness. This
is because we utilize answers generated by GPT-40
itself as the ground-truth reference for responses,
as the benchmark lacks independently verified or
human-curated answers for each question. Evalu-



ating GPT-40 against its own output would create
a circular reference, leading to artificially perfect
scores on these metrics. Consequently, we had to
exclude GPT-4o from this portion of the analysis
to maintain methodological validity.
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