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Abstract

This paper presents a comprehensive study on
the multilingual adaptability of large language
models (LLMs), with a focus on the interplay
between training strategies and prompt design.
Using Thai as a case study, we examine: (RQ1)
the extent to which pre-trained models (Base)
can adapt to another language through addi-
tional fine-tuning; (RQ2) how continual pre-
training (CPT) compares to multilingual pre-
training (MLLM) in terms of performance on
downstream tasks; and (RQ3) how language
variation within different components of a struc-
tured prompt–task instruction, context input,
and output instruction–influences task perfor-
mance in cross-lingual settings. Our findings re-
veal that CPT proves to be a promising strategy
for enhancing model performance in languages
other than English like Thai in monolingual set-
tings, particularly for models that initially lack
strong linguistic capabilities. Its effectiveness,
however, is highly task-dependent and varies
based on the base model’s initial proficiency.
In cross-lingual scenarios, MLLMs exhibit su-
perior robustness compared to Base and CPT
models, which are more susceptible to context-
output language mismatches. Considering the
high cost of training multilingual models from
scratch, MLLMs remain a critical component
for downstream tasks in multilingual settings
due to their strong cross-lingual performance.1

1 Introduction

A code-switched language has been a topic dis-
cussed and studied in natural language generation
for decades. It is a situation when a sentence in
a model’s response contains multiple languages
(Poplack, 1980; Khanuja et al., 2020) or language
models are so confused that they fail to gener-
ate a consistent response in a particular language
(Marchisio et al., 2024). This phenomenon has be-
come ubiquitous since the rise of LLMs (Brown

1We release our code at SCB DataX’s GitHub.

Figure 1: Example of language variation settings. The
languages used in the task instruction (pink), context
(blue), and output (gray) can vary between English and
Thai. The entire prompt is provided to the LLM N times
to evaluate multilingual performance. This evaluation
includes confusion-related metrics, such as instruction-
following hallucination rate (IFHR), uncertainty, and
word-level entropy (WLE), as well as performance-
related metrics, such as accuracy for short-form gen-
eration tasks and ROUGE-1 for long-form generation
tasks.

et al., 2020) because most of them are still predom-
inantly English-centric. They also show limited
capabilities when it comes to other languages (Asai
et al., 2024; Bang et al., 2023).

Several techniques have been proposed to lo-
calize those English-centric LLMs to work bet-
ter in target languages including parameter-tuning
alignment and parameter-frozen alignment (Qin
et al., 2024). However, all adaptation strategies
still give rise to the code-switching issue. Some
researchers investigate the code-switched language,
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also known as language confusion, over 15 lan-
guages with monolingual and cross-lingual genera-
tion and measure model’s responses in word-level
and line-level confusion (Marchisio et al., 2024).
They find that LLMs are susceptible to language
confusion when the number of tokens in the sam-
pling nucleus is high, while the distribution is flat.

In this study, we follow a similar study of lan-
guage confusion by pushing further with an exten-
sive focus on Thai language as a case study. We
investigate the generalization of LLMs beyond En-
glish through both monolingual and cross-lingual
settings on different training strategies, namely
(i) Base – training from scratch with English-
dominant data, (ii) CPT – continual pre-training of
the Base model on data in a target language, and
(iii) MLLM – multilingual pre-training. We also
examine the effectiveness of fine-tuning pre-trained
models on a new language and compare it with al-
ternative training strategies. In addition, we investi-
gate how variations in the language used across dif-
ferent parts of a prompt including task instruction,
context input, and output instruction, impact model
performance in multilingual and code-switched set-
tings, as visualized in Fig 1.

It is noted Thai language is selected because it
represents a language that has recently transitioned
from being low-resourced to medium-resourced
(Joshi et al., 2020). This shift offers a unique oppor-
tunity to investigate how language resource avail-
ability influences model performance and general-
ization. Moreover, the availability of base, CPT,
and MLLM variants in Thai enables direct, con-
trolled comparisons across training strategies. We
also explore and compare the language confusion
with regard to different confusion aspects, such
as uncertainty (Farquhar et al., 2024), instruction-
following hallucination rate (IFHR), and word-
level entropy (WLE). Besides, we measure the re-
sponse quality through performance metrics, such
as accuracy and ROUGE-1 across different tasks,
including both short-form and long-form genera-
tion tasks.

2 Related work

This work investigates code-switching and lan-
guage confusion between Thai and English in dif-
ferent types of LLMs. We begin by outlining the
relevant background.

Multilinguality adaptation strategy There are
two main approaches to enhance capability in the

target languages which are parameter-tuning align-
ment and parameter-frozen alignment (Qin et al.,
2024). For the parameter-tuning alignment, it refers
to fine-tuning process with target language data dur-
ing from-scratch pre-training (Brown et al., 2020),
continual pre-training (CPT) (Luukkonen et al.,
2023), supervised fine-tuning (SFT) (Chung et al.,
2022), reinforcement learning with human feed-
back (RLHF) (Lai et al., 2023), and downstream
fine-tuning (Lepikhin et al., 2020) with additional
language-specific data to the original LLMs. In
contrast, the parameter-frozen alignment requires
prompt engineering without updating model param-
eters to acquire multilingual performance (Yang
et al., 2023). In this study, we focus on the first
approach. However, due to the expensive resources
required for the fine-tuning process, the practical
approach for Thai adaptation is limited to the CPT
approach, such as Typhoon-1.5 (Pipatanakul et al.,
2023), Sailor (Dou et al., 2024), and OpenThaiGPT-
1.5 (Yuenyong et al., 2024).

Language confusion in LLMs We define lan-
guage confusion as a situation in which a model
struggles to process information from the prompt
and generate a response containing unintended lan-
guages (Khanuja et al., 2020; Marchisio et al.,
2024) or does not follow the provided instruction.

3 Language confusion experiments

This section outlines the experiments conducted to
address the following research questions.

• RQ1: To what extent can a pre-trained model
adapt to a target language through additional
fine-tuning?

• RQ2: Does sequential training or continual
pre-training on a new language improve a pre-
trained model’s performance in that language
more effectively than training from scratch or
multilingual pre-training?

• RQ3: To what extent does the language used
in different parts of a prompt, namely task
instruction, context input, and output instruc-
tion, as visualized in Fig 1, influence task per-
formance in multilingual settings?

Datasets We use a high-quality Thai dataset
curated for instruction-following fine-tuning,
WangchanThaiInstruct (Vistec, 2024), denoted as
WTI. From this dataset, we select three relevant
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tasks, namely multiple-choice (WTI-MC), closed
QA (WTI-CQA), and summarization (WTI-SUM)
tasks. We also incorporate a popular benchmark
within Thai LLMs community, ThaiExam (Pi-
patanakul et al., 2023), and include a universal
benchmark, MMLU (Hendrycks et al., 2021), to
serve as a baseline for benchmarking model perfor-
mance.

For WTI and ThaiExam datasets, they are origi-
nally in Thai and are translated into English. The
translations are carried out using GPT-4 (Achiam
et al., 2024), and some are sampled to manually
check and revise, if needed, by authors. Please
refer to Appendix A for more details.

We further categorize the datasets into two main
tasks: short-form and long-form generation tasks.
The short-form generation task includes WTI-MC,
ThaiExam, and MMLU, while the long-form gener-
ation task includes WTI-CQA and WTI-SUM. The
data statistics are provided in Appendix B.

Models Due to the limited compute budget, the
scope of the models studied here includes around
7B-9B models, namely Llama-3-8B (Grattafiori
et al., 2024) and its CPT with Thai dataset,
Typhoon-1.5-8B (Pipatanakul et al., 2023), Qwen-
1.5-7B (Bai et al., 2023) with its CPT, Sailor-7B
(Dou et al., 2024), and Qwen-2.5-7B (Yang et al.,
2025) with its CPT, OpenThaiGPT-1.5-7B (Yueny-
ong et al., 2024) to address RQ1. We also include
Gemma-2-9B (Riviere et al., 2024) and Llama-3.1-
8B (Grattafiori et al., 2024) for MLLMs compari-
son to answer RQ2 and RQ3.

Evaluation metrics We measure language con-
fusion from three perspectives: (i) Instruction-
following hallucination rate (IFHR) – to evalu-
ate how well the model understands the task in-
struction. For short-form generation tasks (MMLU,
WTI-MC, and ThaiExam), this focuses on whether
the response matches one of the valid options in
the multiple-choice set. For long-form generation
tasks (WTI-SUM and WTI-CQA), the focus is on
whether the response is in the specified language.
For this experiment, language identification is per-
formed using FastText (Grave et al., 2018), a lan-
guage identification model, to determine the lan-
guage of the generated response, (ii) Uncertainty –
to assess the consistency of the N responses quan-
tified using the spectral clustering technique (Far-
quhar et al., 2024), and (iii) Word-level entropy
(WLE) – to determine word-level uncertainty in
each response. We use the PyThaiNLP tokenizer

(Phatthiyaphaibun et al., 2024) to segment the re-
sponse into individual words, which are then passed
to the same language identification model to detect
their language. The resulting predictions are used
to compute entropy. It is important to note that this
metric is only applicable to long-form generation
tasks.

In addition to the three language confusion met-
rics, we also evaluate task performance to assess
each model’s capability in a downstream task. Ac-
curacy2 is used for short-form generation tasks,
while ROUGE-1 (Lin, 2004) is employed for long-
form generation tasks.

Figure 2: Prompt examples for a summarization task.

Experimental Setup For each prompt, we vary
the language of the task instruction and context
input parts by default and the output instruction
can be additionally varied for long-form genera-
tion tasks, which is labeled in the following format:
{instruction}_{context}_{output} as shown
in Fig 2. However, the format of the short-form
experiments excludes the output instruction com-
ponent because the response is limited to one of the
options from A to E. We generate N = 10 responses
per prompt to calculate the uncertainty score and
aggregate them using the mean for other metrics to
obtain prompt-level scores.

4 Results

4.1 Adaptability to Thai language
We compare the Base models and their correspond-
ing CPT models on both short-form and long-form
Thai language generation tasks, specifically using
experiments th_th for short-form and th_th_th
for long-form generation as shown in Fig 4. Please

2Please navigate to Appendix C for accuracy calculation.
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(a) Short-form generation tasks

(b) Long-form generation tasks with Thai instruction

Figure 3: Performance breakdown across experiments in prompt variation settings, labeled in the following format:
{task instruction}_{context input}_{output instruction}. Note that the output instruction component is
omitted for short-form generation tasks.

refer to Appendix D for performance comparison
of English experiments.

Short-form generation tasks We observe two
distinct patterns among the three pairs of Base and
CPT models studied: (i) Llama-3 and Typhoon-1.5,
and (ii) Qwen-1.5 and Sailor, and (iii) Qwen-2.5
and OpenThaiGPT-1.5. Llama-3 appears to under-
stand the Thai language well, as indicated by its
low instruction-following hallucination rate (IFHR)
in Fig 4a. In contrast, the Qwen models may strug-
gle with following instruction in Thai regarding
their high IFHR. This suggests they may not be
well-suited for customized text generation tasks,
such as generating a single character representing
the correct option in the multiple-choice instruction.
Notably, the IFHR remains unchanged even after
applying continual pre-training to the base models.

However, we notice signs of improvement in
Thai language understanding for the Qwen-related

pairs, as evidenced by decreased uncertainty and
increased accuracy, but the opposite trend is ob-
served in the Llama-3 pair. This implies that the
continual pre-training can improve Thai language
comprehension in models that are not originally fa-
miliar with Thai, such as Qwen-1.5 and Qwen-2.5
although it does not enable the models to follow
instructions. On the other hand, it may not provide
significant benefits for models that already have
a relatively good understanding of Thai, such as
Llama-3.

Long-form generation tasks When the instruc-
tion is relaxed to allow free-form text in Thai in-
stead of requiring one of the valid options in the
multiple-choice setting, the IFHR drops to around
10%, with an outlier in Qwen-1.5 reaching over
60% as visualized in Fig 4b. This pattern also per-
sists at the word-level entropy (WLE), indicating
that words from multiple languages are generated
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within a single response, despite the instruction
to generate a response in Thai. Interestingly, the
continual pre-training helps reduce language con-
fusion, particularly in the Qwen-1.5 pair. However,
this effect does not hold for the Qwen-2.5 pair,
where OpenThaiGPT-1.5 shows higher IFHR and
WLE.

We also notice that both uncertainty and
ROUGE-1 scores improve as the models align more
closely with the task instruction. This trend is con-
sistent across all pairs of Base and CPT models
examined in this study.

RQ1’s answer Continual pre-training can im-
prove a pre-trained model’s performance in under-
standing and generating text in low-resource lan-
guages, such as Thai, especially when the model
initially lacks proficiency in the language. How-
ever, the degree of improvement may also depend
on factors beyond model architecture and training
data distribution, such as the alignment between the
pre-training data and the target downstream tasks.

In our experiments, continual pre-training does
not consistently help models follow task-specific
instructions. For example, some models continue
to generate free-form text when a single-character
response is required in a multiple-choice setting.
These results suggest that without sufficient expo-
sure to similar task formats during pre-training,
models may still struggle with task generaliza-
tion, regardless of improvements in language un-
derstanding.

4.2 Continual pre-training vs Multilingual
pre-training

We further investigate how different training strate-
gies contribute to downstream tasks by focusing
on continual and multilingual pre-training. We se-
lect Llama-3.1 as the baseline for multilingual pre-
trained model (MLLM) performance, represented
by the black dashed line in Fig 4.

Short-form generation tasks The MLLM
demonstrates strong task understanding and fol-
lows instructions well, as indicated by the almost
zero IFHR. Surprisingly, the output quality, mea-
sured in terms of uncertainty and accuracy, is not
particularly outstanding (see Fig 4a). It offers per-
formance comparable to Typhoon-1.5, which is a
CPT version of Llama-3.

Long-form generation tasks Although the
IFHR remains relatively low, the WLE is not as low

(see Fig 4b). This suggests that the model occasion-
ally generates tokens in other languages although
the overall response is still classified as Thai. In
terms of uncertainty, the MLLM displays patterns
similar to those seen in CPT models. Regarding the
response quality, as measured by ROUGE-1, the
MLLM outperforms models that are continually
pre-trained from Qwen family, and is competitive
with models continually pre-trained from Llama-3.

These results imply that model family plays a
significant role in multilingual performance. While
the Qwen family may not perform as strongly in
Thai in its base form, continual pre-training can
boost its capabilities to approach MLLM-level
performance. On the other hand, continual pre-
training on Llama-3 provides a more substantial
performance lift, surpassing both the base mod-
els and the MLLM. This highlights the strength of
Llama-based architectures for Thai language tasks,
especially when further refined through continual
pre-training.

RQ2’s answer Although MLLMs exhibit strong
instruction-following abilities and tend to gener-
ate fewer hallucinations, their performance is not
consistently better across all tasks. In contrast, con-
tinual pre-training on a new language can achieve
competitive, or even superior, results compared to
multilingual pre-training. However, the successful
continual pre-training depends on the strength of
the base model, as well as the quality, diversity,
and distribution of the data used during continual
pre-training.

4.3 Cross-lingual prompts
Regarding the language confusion studied in
(Marchisio et al., 2024), we extend the study by
decomposing each prompt into three components
including task instruction, context input, and output
instruction, as illustrated in Fig. 2. We then vary
the language of each component between English
and Thai to investigate model robustness across
different models. We also include Gemma-2-9B as
a baseline to serve as an approximate upper bound
for performance as displayed in Fig 3.

Short-form generation tasks Figure 3a presents
the experimental results obtained by varying the
languages used for the task instruction and context
input within the prompts. The models consistently
achieve their best performance in the en_en setting,
characterized by higher accuracy and lower IFHR
and uncertainty. However, when Thai is introduced
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(a) Short-form generation tasks with experiment th_th

(b) Long-form generation tasks with experiment th_th_th

Figure 4: Comparison of model types–Base, CPT, and MLLM–for Thai language on the benchmarks (a) Short-form
and (b) Long-form generation tasks in terms of IFHR (↓), Uncertainty (↓), WLE (↓), and Performance (↑), measured
via Accuracy and ROUGE-1 for the respective short-form and long-form generation tasks. Note that the MLLM
results are retrieved from Llama-3.1 and the model names on the x-axis are abbreviated for display clarity, while
otg refers to OpenThaiGPT-1.5.

in either part of the prompt, the performance of
all models deteriorates regardless of model type.
Notably, the magnitude of this decline remains con-
sistent across all Thai-related experiments. This in-
dicates the models’ weakness in processing mixed
language prompts which is possibly due to lim-
ited exposure to Thai language data during training
process.

Long-form generation tasks We observe that
language variation in the task instruction compo-
nent does not significantly affect performance, as
shown in Appendix E. Therefore, we present the
results in Fig. 3b, which illustrate the effect of
varying the languages in the context input and out-
put instruction components, while keeping the task
instructions in Thai.

The base models demonstrate a strong reliance

on English, achieving their optimal ROUGE-1
score under the th_en_en setting. This is a direct
consequence of the English-centric dominance in
their pre-training data, which ensures high fidelity
in processing English language.

The CPT models, on the other hand, exhibit the
anticipated benefits of localized adaptation on Thai
data. Relative to the Base models, they demonstrate
a significant increase in ROUGE-1 and a reduction
in WLE for th_th_th or Pure Thai experiment as
visualized in Fig 3b. This indicates that the con-
tinual pre-training process successfully refined the
Thai token-level representations, leading to more
accurate and confident Thai generation.

However, both Base and CPT models suffer
when the languages of the context input and out-
put instruction are mismatched because the IFHR,
uncertainty, and WLE are higher than the monolin-
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gual settings.
Conversely, MLLMs display the highest degree

of robustness and the lowest performance variance
across all prompt language settings. This superior
performance is attributed to their foundational mul-
tilingual pre-training objective, which promotes a
shared representational space across English and
Thai.

RQ3’s answer The language used in different
prompt segments does not make much impact for
the short-form generation tasks, but for the long-
term generation tasks, we observe that it impacts
task performance in multilingual settings, espe-
cially with the most critical factor being the lan-
guage mismatch between the context input and the
output instruction. For Base and CPT models, this
mismatch introduces a severe cross-lingual penalty,
resulting in increases across all failure uncertainty-
related metrics, as the models struggle to seam-
lessly translate information extracted in one lan-
guage into constraints required by the other.

Conversely, MLLMs demonstrate superior ro-
bustness and minimal performance degradation un-
der all mixed-language conditions. This confirms
that their foundational multilingual alignment ef-
fectively eliminates the internal processing conflict
and uncertainty observed in other architectures.

5 Conclusion

Continual pre-training (CPT) demonstrates notable
improvements in both language confusion and per-
formance metrics within mono- and cross-lingual
settings compared to base models, particularly for
languages such as Thai. However, its effectiveness
is highly task-dependent and influenced by the base
model’s initial linguistic proficiency. Despite these
gains, CPT models still lag behind multilingual
large language models (MLLMs), which show su-
perior robustness and better handle context–output
language mismatches in cross-lingual tasks. Given
the high computational cost of training multilin-
gual models from scratch, integrating multilingual
training strategies into CPT approaches may of-
fer a promising pathway to enhance model gen-
eralization and achieve more robust multilingual
capabilities for downstream applications.

Limitations

This study focuses on the Thai language as a case
study to explore the generalization of large lan-
guage models (LLMs) to languages beyond En-

glish. Due to computational constraints and the
limited availability of multilingual performance
benchmarks, the analysis incorporates a small sam-
ple of model pairs with model size around 7B-9B
parameters, which may affect the completeness of
the comparison.
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A Translation details

We employ GPT-4 (Achiam et al., 2024) to translate
the dataset from Thai into English language with
the following prompt.

Translation prompt

Translate the following Thai question
into English.
Thai: {content}
English:

We calculate the cosine similarity score between
embedding vectors of questions in Thai and En-
glish using BGE-M3 model (Chen et al., 2024).
Overall, the translation quality is good, as over
88% of the data achieves a score higher than 0.7.
We only make minor changes to the samples where
key information for the subject and verb is miss-
ing. However, we find an issue when translating
Thai proverbs into English, so we remove this cate-
gory from the ThaiExam dataset (Pipatanakul et al.,
2023).

B Dataset statistics

The number of data points for each dataset used in
the experiments is given in Table 1.

Task Dataset #of questions
Short-form MMLU 14,042
Short-form ThaiExam 583
Short-form WTI-MC 787
Long-form WTI-CQA 741
Long-form WTI-SUM 793

Table 1: Dataset distribution in the experiments.

C Lenient accuracy calculation for
shot-form generation tasks

We notice an issue when a model fails to follow
instructions for short-form generation tasks. Specif-
ically, it sometimes generated more than one token

to represent the correct option. This makes it mis-
leading to calculate accuracy based on an exact
match between the raw response and the gold an-
swer.

Therefore, we relax the accuracy criteria. Re-
sponses with certain prevalent patterns are now
counted as correct. Examples of these patterns in-
clude "Here is the answer: <x>", "Option <x>
is the right answer", and "<x> <followed by
option detail>".

However, other metrics are still calculated based
on the original responses.

D Comparison of model types for English
language settings

We also plot the comparison among different model
types in English language settings, specifically
en_en and en_en_en settings for both short-form
and long-form generation tasks in Fig 5. The ob-
served pattern shows similar behavior as discussed
in Section 4.1.

E Full experimental results of language
variations for long-form generation
tasks

All of the prompt variation results are displayed in
Fig 6. We observed similar patterns when varying
the language in the task instruction, except in the
en_en_th and en_en_en experiments.

In the en_en_th setting, all the models perform
poorly because the prompts are in English, yet they
are instructed to generate a Thai response. This
single token for language control leads to confusion
regarding the language switch. Conversely, the
en_en_en or Pure English setting, allows the model
to perform very well.
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(a) Short-form generation tasks with experiment en_en

(b) Long-form generation tasks with experiment en_en_en

Figure 5: Comparison of model types for English language on the benchmarks (a) Short-form and (b) Long-form
generation tasks in terms of IFHR (↓), Uncertainty (↓), WLE (↓), and Performance (↑), measured via Accuracy
and ROUGE-1 for the respective short-form and long-form generation tasks. Note that the MLLM results are
retrieved from Llama 3.1 and the model names on the x-axis are abbreviated for display clarity, while otg refers to
OpenThaiGPT 1.5.
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(a) English task instruction

(b) Thai task instruction

Figure 6: Performance breakdown across experiments in prompt variation settings, labeled in the following format:
{task instruction}_{context input}_{output instruction}.
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