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Abstract

Hallucinations of vision-language models
(VLMs), which are misalignments between vi-
sual content and generated text, undermine the
reliability of VLMs. One common approach
for detecting them employs the same VLM,
or a different one, to assess generated outputs.
This process is computationally intensive and
increases model latency. In this paper, we ex-
plore an efficient on-the-fly method for hallu-
cination detection by training traditional ML
models over signals based on the VLM’s next-
token probabilities (NTPs). NTPs provide a
direct quantification of model uncertainty. We
hypothesize that high uncertainty (i.e., a low
NTP value) is strongly associated with hallu-
cinations. To test this, we introduce a dataset
of 1,400 human-annotated statements derived
from VLM-generated content, each labeled as
hallucinated or not, and use it to test our NTP-
based lightweight method. Our results demon-
strate that NTP-based features are valuable pre-
dictors of hallucinations, enabling fast and sim-
ple ML models to achieve performance compa-
rable to that of strong VLMs. Furthermore, aug-
menting these NTPs with linguistic NTPs, com-
puted by feeding only the generated text back
into the VLM, enhances hallucination detection
performance. Finally, integrating hallucination
prediction scores from VLMs into the NTP-
based models led to better performance than
using either VLMs or NTPs alone. We hope
this study paves the way for simple, lightweight
solutions that enhance the reliability of VLMs.
All data is publicly available at .

1 Introduction

Vision-language models (VLMs) have emerged as
powerful tools capable of handling tasks involving
visual and textual inputs. These models enable ap-
plications such as visual question answering (VQA;
Li et al., 2019), and text-to-image generation (Rad-
ford et al., 2021; Zhao et al., 2024b). However,
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Figure 1: Illustration of our method: Linguistic NTPs
are extracted during the VLM’s text generation process.
Description NTPs require an additional forward pass us-
ing only the generated text. Statistical features are then
computed from the NTPs, and a lightweight traditional
ML model uses these features to detect hallucinations.

as these models become more widely used, con-
cerns about hallucinations, errors or misleading
outputs generated by the model, have become more
prominent. Unlike humans, who are less likely
to describe non-existent objects, misjudge colors,
or miscount elements, these errors are more likely
to appear in machine-generated content. Gunjal
et al. (2024) found that even state-of-the-art VLMs
frequently generate non-existent objects.

Currently, the primary method for detecting hal-
lucinations involves using VLMs as hallucination
predictors, either by asking a model to identify
hallucinations in its own generated output or in
others’ (Li et al., 2024). This approach has demon-
strated success both in generative LLMs (Quevedo
et al., 2024) and generative VLMs (Chen et al.,
2024). However, these predictor VLMs exhibit
two main weaknesses: First, they often require per-
forming extensive computations, making them both
computationally expensive and time-consuming,
especially when multiple calls are needed to verify
each sentence or clause in the generated content.
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Second, they lack explainability and interpretabil-
ity (Zhao et al., 2024a).

Large language models (LLMs) generate re-
sponses by sampling tokens from a learned proba-
bility distribution over the next token, conditioned
on the input context. This auto-regressive genera-
tion process resembles human language production,
where likely words are uttered based on contex-
tual understanding and prior knowledge (Goldstein
et al., 2022). Lu et al. (2021) found that, in humans,
uncertainty plays a key role in the propagation of
misinformation. Inspired by this, we hypothesize
that next-token probabilities (NTPs) produced by
VLMs may similarly encode uncertainty, and thus
can serve as useful signals for hallucination detec-
tion. Indeed, prior work suggests that high uncer-
tainty, reflected by low NTPs, is a strong indicator
of hallucinations and related errors (Farquhar et al.,
2024; Quevedo et al., 2024; Li et al., 2024).

We investigate the role of NTPs in detecting
hallucinations in VLMs. Rather than relying on
predictor VLMs, we propose leveraging the NTPs
produced during generation to enable fast, real-time
hallucination detection. Our goal is to design an ef-
fective approach for leveraging NTP-based features
to predict hallucinations using fast, lightweight tra-
ditional machine learning (ML) models, such as
Logistic Regression, Support Vector Machine, and
XGBoost. As illustrated in Figure 1, we compare
approaches that use raw NTPs directly from the
VLMs (Description NTPs) with those that rely on
statistical features derived from the NTPs. We ex-
plore integration of NTPs with VLM predictor out-
puts, and propose a method for neutralizing linguis-
tic biases embedded within them using Linguistic
NTPs resulting from reprocessing the generated
text through the same VLM after omitting the vi-
sual input. Throughout, we assume that higher
uncertainty, operationalized as lower next-token
probabilities or higher entropy, correlates with hal-
lucination risk (Farquhar et al., 2024), and we de-
sign our features to capture this signal.

A growing body of research shows that VLMs
often rely heavily on linguistic priors (Zhu et al.,
2024; Guan et al., 2024; eun Cho and Maeng, 2025;
Wang et al., 2024), and may even prioritize them
over conflicting visual evidence (Luo et al., 2024;
Wu et al., 2024). These findings suggest that hal-
lucinations in VLMs may stem, at least in part,
from biases in their language modeling compo-
nents, rather than solely from limitations in visual
understanding. Based on these insights, we intro-

duce a novel dataset specifically curated to examine
the relationship between NTPs and hallucinations
in VLMs. We believe this dataset will serve as a
valuable resource for future research in this area.
Using this dataset, we evaluate the effectiveness
of NTPs generated by LLaVA-1.5 and LLaVA-1.6
(Liu et al., 2024) for hallucination detection. As
baselines, we include predictions from both LLaVA
and PaliGemma (Beyer et al., 2024), and also use
these predictions as additional input features to tra-
ditional ML models.

Our experiments reveal that statistical features
derived from NTPs outperform raw NTP features
across all models, making them a more effec-
tive and reliable signal for hallucination detec-
tion. These statistical features alone come close
to matching the performance of VLM predictors
while offering gains in efficiency, allowing for on-
the-fly hallucination detection. While incorporat-
ing Linguistic NTPs offers only modest gains for
statistical features, neutralization strategies such as
element-wise subtraction of raw Description and
Linguistic NTPs provide further evidence of the
role of linguistic biases in hallucination generation.
Finally, we find that augmenting VLM predictor
outputs with NTP features yields consistent im-
provements, demonstrating that these signals are
complementary and result in the strongest halluci-
nation detection approach.

2 Related work

Defining hallucinations. The term hallucinations
lacks a universal definition across different fields
but, in general, describes instances where a model
produces content that is disconnected from its in-
put or from reality (Maleki et al., 2024). In NLP,
this term typically refers to outputs that fail to ac-
curately reflect real-world facts (Xu et al., 2024).
The notion extends to other areas as well; for exam-
ple, in medical imaging, deep learning techniques
can create images that appear realistic, but con-
tain fabricated structures, potentially misleading
diagnostic efforts (Bhadra et al., 2021). Identi-
fying hallucinations is critical because inaccura-
cies not only diminish user trust but also present
significant risks across diverse domains (Benki-
rane et al., 2024; Tang et al., 2025), including low-
resource language settings (Benkirane et al., 2024),
legal contexts (Magesh et al., 2024), information
retrieval (Faggioli et al., 2023), healthcare and au-
tonomous driving (Leng et al., 2024; Gunjal et al.,
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2024). Consequently, robust hallucination detec-
tion is essential to mitigate these challenges and
safeguard the reliability of AI-generated content.

Techniques for hallucination detection. Vari-
ous methods have been proposed to automatically
detect hallucinated outputs. One common approach
involves analyzing the model’s output probability
distributions, where segments with low confidence,
characterized by high entropy or significantly re-
duced token probabilities, are reliably flagged as
hallucinations (Li et al., 2024; Ma et al., 2025;
Guerreiro et al., 2022; Quevedo et al., 2024; Far-
quhar et al., 2024; Simhi et al., 2025). In contrast
to these internal indicators, other methods deploy
external models such as dedicated VLMs (Chen
et al., 2024) or LLMs (Quevedo et al., 2024) to
assess whether hallucinations are present in the
generated content. Although this external verifica-
tion yields promising results, it tends to be signifi-
cantly more resource-intensive than relying solely
on internal signals, and lacks explainability (Sarkar,
2024; Zhao et al., 2024a).

Linguistic biases and their impact on VLMs.
A significant source of hallucinations in both
VLMs and LLMs is their overdependence on lin-
guistic priors and biases. Research indicates that
large VLMs often generate plausible-sounding de-
scriptions based on statistical patterns learned dur-
ing training (e.g., "blue sky"), rather than by ac-
curately anchoring every detail to the visual con-
tent (Zhu et al., 2024; Guan et al., 2024). This
can result in errors such as attributing objects or
attributes to a scene that, while contextually ex-
pected, are actually absent—a phenomenon com-
monly known as object hallucination in image cap-
tioning and VQA systems (Leng et al., 2024). In
many cases, the language generation component
can dominate the visual signal, with models relying
solely on textual context even when it contradicts
the visual evidence (Luo et al., 2024; Wu et al.,
2024). Consequently, recent research focuses on
minimizing these linguistic biases to reduce hal-
lucinations originating from the multimodal inter-
action, for instance, by encouraging the model to
more closely attend to the image during the decod-
ing process (Zhu et al., 2024; Leng et al., 2024).

3 Method

Problem definition. A probe is a statement de-
rived from a VLM-generated description of an im-
age. Each probe can either be truthful or contain

a hallucination. For example, the probe ‘There is
a handbag.’ from Figure 2 corresponds to the gen-
erated sentence ‘There is also a handbag visible
in the scene.’ We define hallucinations as any tex-
tual information produced by the VLM that does
not accurately reflect the visual content of the im-
age. In particular, we consider the following as
hallucinations: objects falsely perceived as present,
incorrect object attributes (such as color or size),
and misinterpretations of relationships within the
scene. Our goal is to predict whether a probe con-
tains a hallucination or not.

3.1 Predicting Hallucinations
We employ two complementary approaches to pre-
dict whether a probe contains a hallucination. The
first approach employs a predictor VLM (e.g.,
LLaVA-1.5, LLaVA-1.6 or PaliGemma) which pro-
cess the image using the prompt:

“According to the image, is the following
sentence correct? {PROBE}. Answer
only with Yes OR No.”

Here, {PROBE} represents a probe derived from
the VLM-generated description of the image. We
denote the probability that the probe is correct, as
estimated using the NTP of the predictor VLM, by:

P(Yes)
P(Yes) + P(No)

The main drawback of this approach is the re-
liance on a predictor VLM, which can be com-
putationally expensive. In real-time applications,
where we aim to verify that the content generated
by the VLM is correct, this approach substantially
increases latency, as each statement is verified sep-
arately. To address this, we propose an alternative
approach that employs fast and lightweight tradi-
tional machine learning models (we use the term
traditional ML models in the remaining of the text),
such as Logistic Regression (LR), Support Vec-
tor Machine (SVM), and XGBoost. These models
are trained to predict whether a probe is correct
based on features derived from the NTPs of the
VLM-generated description. Since these NTPs are
by-products of the generation process, the models
can assess the correctness of the generated content
on the fly (i.e., during generation). In the following
subsection, we describe these NTP-based features.

3.2 Next Token Probabilities (NTPs)
We present two types of NTPs that are used as
features for the traditional ML models.
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Description NTPs. When a VLM generates
a response, it does so token by token, estimating
a probability distribution over all possible tokens
at each step. We hypothesize that these Descrip-
tion NTPs encode valuable information about the
model’s certainty in its generated response and,
therefore, may be beneficial for hallucination de-
tection. Since Description NTPs can be obtained
on the fly, they serve as our primary focus.

Linguistic NTPs. Our manual analysis of De-
scription NTPs revealed recurring probability pat-
terns that suggest linguistic influences beyond vi-
sual content. We hypothesize that these patterns
arise from inherent linguistic biases in the model.
Following the methodology of Liu et al. (2023);
Shrivastava et al. (2023), who demonstrated that
linguistic effects in the generated text could be
captured by feeding the text back into the same
language model that produced it, we reinserted
the VLM-generated text into its corresponding lan-
guage model, this time without an instructional
prompt or image. We term the extracted prob-
abilities as Linguistic NTPs. Our motivation is
to augment the Description NTPs with Linguistic
NTPs, which help disentangle language-driven bi-
ases, such as syntactic or grammatical priors, from
visually grounded signals, thereby improving the
detection of hallucinated content.

To quantify the relationship between Description
NTPs and Linguistic NTPs, we computed Spear-
man’s correlation between the two probability se-
ries for each probe. The average correlation across
all probes was 0.744, reinforcing our hypothesis
that the two types of NTPs are inherently linked.
Consequently, we examine the potential of Descrip-
tion NTPs both as standalone features and in com-
bination with Linguistic NTPs.

3.3 Next Token Probabilities as Features
We next describe how the NTPs are used in practice
as features for traditional ML models. Description
NTPs are extracted on the fly during text genera-
tion. For each probe, we consider only the NTPs
corresponding to the span of generated text associ-
ated with that probe, typically a sentence or clause,
though not necessarily limited to that. Linguistic
NTPs, on the other hand, are extracted separately,
either after the full description has been generated
or after the span corresponding to each probe (e.g.,
after each sentence). The result is one (or two)
matrices with a shape equal to the number of gen-
erated tokens in the span by the vocabulary size. In

our main setup, we use only the probability values
assigned by the VLM to the actually generated to-
kens, resulting in a dense vector of length equal to
the number of tokens in the span.

Naturally, using these vectors as raw features
presents several challenges. First, spans may vary
in length, whereas traditional ML models require
a fixed number of input features. Second, there
are multiple ways to combine the Description and
Linguistic NTPs. Third, the sequences can be long,
which motivates aggregation and feature engineer-
ing. To address the challenge of varying sequence
lengths, each sequence of NTPs (either Description
or Linguistic) is zero-padded to match the length
of the longest sequence in the dataset, which con-
tains 42 tokens. To explore how to best combine
the two types of NTPs, the following aggregation
techniques were applied:

• Only Description NTPs: Use only the De-
scription NTPs as input features.

• Only Linguistic NTPs: Use only the Linguis-
tic NTPs as input features.

• Concatenation: Concatenate the Description
and Linguistic NTPs sequences, resulting in a
combined input of 84 features.

• Element-wise subtraction: Subtract the Lin-
guistic NTPs from the Description NTPs to-
ken by token.

• Element-wise division: Divide the Descrip-
tion NTPs by the Linguistic NTPs token by
token using:

tdiv
i =

tDesc
i

1 + t
Ling
i

∈ [0, 1],

where ti represents the corresponding NTP
value pf the i-th generated token.

While raw NTP values provide direct probabilistic
information, they may not capture higher-level pat-
terns or summarise statistics that might be useful
for hallucination detection. To enrich the feature
space, we also engineer statistical features:

• Mean of the generated-token NTPs.

• Standard deviation of the NTPs.

• Mean of the logarithm and exponent of the
NTPs (log(P) and exp(P)).
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Figure 2: An example for the data features.

• The top-k dominant frequencies (excluding
DC) from the Discrete Fourier Transform
of real-valued NTPs, where k is a hyper-
parameter ranging from 0 to 5 (0 serving as
the control).

If both types of NTPs are available, we extract the
following additional features:

• Mean of the element-wise product between
the Description and Linguistic NTPs.

• Minimum between (i) the mean of the
element-wise ratio of Linguistic NTPs to De-
scription NTPs, and (ii) the mean of the
element-wise ratio of Description NTPs to
Linguistic NTPs.

4 Hallucination Detection Dataset

Our dataset consists of 350 images, sourced from
Pixabay1 and iStock.2 For each image, a LLaVA
model was prompted with the instruction: “Please
provide a thorough description of this image”. The
generated descriptions were manually reviewed,
and only those containing at least one hallucina-
tion were retained. This procedure yielded 200 ex-
amples using LLaVA-1.6 and 150 examples using
LLaVA-1.5. From each VLM-generated description
with at least one hallucination, four probes were
extracted, ensuring that at least one probe per de-
scription contained a hallucination. In total, the
dataset comprises 1,400 probes, of which 42.9%
are labeled as hallucinated. The annotation process

1https://pixabay.com/
2https://www.istockphoto.com/

was conducted by a group of seven undergradu-
ate students (six males and one female), with ages
ranging from 21 to 28 years. Each data sample
includes the following features, with i ∈ [4]:

Description: The generated description by the
LLaVA model. Description NTPs: The NTPs of
the LLaVA generated tokens.3 Linguistic NTPs:
A sequence of probabilities, where each value rep-
resents the likelihood of a generated token when
the description is processed without the image in-
put. Probe(i): A statement written by the an-
notators that can be derived from the respective
Description. At least one probe among the four
contains a hallucination. Label(i): A binary la-
bel (True/False) that was manually assigned to de-
cide the validity of Probe(i). Context(i): A
markup of the part of the generated description that
Probe(i) refers to from the respective Description.
LLaVA Pred(i): The LLaVA VLM estimation
of Probe(i)’s correctness, as described in §3.1.
PaliGemma Pred(i): The PaliGemma VLM
estimation of Probe(i)’s correctness, see §3.1.

Figure 2 illustrates the features described above.
An example of the data collection pipeline is pro-
vided in Appendix A. A detailed analysis of the
Description NTPs and Linguistic NTPs is presented
in Appendix B, along with supporting evidence for
their potential usefulness as input features to the
models introduced in the following section.

3We also saved non-generated tokens with probabilities
above a set minimum threshold of 1e-3.
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Figure 3: AUC-ROC performance of traditional ML models using statistical features of NTPs and various Pred
features. Each bar group corresponds to a specific feature combination, while the dashed lines denote the LLaVA
and PaliGemma baselines. Error bars indicate 95% confidence intervals.

5 Experimental Setup

VLM Predictors To evaluate the effectiveness of
probe-based hallucination detection, we employ
two VLM predictors. The first is a LLaVA-based
predictor,4 corresponding to the same VLM that
generated the image description. The rationale is to
compare the performance of traditional ML models
that rely on the VLM’s NTPs with that of using
the same VLM for self-verification of its own gen-
erated content. The second VLM predictor is an
external model, PaliGemma.5 Naturally, using an
external VLM also imposes additional computa-
tional and memory overhead.

Traditional ML models We experiment with
three traditional ML models: Logistic Regression
(LR), Support Vector Machine (SVM), and XG-
Boost. We employ two sets of features, as de-
scribed in §3.3: (i) raw NTPs, using either De-
scription NTPs, Linguistic NTPs, or a combination
of both; and (ii) statistical features extracted from
the NTPs. Each model is trained on 1000 examples
(71.4% of the full dataset), with an additional 200
examples (14.3%) used for validation (for hyper-
parameter tuning), and evaluated on a test set of
200 examples (14.3%). To ensure the robustness of
our results, the reported results reflect the average
performance over 100 random splits.

Combining NTP-based features with VLM
predictors We investigate whether combining the

4huggingface.co/llava-hf/llava-1.5-7b-hf;
huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf

5huggingface.co/google/PaliGemma-3b-pt-224

Pred feature obtained from a predictor VLM
(LLaVA or PaliGemma) with the NTP-based fea-
tures improves detection. Accordingly, the input
of traditional ML models is augmented with one
or both predictor outputs. While this approach in-
troduces additional computational cost due to extra
VLM inference, it allows us to assess whether com-
bining fast NTP-based features with direct VLM
predictions offers complementary benefits.

Hyperparameter tuning. We perform hyper-
parameter tuning for each train-validation split to
ensure optimal model performance. The tuning
process aims to maximize the Area Under the ROC
Curve (AUC-ROC) on the validation set. Given
the variability in input representations and model
configurations, the specific hyperparameter ranges
for each setting are provided in Appendix C.

6 Results

We present the key results for the statistical NTP-
based features in Figure 3 and the complete results
in Table 1 in Appendix D. Results for the raw NTP-
based features are shown in Figure 4. Below, we
discuss our main findings.

Statistical features of NTPs can be competi-
tive to VLM predictions We begin by comparing
the performance of statistical features derived from
Description NTPs with that of the Pred feature of
LLaVA. This comparison is natural, as the NTPs
are extracted from the same model used for predic-
tion. As shown in Figure 3, LLaVA Pred (dashed
line) achieves slightly better performance than the
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Figure 4: AUC-ROC performance of ML models using different aggregation techniques of raw NTP features.

statistical features extracted from the Description
NTPs (three leftmost bars), with the ROC AUC
difference for LR being 0.013. Notice, however,
that using LLaVA Pred requires an additional for-
ward pass of the VLM for every probe (and a sin-
gle generated text can contain several probes). In
contrast, Description NTP features are obtained
on-the-fly during generation and only require infer-
ence from a lightweight traditional ML model. Our
results suggest that using Description NTPs offers
a compelling trade-off between performance and
efficiency, making it a practical option for real-time
applications where latency is paramount.

Linguistic NTPs provide a modest improve-
ment We next examine whether incorporating sta-
tistical features from Linguistic NTPs improves the
performance of traditional ML models. Although
using Linguistic NTPs introduces additional compu-
tational costs compared to using only Description
NTPs, this cost remains relatively low. Linguistic
NTPs can be computed with a single forward pass
of the language model after the text is generated,
in contrast to the multiple VLM calls required for
predictor VLMs (one for every probe). As shown
in Figure 3, comparing the second group of bars
(bars 4–6: Description + Linguistic NTPs) to the
first group (bars 1–3: Description NTPs only) re-
veals a consistent, albeit modest, performance gain
across all ML models. The improvement in ROC
AUC is approximately 0.01 and is not statistically
significant, as indicated by overlapping confidence
intervals. While these results suggest a positive
effect from including Linguistic NTPs, the benefit
is limited, and further investigation is needed to
understand their full potential.

Statistical features of NTPs enhance VLM
predictor performance. So far, we have shown

that NTP-based features offer a fast and lightweight
solution for hallucination detection, although they
moderately underperform compared to using the
same VLM as a predictor. We now investigate
whether combining both approaches can yield fur-
ther improvements. As shown in Figure 3 (bars
7–9), augmenting the Pred feature with statistical
features from Description NTPs consistently im-
proves performance across all traditional ML mod-
els. This indicates that NTPs alone can enhance
hallucination detection when used alongside a pre-
dictor VLM. Specifically, the ROC AUC improve-
ments over using LLaVA Pred alone are 0.015,
0.028, 0.019 for XGBoost, SVM, and LR, respec-
tively. We do not observe any further improve-
ment regarding combining Linguistic NTP-based
features (see bars 10–12).

In addition to LLaVA, we evaluate PaliGemma
as an alternative VLM predictor. While using an
external predictor that differs from the generator in-
troduces additional memory overhead, PaliGemma
Pred achieves substantially better performance
than LLaVA Pred (ROC AUC of 0.757 vs. 0.632).
We further assess whether combining both predic-
tors improves performance. As shown in Figure 3
(bars 13–15), using both Pred features as input
to SVM and LR yields an improvement over us-
ing PaliGemma Pred alone, with an ROC AUC
gain of 0.015. Finally, we examine whether adding
statistical NTP-based features provides additional
benefit in this combined predictor setup. While no
improvement is observed for SVM and LR, XG-
Boost does show a performance gain when NTP
features are included.

Subtraction is the best aggregation of raw
NTPs Although our primary analysis emphasizes
statistical features due to their superior perfor-
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Figure 5: Leave-one-out ablation study on our features. Excluding (left) and including (right) LLaVA predictions.

mance compared to raw NTPs (compare bars 1–6
in Figure 3 to the bars in Figure 4), we also ex-
plore raw NTP-based features, as they may offer
additional insights for future work. In particular,
we investigate how combining raw Description and
Linguistic NTPs affects model performance. As
shown in Figure 4, aggregation methods that aim
to neutralize the influence of linguistic biases, such
as element-wise subtraction or division of Descrip-
tion NTPs by Linguistic NTPs, consistently outper-
form simple concatenation across most ML models.
Among these, subtraction yields the highest perfor-
mance. This suggests that underlying linguistic pat-
terns in the model shape the generated descriptions,
and that these influences can be partially corrected
through neutralization-based aggregation.

6.1 Feature Importance Analysis

We now assess the contribution of individual sta-
tistical features extracted from both Description
and Linguistic NTPs. We consider multiple con-
figurations, including models with and without the
LLaVA Pred feature. To evaluate feature impor-
tance, we conduct a leave-one-feature-out analysis:
for each feature, we measure the change in perfor-
mance (∆) as the difference in AUC-ROC between
the full model (with all features) and the model
with it removed. Results are presented in Figure 5.

Unsurprisingly, the LLaVA Pred feature is the
most influential, providing a significantly larger
performance gain than any of the NTP-based fea-
tures. This aligns with its higher computational
cost and the richer information it encapsulates from
a full VLM inference pass. Among the NTP-based
statistical features, we find that transformations of
the probabilities, specifically, log-probabilities and
exponentiated probabilities, are more informative
than raw probabilities. This likely stems from the
nature of the softmax distribution over generated
tokens. These raw values offer limited variance

and may obscure fine-grained differences in uncer-
tainty. In contrast, applying logarithmic or expo-
nential transformations expands the range, making
subtle distinctions more detectable to the model. Fi-
nally, time series features derived from the Discrete
Fourier Transform (e.g., dominant frequencies) per-
form the worst. In some cases, including them
even degrades model performance relative to the
baseline, suggesting they may introduce noise or
redundancy rather than useful signal.

7 Conclusion

In this paper, we explore the potential of lever-
aging uncertainty-related features to improve hal-
lucination detection in text generated by VLMs.
Specifically, we use NTPs extracted from VLMs in
combination with traditional, efficient ML models
to enhance detection performance while remaining
computationally lightweight. Our results show that
statistical features derived from Description NTPs
provide a lightweight and effective alternative to
using VLM predictors. While Linguistic NTPs of-
fer performance gains when Pred features are un-
available, they contribute little when such features
are present, often making their additional compu-
tational cost unjustified. Finally, we find that com-
bining NTP-based features with Pred scores leads
to consistently improved detection performance,
demonstrating their complementary nature.

We hope this work serves as a valuable resource
for advancing the understanding and practical use
of NTPs in hallucination detection. Our findings
point to two promising directions for future re-
search: (1) developing efficient models of hallu-
cination detection to support response refinement
or the expression of uncertainty, and (2) further
investigating the relationship between Description
and Linguistic NTPs, whose integration may prove
valuable beyond hallucination detection.
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Appendix

A Data Collection Pipeline

In this section, we will demonstrate the data collection pipeline and the calls for the LLM for a single
example of an image. In Figure 6 the pipeline starts by instructing the LLM to return a description of the
image, which it does. The description it generates in the figure contains a hallucination which is marked
in - marked in purple. In blue there is a correct statement though. Four probes are manually derived from
this generated description, and the model is asked whether each probe is correct or not. This is judged by
human feedback (represented by the person’s icon), which represents the “true labels”, and by the LLaVA
model (represented by the computer’s icon). In the first probe both the model and the human judgments
are the same, and they both agree on the correctness of the probe. This is not the case with the fourth
probe which is a false statement the model generated, but the model predicts it is correct. From this two
calls for the LLaVA model, we can collect all features mentioned in §4, and the other features which were
not mentioned in this paper.

Figure 6: An illustration of the data collection pipeline.

B NTPs analysis

In order to justify the use of both the Description NTPs and Linguistic NTPs, some statistics were
examined of both types.

B.1 Description NTPs

Figure 7 demonstrates that the Description NTPs are a viable feature that can differentiate in some manner
between texts that do not contain hallucinations and texts which do. Though the distributions share a
great amount of probability mass, the difference between these two distributions is still notable, and the
difference between the two can also be observed in the box plot. Hence, we believe in the potential of
these NTPs as a useful feature that can assist in detecting hallucinations.

B.2 Linguistic NTPs

We witnessed the merits of using the Description NTPs for detecting hallucinations, and their analysis
revealed some repetitive peaks and patterns, which were hypothesized to be connected to the linguistic
component of the NTPs. To examine the influence of using the collected Linguistic NTPs, as a proxy
for the linguistic part of the text, we first checked the correlation between both types of NTPs. It was
hypothesized that a high correlation between them can indicate the merits of using Linguistic NTPs as a
tool to decrease the noise and anomalies coming from the linguistic part of the generation. Considering the
Spearman Correlation, the result was that the average correlation is 0.755, and the median correlation was
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Figure 7: Distributions (left) and box-plot (right) of Description NTPs in contexts that do not contain hallucinations
and in contexts that do. In the box plot, the left box corresponds to the Description NTPs in contexts that do not
contain hallucinations, and the right one corresponds Description NTPs in contexts that contain hallucination(s). In
both plots, NTPs are aggregated using a geometric mean to produce a single number for each context.

Figure 8: Histogram of the Spearman Correlation values between the Description NTPs and the Linguistic NTPs
(left). A single sampled example of the similar trends both NTPs exhibit in one of the contexts (right)

0.857. Figure 8 illustrates the distribution of correlations among the different contexts, and demonstrates
the strong correlation between both NTPs types.

C Hyperparameter Tuning

For our three ML models, we performed hyperparameter tuning using grid search to identify the optimal
parameters that maximize the AUC-ROC score on the validation set. The best-performing parameters
were then used to train the final model, which was evaluated on the test set.

LR and SVM were implemented using the LogisticRegression and SVC classes from the
scikit-learn library. The XGBoost model was implemented using the train function from the xgboost
library. The specific search grids for each model are detailed below.

LR: We optimized the regularization strength and penalty type while considering different solvers. The
search grid included:

• C ∈ {0.1, 1, 10, 100} (Regularization strength)

• Penalty type: {L1, L2}
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• Solvers: {lbfgs, liblinear, newton-cg, newton-cholesky, sag, saga}

SVM: We explored different values for the regularization parameter (C), kernel type, and kernel
coefficient (γ) for the rbf kernel:

• C ∈ {0.1, 1, 10, 100}

• Kernel type: {linear, rbf}

• γ ∈ {scale, auto, 1, 0.1, 0.01, 0.001}

XGBoost: We tuned multiple hyperparameters including tree depth, learning rate, regularization terms,
and subsampling ratios:

• Maximum tree depth: {3, 5}

• Learning rate: {0.1, 0.2}

• Minimum child weight: {3, 5, 7}

• Gamma (regularization parameter): {0.01, 0.1}

• Subsample ratio: {0.6, 0.7}

• Column sampling ratio: {0.6, 0.7}

• L1 regularization (α): {0.1, 1, 10}

• L2 regularization (λ): {1, 10, 100}

Grid search with cross-validation was employed to systematically evaluate all parameter combinations.
The best-performing hyperparameter set for each model was then used for final training and evaluation on
the test dataset.
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D Tabular Results for Figure 3

ML Models Performance
Preds Linguistic XGBoost SVM LR

No Preds
No 0.589 ± 0.008 0.597 ± 0.008 0.606 ± 0.007
Yes 0.599 ± 0.008 0.611 ± 0.008 0.615 ± 0.007

LLaVA
No 0.647 ± 0.007 0.660 ± 0.008 0.651 ± 0.007
Yes 0.649 ± 0.008 0.658 ± 0.008 0.652 ± 0.007

PaliGemma
No 0.739 ± 0.006 0.758 ± 0.005 0.761 ± 0.006
Yes 0.735 ± 0.007 0.759 ± 0.006 0.761 ± 0.006

LLaVA and PaliGemma
No 0.760 ± 0.006 0.772 ± 0.005 0.771 ± 0.005
Yes 0.761 ± 0.007 0.770 ± 0.006 0.769 ± 0.005

VLM Performance

VLM Type Raw Score XGBoost SVM LR

LLaVA 0.632 ± 0.007 – – –
PaliGemma 0.757 ± 0.005 – – –

LLaVA and PaliGemma – 0.754 ± 0.006 0.772 ± 0.005 0.772 ± 0.005

Table 1: Detailed AUC-ROC performance (with 95% confidence intervals) of traditional ML models and VLMs
across different configurations. The upper section evaluates ML models using only NTP-based features as distinct
inputs or in combination with VLM predictions. The lower section reports standalone VLM performance. Where a
single VLM prediction is directly adopted as the final prediction and when both VLM predictions are combined,
ML models utilize both prediction features to make the final prediction.

48


